keyring.c 37.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
/* Keyring handling
 *
 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/security.h>
#include <linux/seq_file.h>
#include <linux/err.h>
#include <keys/keyring-type.h>
#include <keys/user-type.h>
#include <linux/assoc_array_priv.h>
#include <linux/uaccess.h>
#include "internal.h"

/*
 * When plumbing the depths of the key tree, this sets a hard limit
 * set on how deep we're willing to go.
 */
#define KEYRING_SEARCH_MAX_DEPTH 6

/*
 * We keep all named keyrings in a hash to speed looking them up.
 */
#define KEYRING_NAME_HASH_SIZE	(1 << 5)

/*
 * We mark pointers we pass to the associative array with bit 1 set if
 * they're keyrings and clear otherwise.
 */
#define KEYRING_PTR_SUBTYPE	0x2UL

static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
{
	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
}
static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
{
	void *object = assoc_array_ptr_to_leaf(x);
	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
}
static inline void *keyring_key_to_ptr(struct key *key)
{
	if (key->type == &key_type_keyring)
		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
	return key;
}

static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
static DEFINE_RWLOCK(keyring_name_lock);

static inline unsigned keyring_hash(const char *desc)
{
	unsigned bucket = 0;

	for (; *desc; desc++)
		bucket += (unsigned char)*desc;

	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
}

/*
 * The keyring key type definition.  Keyrings are simply keys of this type and
 * can be treated as ordinary keys in addition to having their own special
 * operations.
 */
static int keyring_preparse(struct key_preparsed_payload *prep);
static void keyring_free_preparse(struct key_preparsed_payload *prep);
static int keyring_instantiate(struct key *keyring,
			       struct key_preparsed_payload *prep);
static void keyring_revoke(struct key *keyring);
static void keyring_destroy(struct key *keyring);
static void keyring_describe(const struct key *keyring, struct seq_file *m);
static long keyring_read(const struct key *keyring,
			 char __user *buffer, size_t buflen);

struct key_type key_type_keyring = {
	.name		= "keyring",
	.def_datalen	= 0,
	.preparse	= keyring_preparse,
	.free_preparse	= keyring_free_preparse,
	.instantiate	= keyring_instantiate,
	.revoke		= keyring_revoke,
	.destroy	= keyring_destroy,
	.describe	= keyring_describe,
	.read		= keyring_read,
};
EXPORT_SYMBOL(key_type_keyring);

/*
 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 * introducing a cycle.
 */
static DECLARE_RWSEM(keyring_serialise_link_sem);

/*
 * Publish the name of a keyring so that it can be found by name (if it has
 * one).
 */
static void keyring_publish_name(struct key *keyring)
{
	int bucket;

	if (keyring->description) {
		bucket = keyring_hash(keyring->description);

		write_lock(&keyring_name_lock);

		if (!keyring_name_hash[bucket].next)
			INIT_LIST_HEAD(&keyring_name_hash[bucket]);

		list_add_tail(&keyring->name_link,
			      &keyring_name_hash[bucket]);

		write_unlock(&keyring_name_lock);
	}
}

/*
 * Preparse a keyring payload
 */
static int keyring_preparse(struct key_preparsed_payload *prep)
{
	return prep->datalen != 0 ? -EINVAL : 0;
}

/*
 * Free a preparse of a user defined key payload
 */
static void keyring_free_preparse(struct key_preparsed_payload *prep)
{
}

/*
 * Initialise a keyring.
 *
 * Returns 0 on success, -EINVAL if given any data.
 */
static int keyring_instantiate(struct key *keyring,
			       struct key_preparsed_payload *prep)
{
	assoc_array_init(&keyring->keys);
	/* make the keyring available by name if it has one */
	keyring_publish_name(keyring);
	return 0;
}

/*
 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 * fold the carry back too, but that requires inline asm.
 */
static u64 mult_64x32_and_fold(u64 x, u32 y)
{
	u64 hi = (u64)(u32)(x >> 32) * y;
	u64 lo = (u64)(u32)(x) * y;
	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
}

/*
 * Hash a key type and description.
 */
static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
{
	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
	const char *description = index_key->description;
	unsigned long hash, type;
	u32 piece;
	u64 acc;
	int n, desc_len = index_key->desc_len;

	type = (unsigned long)index_key->type;

	acc = mult_64x32_and_fold(type, desc_len + 13);
	acc = mult_64x32_and_fold(acc, 9207);
	for (;;) {
		n = desc_len;
		if (n <= 0)
			break;
		if (n > 4)
			n = 4;
		piece = 0;
		memcpy(&piece, description, n);
		description += n;
		desc_len -= n;
		acc = mult_64x32_and_fold(acc, piece);
		acc = mult_64x32_and_fold(acc, 9207);
	}

