qspinlock.c 15 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
/*
 * Queued spinlock
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * (C) Copyright 2013-2015 Hewlett-Packard Development Company, L.P.
 * (C) Copyright 2013-2014 Red Hat, Inc.
 * (C) Copyright 2015 Intel Corp.
 * (C) Copyright 2015 Hewlett-Packard Enterprise Development LP
 *
 * Authors: Waiman Long <waiman.long@hpe.com>
 *          Peter Zijlstra <peterz@infradead.org>
 */

#ifndef _GEN_PV_LOCK_SLOWPATH

#include <linux/smp.h>
#include <linux/bug.h>
#include <linux/cpumask.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/mutex.h>
#include <linux/prefetch.h>
#include <asm/byteorder.h>
#include <asm/qspinlock.h>

/*
 * The basic principle of a queue-based spinlock can best be understood
 * by studying a classic queue-based spinlock implementation called the
 * MCS lock. The paper below provides a good description for this kind
 * of lock.
 *
 * http://www.cise.ufl.edu/tr/DOC/REP-1992-71.pdf
 *
 * This queued spinlock implementation is based on the MCS lock, however to make
 * it fit the 4 bytes we assume spinlock_t to be, and preserve its existing
 * API, we must modify it somehow.
 *
 * In particular; where the traditional MCS lock consists of a tail pointer
 * (8 bytes) and needs the next pointer (another 8 bytes) of its own node to
 * unlock the next pending (next->locked), we compress both these: {tail,
 * next->locked} into a single u32 value.
 *
 * Since a spinlock disables recursion of its own context and there is a limit
 * to the contexts that can nest; namely: task, softirq, hardirq, nmi. As there
 * are at most 4 nesting levels, it can be encoded by a 2-bit number. Now
 * we can encode the tail by combining the 2-bit nesting level with the cpu
 * number. With one byte for the lock value and 3 bytes for the tail, only a
 * 32-bit word is now needed. Even though we only need 1 bit for the lock,
 * we extend it to a full byte to achieve better performance for architectures
 * that support atomic byte write.
 *
 * We also change the first spinner to spin on the lock bit instead of its
 * node; whereby avoiding the need to carry a node from lock to unlock, and
 * preserving existing lock API. This also makes the unlock code simpler and
 * faster.
 *
 * N.B. The current implementation only supports architectures that allow
 *      atomic operations on smaller 8-bit and 16-bit data types.
 *
 */

#include "mcs_spinlock.h"

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define MAX_NODES	8
#else
#define MAX_NODES	4
#endif

/*
 * The pending bit spinning loop count.
 * This heuristic is used to limit the number of lockword accesses
 * made by atomic_cond_read_relaxed when waiting for the lock to
 * transition out of the "== _Q_PENDING_VAL" state. We don't spin
 * indefinitely because there's no guarantee that we'll make forward
 * progress.
 */
#ifndef _Q_PENDING_LOOPS
#define _Q_PENDING_LOOPS	1
#endif

/*
 * Per-CPU queue node structures; we can never have more than 4 nested
 * contexts: task, softirq, hardirq, nmi.
 *
 * Exactly fits one 64-byte cacheline on a 64-bit architecture.
 *
 * PV doubles the storage and uses the second cacheline for PV state.
 */
static DEFINE_PER_CPU_ALIGNED(struct mcs_spinlock, mcs_nodes[MAX_NODES]);

/*
 * We must be able to distinguish between no-tail and the tail at 0:0,
 * therefore increment the cpu number by one.
 */

static inline __pure u32 encode_tail(int cpu, int idx)
{
	u32 tail;

#ifdef CONFIG_DEBUG_SPINLOCK
	BUG_ON(idx > 3);
#endif
	tail  = (cpu + 1) << _Q_TAIL_CPU_OFFSET;
	tail |= idx << _Q_TAIL_IDX_OFFSET; /* assume < 4 */

	return tail;
}

static inline __pure struct mcs_spinlock *decode_tail(u32 tail)
{
	int cpu = (tail >> _Q_TAIL_CPU_OFFSET) - 1;
	int idx = (tail &  _Q_TAIL_IDX_MASK) >> _Q_TAIL_IDX_OFFSET;

	return per_cpu_ptr(&mcs_nodes[idx], cpu);
}

#define _Q_LOCKED_PENDING_MASK (_Q_LOCKED_MASK | _Q_PENDING_MASK)

#if _Q_PENDING_BITS == 8
/**
 * clear_pending - clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,* -> *,0,*
 */
static __always_inline void clear_pending(struct qspinlock *lock)
{
	WRITE_ONCE(lock->pending, 0);
}

/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 *
 * Lock stealing is not allowed if this function is used.
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	WRITE_ONCE(lock->locked_pending, _Q_LOCKED_VAL);
}