	/* Fold the hash down to 32 bits if need be. */
	hash = acc;
	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
		hash ^= acc >> 32;

	/* Squidge all the keyrings into a separate part of the tree to
	 * ordinary keys by making sure the lowest level segment in the hash is
	 * zero for keyrings and non-zero otherwise.
	 */
	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
		return (hash + (hash << level_shift)) & ~fan_mask;
	return hash;
}

/*
 * Build the next index key chunk.
 *
 * On 32-bit systems the index key is laid out as:
 *
 *	0	4	5	9...
 *	hash	desclen	typeptr	desc[]
 *
 * On 64-bit systems:
 *
 *	0	8	9	17...
 *	hash	desclen	typeptr	desc[]
 *
 * We return it one word-sized chunk at a time.
 */
static unsigned long keyring_get_key_chunk(const void *data, int level)
{
	const struct keyring_index_key *index_key = data;
	unsigned long chunk = 0;
	long offset = 0;
	int desc_len = index_key->desc_len, n = sizeof(chunk);

	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
	switch (level) {
	case 0:
		return hash_key_type_and_desc(index_key);
	case 1:
		return ((unsigned long)index_key->type << 8) | desc_len;
	case 2:
		if (desc_len == 0)
			return (u8)((unsigned long)index_key->type >>
				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
		n--;
		offset = 1;
	default:
		offset += sizeof(chunk) - 1;
		offset += (level - 3) * sizeof(chunk);
		if (offset >= desc_len)
			return 0;
		desc_len -= offset;
		if (desc_len > n)
			desc_len = n;
		offset += desc_len;
		do {
			chunk <<= 8;
			chunk |= ((u8*)index_key->description)[--offset];
		} while (--desc_len > 0);

		if (level == 2) {
			chunk <<= 8;
			chunk |= (u8)((unsigned long)index_key->type >>
				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
		}
		return chunk;
	}
}

static unsigned long keyring_get_object_key_chunk(const void *object, int level)
{
	const struct key *key = keyring_ptr_to_key(object);
	return keyring_get_key_chunk(&key->index_key, level);
}

static bool keyring_compare_object(const void *object, const void *data)
{
	const struct keyring_index_key *index_key = data;
	const struct key *key = keyring_ptr_to_key(object);

	return key->index_key.type == index_key->type &&
		key->index_key.desc_len == index_key->desc_len &&
		memcmp(key->index_key.description, index_key->description,
		       index_key->desc_len) == 0;
}

/*
 * Compare the index keys of a pair of objects and determine the bit position
 * at which they differ - if they differ.
 */
static int keyring_diff_objects(const void *object, const void *data)
{
	const struct key *key_a = keyring_ptr_to_key(object);
	const struct keyring_index_key *a = &key_a->index_key;
	const struct keyring_index_key *b = data;
	unsigned long seg_a, seg_b;
	int level, i;

	level = 0;
	seg_a = hash_key_type_and_desc(a);
	seg_b = hash_key_type_and_desc(b);
	if ((seg_a ^ seg_b) != 0)
		goto differ;

	/* The number of bits contributed by the hash is controlled by a
	 * constant in the assoc_array headers.  Everything else thereafter we
	 * can deal with as being machine word-size dependent.
	 */
	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
	seg_a = a->desc_len;
	seg_b = b->desc_len;
	if ((seg_a ^ seg_b) != 0)
		goto differ;

	/* The next bit may not work on big endian */
	level++;
	seg_a = (unsigned long)a->type;
	seg_b = (unsigned long)b->type;
	if ((seg_a ^ seg_b) != 0)
		goto differ;

	level += sizeof(unsigned long);
	if (a->desc_len == 0)
		goto same;

	i = 0;
	if (((unsigned long)a->description | (unsigned long)b->description) &
	    (sizeof(unsigned long) - 1)) {
		do {
			seg_a = *(unsigned long *)(a->description + i);
			seg_b = *(unsigned long *)(b->description + i);
			if ((seg_a ^ seg_b) != 0)
				goto differ_plus_i;
			i += sizeof(unsigned long);
		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
	}

	for (; i < a->desc_len; i++) {
		seg_a = *(unsigned char *)(a->description + i);
		seg_b = *(unsigned char *)(b->description + i);
		if ((seg_a ^ seg_b) != 0)
			goto differ_plus_i;
	}

same:
	return -1;

differ_plus_i:
	level += i;
differ:
	i = level * 8 + __ffs(seg_a ^ seg_b);
	return i;
}

/*
 * Free an object after stripping the keyring flag off of the pointer.
 */
static void keyring_free_object(void *object)
{
	key_put(keyring_ptr_to_key(object));
}

/*
 * Operations for keyring management by the index-tree routines.
 */
static const struct assoc_array_ops keyring_assoc_array_ops = {
	.get_key_chunk		= keyring_get_key_chunk,
	.get_object_key_chunk	= keyring_get_object_key_chunk,
	.compare_object		= keyring_compare_object,
	.diff_objects		= keyring_diff_objects,
	.free_object		= keyring_free_object,
};

/*
 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 * and dispose of its data.
 *
 * The garbage collector detects the final key_put(), removes the keyring from
 * the serial number tree and then does RCU synchronisation before coming here,
 * so we shouldn't need to worry about code poking around here with the RCU
 * readlock held by this time.
 */
static void keyring_destroy(struct key *keyring)
{
	if (keyring->description) {
		write_lock(&keyring_name_lock);

		if (keyring->name_link.next != NULL &&
		    !list_empty(&keyring->name_link))
			list_del(&keyring->name_link);

		write_unlock(&keyring_name_lock);
	}

	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
}

/*
 * Describe a keyring for /proc.
 */
static void keyring_describe(const struct key *keyring, struct seq_file *m)
{
	if (keyring->description)
		seq_puts(m, keyring->description);
	else
		seq_puts(m, "[anon]");

	if (key_is_instantiated(keyring)) {
		if (keyring->keys.nr_leaves_on_tree != 0)
			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
		else
			seq_puts(m, ": empty");
	}
}

struct keyring_read_iterator_context {
	size_t			qty;
	size_t			count;
	key_serial_t __user	*buffer;
};

static int keyring_read_iterator(const void *object, void *data)
{
	struct keyring_read_iterator_context *ctx = data;
	const struct key *key = keyring_ptr_to_key(object);
	int ret;

	kenter("{%s,%d},,{%zu/%zu}",
	       key->type->name, key->serial, ctx->count, ctx->qty);

	if (ctx->count >= ctx->qty)
		return 1;

	ret = put_user(key->serial, ctx->buffer);
	if (ret < 0)
		return ret;
	ctx->buffer++;
	ctx->count += sizeof(key->serial);
	return 0;
}

/*
 * Read a list of key IDs from the keyring's contents in binary form
 *
 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 * from modifying it under us - which could cause us to read key IDs multiple
 * times.
 */
static long keyring_read(const struct key *keyring,
			 char __user *buffer, size_t buflen)
{
	struct keyring_read_iterator_context ctx;
	unsigned long nr_keys;
	int ret;

	kenter("{%d},,%zu", key_serial(keyring), buflen);

	if (buflen & (sizeof(key_serial_t) - 1))
		return -EINVAL;

	nr_keys = keyring->keys.nr_leaves_on_tree;
	if (nr_keys == 0)
		return 0;

	/* Calculate how much data we could return */
	ctx.qty = nr_keys * sizeof(key_serial_t);

	if (!buffer || !buflen)
		return ctx.qty;

	if (buflen > ctx.qty)
		ctx.qty = buflen;

	/* Copy the IDs of the subscribed keys into the buffer */
	ctx.buffer = (key_serial_t __user *)buffer;
	ctx.count = 0;
	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
	if (ret < 0) {
		kleave(" = %d [iterate]", ret);
		return ret;
	}

	kleave(" = %zu [ok]", ctx.count);
	return ctx.count;
}

/*
 * Allocate a keyring and link into the destination keyring.
 */
struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
			  const struct cred *cred, key_perm_t perm,
			  unsigned long flags,
			  int (*restrict_link)(struct key *,
					       const struct key_type *,
					       const union key_payload *),
			  struct key *dest)
{
	struct key *keyring;
	int ret;

	keyring = key_alloc(&key_type_keyring, description,
			    uid, gid, cred, perm, flags, restrict_link);
	if (!IS_ERR(keyring)) {
		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
		if (ret < 0) {
			key_put(keyring);
			keyring = ERR_PTR(ret);
		}
	}

	return keyring;
}
EXPORT_SYMBOL(keyring_alloc);

/**
 * restrict_link_reject - Give -EPERM to restrict link
 * @keyring: The keyring being added to.
 * @type: The type of key being added.
 * @payload: The payload of the key intended to be added.
 *
 * Reject the addition of any links to a keyring.  It can be overridden by
 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 * adding a key to a keyring.
 *
 * This is meant to be passed as the restrict_link parameter to
 * keyring_alloc().
 */
int restrict_link_reject(struct key *keyring,
			 const struct key_type *type,
			 const union key_payload *payload)
{
	return -EPERM;
}

/*
 * By default, we keys found by getting an exact match on their descriptions.
 */
bool key_default_cmp(const struct key *key,
		     const struct key_match_data *match_data)
{
	return strcmp(key->description, match_data->raw_data) == 0;
}

/*
 * Iteration function to consider each key found.
 */
static int keyring_search_iterator(const void *object, void *iterator_data)
{
	struct keyring_search_context *ctx = iterator_data;
	const struct key *key = keyring_ptr_to_key(object);
	unsigned long kflags = key->flags;

	kenter("{%d}", key->serial);

	/* ignore keys not of this type */
	if (key->type != ctx->index_key.type) {
		kleave(" = 0 [!type]");
		return 0;
	}

	/* skip invalidated, revoked and expired keys */
	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
			      (1 << KEY_FLAG_REVOKED))) {
			ctx->result = ERR_PTR(-EKEYREVOKED);
			kleave(" = %d [invrev]", ctx->skipped_ret);
			goto skipped;
		}

		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
				ctx->result = ERR_PTR(-EKEYEXPIRED);
			kleave(" = %d [expire]", ctx->skipped_ret);
			goto skipped;
		}
	}

	/* keys that don't match */
	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
		kleave(" = 0 [!match]");
		return 0;
	}

	/* key must have search permissions */
	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
	    key_task_permission(make_key_ref(key, ctx->possessed),
				ctx->cred, KEY_NEED_SEARCH) < 0) {
		ctx->result = ERR_PTR(-EACCES);
		kleave(" = %d [!perm]", ctx->skipped_ret);
		goto skipped;
	}

	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
		/* we set a different error code if we pass a negative key */
		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
			smp_rmb();
			ctx->result = ERR_PTR(key->reject_error);
			kleave(" = %d [neg]", ctx->skipped_ret);
			goto skipped;
		}
	}

	/* Found */
	ctx->result = make_key_ref(key, ctx->possessed);
	kleave(" = 1 [found]");
	return 1;

skipped:
	return ctx->skipped_ret;
}

/*
 * Search inside a keyring for a key.  We can search by walking to it
 * directly based on its index-key or we can iterate over the entire
 * tree looking for it, based on the match function.
 */
static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
{
	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
		const void *object;

		object = assoc_array_find(&keyring->keys,
					  &keyring_assoc_array_ops,
					  &ctx->index_key);
		return object ? ctx->iterator(object, ctx) : 0;
	}
	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
}

/*
 * Search a tree of keyrings that point to other keyrings up to the maximum
 * depth.
 */
static bool search_nested_keyrings(struct key *keyring,
				   struct keyring_search_context *ctx)
{
	struct {
		struct key *keyring;
		struct assoc_array_node *node;
		int slot;
	} stack[KEYRING_SEARCH_MAX_DEPTH];

	struct assoc_array_shortcut *shortcut;
	struct assoc_array_node *node;
	struct assoc_array_ptr *ptr;
	struct key *key;
	int sp = 0, slot;

	kenter("{%d},{%s,%s}",
	       keyring->serial,
	       ctx->index_key.type->name,
	       ctx->index_key.description);

#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);

	if (ctx->index_key.description)
		ctx->index_key.desc_len = strlen(ctx->index_key.description);

	/* Check to see if this top-level keyring is what we are looking for
	 * and whether it is valid or not.
	 */
	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
	    keyring_compare_object(keyring, &ctx->index_key)) {
		ctx->skipped_ret = 2;
		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
		case 1:
			goto found;
		case 2:
			return false;
		default:
			break;
		}
	}

	ctx->skipped_ret = 0;

	/* Start processing a new keyring */
descend_to_keyring:
	kdebug("descend to %d", keyring->serial);
	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
			      (1 << KEY_FLAG_REVOKED)))
		goto not_this_keyring;

	/* Search through the keys in this keyring before its searching its
	 * subtrees.
	 */
	if (search_keyring(keyring, ctx))
		goto found;

	/* Then manually iterate through the keyrings nested in this one.
	 *
	 * Start from the root node of the index tree.  Because of the way the
	 * hash function has been set up, keyrings cluster on the leftmost
	 * branch of the root node (root slot 0) or in the root node itself.
	 * Non-keyrings avoid the leftmost branch of the root entirely (root
	 * slots 1-15).
	 */
	ptr = ACCESS_ONCE(keyring->keys.root);
	if (!ptr)
		goto not_this_keyring;

	if (assoc_array_ptr_is_shortcut(ptr)) {
		/* If the root is a shortcut, either the keyring only contains
		 * keyring pointers (everything clusters behind root slot 0) or
		 * doesn't contain any keyring pointers.
		 */
		shortcut = assoc_array_ptr_to_shortcut(ptr);
		smp_read_barrier_depends();
		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
			goto not_this_keyring;

		ptr = ACCESS_ONCE(shortcut->next_node);
		node = assoc_array_ptr_to_node(ptr);
		goto begin_node;
	}

	node = assoc_array_ptr_to_node(ptr);
	smp_read_barrier_depends();

	ptr = node->slots[0];
	if (!assoc_array_ptr_is_meta(ptr))
		goto begin_node;

descend_to_node:
	/* Descend to a more distal node in this keyring's content tree and go
	 * through that.
	 */
	kdebug("descend");
	if (assoc_array_ptr_is_shortcut(ptr)) {
		shortcut = assoc_array_ptr_to_shortcut(ptr);
		smp_read_barrier_depends();
		ptr = ACCESS_ONCE(shortcut->next_node);
		BUG_ON(!assoc_array_ptr_is_node(ptr));
	}
	node = assoc_array_ptr_to_node(ptr);

begin_node:
	kdebug("begin_node");
	smp_read_barrier_depends();
	slot = 0;
ascend_to_node:
	/* Go through the slots in a node */
	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
		ptr = ACCESS_ONCE(node->slots[slot]);

		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
			goto descend_to_node;

		if (!keyring_ptr_is_keyring(ptr))
			continue;

		key = keyring_ptr_to_key(ptr);

		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
				ctx->result = ERR_PTR(-ELOOP);
				return false;
			}
			goto not_this_keyring;
		}

		/* Search a nested keyring */
		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
		    key_task_permission(make_key_ref(key, ctx->possessed),
					ctx->cred, KEY_NEED_SEARCH) < 0)
			continue;

		/* stack the current position */
		stack[sp].keyring = keyring;
		stack[sp].node = node;
		stack[sp].slot = slot;
		sp++;

		/* begin again with the new keyring */
		keyring = key;
		goto descend_to_keyring;
	}

	/* We've dealt with all the slots in the current node, so now we need
	 * to ascend to the parent and continue processing there.
	 */
	ptr = ACCESS_ONCE(node->back_pointer);
	slot = node->parent_slot;

	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
		shortcut = assoc_array_ptr_to_shortcut(ptr);
		smp_read_barrier_depends();
		ptr = ACCESS_ONCE(shortcut->back_pointer);
		slot = shortcut->parent_slot;
	}
	if (!ptr)
		goto not_this_keyring;
	node = assoc_array_ptr_to_node(ptr);
	smp_read_barrier_depends();
	slot++;

	/* If we've ascended to the root (zero backpointer), we must have just
	 * finished processing the leftmost branch rather than the root slots -
	 * so there can't be any more keyrings for us to find.
	 */
	if (node->back_pointer) {
		kdebug("ascend %d", slot);
		goto ascend_to_node;
	}

	/* The keyring we're looking at was disqualified or didn't contain a
	 * matching key.
	 */
not_this_keyring:
	kdebug("not_this_keyring %d", sp);
	if (sp <= 0) {
		kleave(" = false");
		return false;
	}

	/* Resume the processing of a keyring higher up in the tree */
	sp--;
	keyring = stack[sp].keyring;
	node = stack[sp].node;
	slot = stack[sp].slot + 1;
	kdebug("ascend to %d [%d]", keyring->serial, slot);
	goto ascend_to_node;

	/* We found a viable match */
found:
	key = key_ref_to_ptr(ctx->result);
	key_check(key);
	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
		key->last_used_at = ctx->now.tv_sec;
		keyring->last_used_at = ctx->now.tv_sec;
		while (sp > 0)
			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
	}
	kleave(" = true");
	return true;
}

/**
 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 * @keyring_ref: A pointer to the keyring with possession indicator.
 * @ctx: The keyring search context.
 *
 * Search the supplied keyring tree for a key that matches the criteria given.
 * The root keyring and any linked keyrings must grant Search permission to the
 * caller to be searchable and keys can only be found if they too grant Search
 * to the caller. The possession flag on the root keyring pointer controls use
 * of the possessor bits in permissions checking of the entire tree.  In
 * addition, the LSM gets to forbid keyring searches and key matches.
 *
 * The search is performed as a breadth-then-depth search up to the prescribed
 * limit (KEYRING_SEARCH_MAX_DEPTH).
 *
 * Keys are matched to the type provided and are then filtered by the match
 * function, which is given the description to use in any way it sees fit.  The
 * match function may use any attributes of a key that it wishes to to
 * determine the match.  Normally the match function from the key type would be
 * used.
 *
 * RCU can be used to prevent the keyring key lists from disappearing without
 * the need to take lots of locks.
 *
 * Returns a pointer to the found key and increments the key usage count if
 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 * specified keyring wasn't a keyring.
 *
 * In the case of a successful return, the possession attribute from
 * @keyring_ref is propagated to the returned key reference.
 */
key_ref_t keyring_search_aux(key_ref_t keyring_ref,
			     struct keyring_search_context *ctx)
{
	struct key *keyring;
	long err;

	ctx->iterator = keyring_search_iterator;
	ctx->possessed = is_key_possessed(keyring_ref);
	ctx->result = ERR_PTR(-EAGAIN);

	keyring = key_ref_to_ptr(keyring_ref);
	key_check(keyring);

	if (keyring->type != &key_type_keyring)
		return ERR_PTR(-ENOTDIR);

	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
		if (err < 0)
			return ERR_PTR(err);
	}

	rcu_read_lock();
	ctx->now = current_kernel_time();
	if (search_nested_keyrings(keyring, ctx))
		__key_get(key_ref_to_ptr(ctx->result));
	rcu_read_unlock();
	return ctx->result;
}

/**
 * keyring_search - Search the supplied keyring tree for a matching key
 * @keyring: The root of the keyring tree to be searched.
 * @type: The type of keyring we want to find.
 * @description: The name of the keyring we want to find.
 *
 * As keyring_search_aux() above, but using the current task's credentials and
 * type's default matching function and preferred search method.
 */
key_ref_t keyring_search(key_ref_t keyring,
			 struct key_type *type,
			 const char *description)
{
	struct keyring_search_context ctx = {
		.index_key.type		= type,
		.index_key.description	= description,
		.cred			= current_cred(),
		.match_data.cmp		= key_default_cmp,
		.match_data.raw_data	= description,
		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
	};
	key_ref_t key;
	int ret;

	if (type->match_preparse) {
		ret = type->match_preparse(&ctx.match_data);
		if (ret < 0)
			return ERR_PTR(ret);
	}

	key = keyring_search_aux(keyring, &ctx);

	if (type->match_free)
		type->match_free(&ctx.match_data);
	return key;
}
EXPORT_SYMBOL(keyring_search);

/*
 * Search the given keyring for a key that might be updated.
 *
 * The caller must guarantee that the keyring is a keyring and that the
 * permission is granted to modify the keyring as no check is made here.  The
 * caller must also hold a lock on the keyring semaphore.
 *
 * Returns a pointer to the found key with usage count incremented if
 * successful and returns NULL if not found.  Revoked and invalidated keys are
 * skipped over.
 *
 * If successful, the possession indicator is propagated from the keyring ref
 * to the returned key reference.
 */
key_ref_t find_key_to_update(key_ref_t keyring_ref,
			     const struct keyring_index_key *index_key)
{
	struct key *keyring, *key;
	const void *object;

	keyring = key_ref_to_ptr(keyring_ref);

	kenter("{%d},{%s,%s}",
	       keyring->serial, index_key->type->name, index_key->description);

	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
				  index_key);

	if (object)
		goto found;

	kleave(" = NULL");
	return NULL;

found:
	key = keyring_ptr_to_key(object);
	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
			  (1 << KEY_FLAG_REVOKED))) {
		kleave(" = NULL [x]");
		return NULL;
	}
	__key_get(key);
	kleave(" = {%d}", key->serial);
	return make_key_ref(key, is_key_possessed(keyring_ref));
}

/*
 * Find a keyring with the specified name.
 *
 * All named keyrings in the current user namespace are searched, provided they
 * grant Search permission directly to the caller (unless this check is
 * skipped).  Keyrings whose usage points have reached zero or who have been
 * revoked are skipped.
 *
 * Returns a pointer to the keyring with the keyring's refcount having being
 * incremented on success.  -ENOKEY is returned if a key could not be found.
 */
struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
{
	struct key *keyring;
	int bucket;

	if (!name)
		return ERR_PTR(-EINVAL);

	bucket = keyring_hash(name);

	read_lock(&keyring_name_lock);

	if (keyring_name_hash[bucket].next) {
		/* search this hash bucket for a keyring with a matching name
		 * that's readable and that hasn't been revoked */
		list_for_each_entry(keyring,
				    &keyring_name_hash[bucket],
				    name_link
				    ) {
			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
				continue;

			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
				continue;

			if (strcmp(keyring->description, name) != 0)
				continue;

			if (!skip_perm_check &&
			    key_permission(make_key_ref(keyring, 0),
					   KEY_NEED_SEARCH) < 0)
				continue;

			/* we've got a match but we might end up racing with
			 * key_cleanup() if the keyring is currently 'dead'
			 * (ie. it has a zero usage count) */
			if (!atomic_inc_not_zero(&keyring->usage))
				continue;
			keyring->last_used_at = current_kernel_time().tv_sec;
			goto out;
		}
	}

	keyring = ERR_PTR(-ENOKEY);
out:
	read_unlock(&keyring_name_lock);
	return keyring;
}

static int keyring_detect_cycle_iterator(const void *object,
					 void *iterator_data)
{
	struct keyring_search_context *ctx = iterator_data;
	const struct key *key = keyring_ptr_to_key(object);

	kenter("{%d}", key->serial);

	/* We might get a keyring with matching index-key that is nonetheless a
	 * different keyring. */
	if (key != ctx->match_data.raw_data)
		return 0;

	ctx->result = ERR_PTR(-EDEADLK);
	return 1;
}

/*
 * See if a cycle will will be created by inserting acyclic tree B in acyclic
 * tree A at the topmost level (ie: as a direct child of A).
 *
 * Since we are adding B to A at the top level, checking for cycles should just
 * be a matter of seeing if node A is somewhere in tree B.
 */
static int keyring_detect_cycle(struct key *A, struct key *B)
{
	struct keyring_search_context ctx = {
		.index_key		= A->index_key,
		.match_data.raw_data	= A,
		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
		.iterator		= keyring_detect_cycle_iterator,
		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
					   KEYRING_SEARCH_NO_UPDATE_TIME |
					   KEYRING_SEARCH_NO_CHECK_PERM |
					   KEYRING_SEARCH_DETECT_TOO_DEEP),
	};

	rcu_read_lock();
	search_nested_keyrings(B, &ctx);
	rcu_read_unlock();
	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
}

/*
 * Preallocate memory so that a key can be linked into to a keyring.
 */
int __key_link_begin(struct key *keyring,
		     const struct keyring_index_key *index_key,
		     struct assoc_array_edit **_edit)
	__acquires(&keyring->sem)
	__acquires(&keyring_serialise_link_sem)
{
	struct assoc_array_edit *edit;
	int ret;

	kenter("%d,%s,%s,",
	       keyring->serial, index_key->type->name, index_key->description);

	BUG_ON(index_key->desc_len == 0);

	if (keyring->type != &key_type_keyring)
		return -ENOTDIR;

	down_write(&keyring->sem);

	ret = -EKEYREVOKED;
	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
		goto error_krsem;

	/* serialise link/link calls to prevent parallel calls causing a cycle
	 * when linking two keyring in opposite orders */
	if (index_key->type == &key_type_keyring)
		down_write(&keyring_serialise_link_sem);

	/* Create an edit script that will insert/replace the key in the
	 * keyring tree.
	 */
	edit = assoc_array_insert(&keyring->keys,
				  &keyring_assoc_array_ops,
				  index_key,
				  NULL);
	if (IS_ERR(edit)) {
		ret = PTR_ERR(edit);
		goto error_sem;
	}

	/* If we're not replacing a link in-place then we're going to need some
	 * extra quota.
	 */
	if (!edit->dead_leaf) {
		ret = key_payload_reserve(keyring,
					  keyring->datalen + KEYQUOTA_LINK_BYTES);
		if (ret < 0)
			goto error_cancel;
	}

	*_edit = edit;
	kleave(" = 0");
	return 0;

error_cancel:
	assoc_array_cancel_edit(edit);
error_sem:
	if (index_key->type == &key_type_keyring)
		up_write(&keyring_serialise_link_sem);
error_krsem:
	up_write(&keyring->sem);
	kleave(" = %d", ret);
	return ret;
}

/*
 * Check already instantiated keys aren't going to be a problem.
 *
 * The caller must have called __key_link_begin(). Don't need to call this for
 * keys that were created since __key_link_begin() was called.
 */
int __key_link_check_live_key(struct key *keyring, struct key *key)
{
	if (key->type == &key_type_keyring)
		/* check that we aren't going to create a cycle by linking one
		 * keyring to another */
		return keyring_detect_cycle(keyring, key);
	return 0;
}

/*
 * Link a key into to a keyring.
 *
 * Must be called with __key_link_begin() having being called.  Discards any
 * already extant link to matching key if there is one, so that each keyring
 * holds at most one link to any given key of a particular type+description
 * combination.
 */
void __key_link(struct key *key, struct assoc_array_edit **_edit)
{
	__key_get(key);
	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
	assoc_array_apply_edit(*_edit);
	*_edit = NULL;
}

/*
 * Finish linking a key into to a keyring.
 *
 * Must be called with __key_link_begin() having being called.
 */
void __key_link_end(struct key *keyring,
		    const struct keyring_index_key *index_key,
		    struct assoc_array_edit *edit)
	__releases(&keyring->sem)
	__releases(&keyring_serialise_link_sem)
{
	BUG_ON(index_key->type == NULL);
	kenter("%d,%s,", keyring->serial, index_key->type->name);

	if (index_key->type == &key_type_keyring)
		up_write(&keyring_serialise_link_sem);

	if (edit) {
		if (!edit->dead_leaf) {
			key_payload_reserve(keyring,
				keyring->datalen - KEYQUOTA_LINK_BYTES);
		}
		assoc_array_cancel_edit(edit);
	}
	up_write(&keyring->sem);
}

/*
 * Check addition of keys to restricted keyrings.
 */
static int __key_link_check_restriction(struct key *keyring, struct key *key)
{
	if (!keyring->restrict_link)
		return 0;
	return keyring->restrict_link(keyring, key->type, &key->payload);
}

/**
 * key_link - Link a key to a keyring
 * @keyring: The keyring to make the link in.
 * @key: The key to link to.
 *
 * Make a link in a keyring to a key, such that the keyring holds a reference
 * on that key and the key can potentially be found by searching that keyring.
 *
 * This function will write-lock the keyring's semaphore and will consume some
 * of the user's key data quota to hold the link.
 *
 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
 * full, -EDQUOT if there is insufficient key data quota remaining to add
 * another link or -ENOMEM if there's insufficient memory.
 *
 * It is assumed that the caller has checked that it is permitted for a link to
 * be made (the keyring should have Write permission and the key Link
 * permission).
 */
int key_link(struct key *keyring, struct key *key)
{
	struct assoc_array_edit *edit;
	int ret;

	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));

	key_check(keyring);
	key_check(key);

	ret = __key_link_begin(keyring, &key->index_key, &edit);
	if (ret == 0) {
		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
		ret = __key_link_check_restriction(keyring, key);
		if (ret == 0)
			ret = __key_link_check_live_key(keyring, key);
		if (ret == 0)
			__key_link(key, &edit);
		__key_link_end(keyring, &key->index_key, edit);
	}

	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
	return ret;
}
EXPORT_SYMBOL(key_link);

/**
 * key_unlink - Unlink the first link to a key from a keyring.
 * @keyring: The keyring to remove the link from.
 * @key: The key the link is to.
 *
 * Remove a link from a keyring to a key.
 *
 * This function will write-lock the keyring's semaphore.
 *
 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
 * memory.
 *
 * It is assumed that the caller has checked that it is permitted for a link to
 * be removed (the keyring should have Write permission; no permissions are
 * required on the key).
 */
int key_unlink(struct key *keyring, struct key *key)
{
	struct assoc_array_edit *edit;
	int ret;

	key_check(keyring);
	key_check(key);

	if (keyring->type != &key_type_keyring)
		return -ENOTDIR;

	down_write(&keyring->sem);

	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
				  &key->index_key);
	if (IS_ERR(edit)) {
		ret = PTR_ERR(edit);
		goto error;
	}
	ret = -ENOENT;
	if (edit == NULL)
		goto error;

	assoc_array_apply_edit(edit);
	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
	ret = 0;

error:
	up_write(&keyring->sem);
	return ret;
}
EXPORT_SYMBOL(key_unlink);

/**
 * keyring_clear - Clear a keyring
 * @keyring: The keyring to clear.
 *
 * Clear the contents of the specified keyring.
 *
 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
 */
int keyring_clear(struct key *keyring)
{
	struct assoc_array_edit *edit;
	int ret;

	if (keyring->type != &key_type_keyring)
		return -ENOTDIR;

	down_write(&keyring->sem);

	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
	if (IS_ERR(edit)) {
		ret = PTR_ERR(edit);
	} else {
		if (edit)
			assoc_array_apply_edit(edit);
		key_payload_reserve(keyring, 0);
		ret = 0;
	}

	up_write(&keyring->sem);
	return ret;
}
EXPORT_SYMBOL(keyring_clear);

/*
 * Dispose of the links from a revoked keyring.
 *
 * This is called with the key sem write-locked.
 */
static void keyring_revoke(struct key *keyring)
{
	struct assoc_array_edit *edit;

	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
	if (!IS_ERR(edit)) {
		if (edit)
			assoc_array_apply_edit(edit);
		key_payload_reserve(keyring, 0);
	}
}

static bool keyring_gc_select_iterator(void *object, void *iterator_data)
{
	struct key *key = keyring_ptr_to_key(object);
	time_t *limit = iterator_data;

	if (key_is_dead(key, *limit))
		return false;
	key_get(key);
	return true;
}

static int keyring_gc_check_iterator(const void *object, void *iterator_data)
{
	const struct key *key = keyring_ptr_to_key(object);
	time_t *limit = iterator_data;

	key_check(key);
	return key_is_dead(key, *limit);
}

/*
 * Garbage collect pointers from a keyring.
 *
 * Not called with any locks held.  The keyring's key struct will not be
 * deallocated under us as only our caller may deallocate it.
 */
void keyring_gc(struct key *keyring, time_t limit)
{
	int result;

	kenter("%x{%s}", keyring->serial, keyring->description ?: "");

	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
			      (1 << KEY_FLAG_REVOKED)))
		goto dont_gc;

	/* scan the keyring looking for dead keys */
	rcu_read_lock();
	result = assoc_array_iterate(&keyring->keys,
				     keyring_gc_check_iterator, &limit);
	rcu_read_unlock();
	if (result == true)
		goto do_gc;

dont_gc:
	kleave(" [no gc]");
	return;

do_gc:
	down_write(&keyring->sem);
	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
		       keyring_gc_select_iterator, &limit);
	up_write(&keyring->sem);
	kleave(" [gc]");
}