/*
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail), which heads an address dependency
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	/*
	 * Use release semantics to make sure that the MCS node is properly
	 * initialized before changing the tail code.
	 */
	return (u32)xchg_release(&lock->tail,
				 tail >> _Q_TAIL_OFFSET) << _Q_TAIL_OFFSET;
}

#else /* _Q_PENDING_BITS == 8 */

/**
 * clear_pending - clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,* -> *,0,*
 */
static __always_inline void clear_pending(struct qspinlock *lock)
{
	atomic_andnot(_Q_PENDING_VAL, &lock->val);
}

/**
 * clear_pending_set_locked - take ownership and clear the pending bit.
 * @lock: Pointer to queued spinlock structure
 *
 * *,1,0 -> *,0,1
 */
static __always_inline void clear_pending_set_locked(struct qspinlock *lock)
{
	atomic_add(-_Q_PENDING_VAL + _Q_LOCKED_VAL, &lock->val);
}

/**
 * xchg_tail - Put in the new queue tail code word & retrieve previous one
 * @lock : Pointer to queued spinlock structure
 * @tail : The new queue tail code word
 * Return: The previous queue tail code word
 *
 * xchg(lock, tail)
 *
 * p,*,* -> n,*,* ; prev = xchg(lock, node)
 */
static __always_inline u32 xchg_tail(struct qspinlock *lock, u32 tail)
{
	u32 old, new, val = atomic_read(&lock->val);

	for (;;) {
		new = (val & _Q_LOCKED_PENDING_MASK) | tail;
		/*
		 * Use release semantics to make sure that the MCS node is
		 * properly initialized before changing the tail code.
		 */
		old = atomic_cmpxchg_release(&lock->val, val, new);
		if (old == val)
			break;

		val = old;
	}
	return old;
}
#endif /* _Q_PENDING_BITS == 8 */

/**
 * queued_fetch_set_pending_acquire - fetch the whole lock value and set pending
 * @lock : Pointer to queued spinlock structure
 * Return: The previous lock value
 *
 * *,*,* -> *,1,*
 */
#ifndef queued_fetch_set_pending_acquire
static __always_inline u32 queued_fetch_set_pending_acquire(struct qspinlock *lock)
{
	return atomic_fetch_or_acquire(_Q_PENDING_VAL, &lock->val);
}
#endif

/**
 * set_locked - Set the lock bit and own the lock
 * @lock: Pointer to queued spinlock structure
 *
 * *,*,0 -> *,0,1
 */
static __always_inline void set_locked(struct qspinlock *lock)
{
	WRITE_ONCE(lock->locked, _Q_LOCKED_VAL);
}


/*
 * Generate the native code for queued_spin_unlock_slowpath(); provide NOPs for
 * all the PV callbacks.
 */

static __always_inline void __pv_init_node(struct mcs_spinlock *node) { }
static __always_inline void __pv_wait_node(struct mcs_spinlock *node,
					   struct mcs_spinlock *prev) { }
static __always_inline void __pv_kick_node(struct qspinlock *lock,
					   struct mcs_spinlock *node) { }
static __always_inline u32  __pv_wait_head_or_lock(struct qspinlock *lock,
						   struct mcs_spinlock *node)
						   { return 0; }

#define pv_enabled()		false

#define pv_init_node		__pv_init_node
#define pv_wait_node		__pv_wait_node
#define pv_kick_node		__pv_kick_node
#define pv_wait_head_or_lock	__pv_wait_head_or_lock

#ifdef CONFIG_PARAVIRT_SPINLOCKS
#define queued_spin_lock_slowpath	native_queued_spin_lock_slowpath
#endif

#endif /* _GEN_PV_LOCK_SLOWPATH */

/**
 * queued_spin_lock_slowpath - acquire the queued spinlock
 * @lock: Pointer to queued spinlock structure
 * @val: Current value of the queued spinlock 32-bit word
 *
 * (queue tail, pending bit, lock value)
 *
 *              fast     :    slow                                  :    unlock
 *                       :                                          :
 * uncontended  (0,0,0) -:--> (0,0,1) ------------------------------:--> (*,*,0)
 *                       :       | ^--------.------.             /  :
 *                       :       v           \      \            |  :
 * pending               :    (0,1,1) +--> (0,1,0)   \           |  :
 *                       :       | ^--'              |           |  :
 *                       :       v                   |           |  :
 * uncontended           :    (n,x,y) +--> (n,0,0) --'           |  :
 *   queue               :       | ^--'                          |  :
 *                       :       v                               |  :
 * contended             :    (*,x,y) +--> (*,0,0) ---> (*,0,1) -'  :
 *   queue               :         ^--'                             :
 */
void queued_spin_lock_slowpath(struct qspinlock *lock, u32 val)
{
	struct mcs_spinlock *prev, *next, *node;
	u32 old, tail;
	int idx;

	BUILD_BUG_ON(CONFIG_NR_CPUS >= (1U << _Q_TAIL_CPU_BITS));

	if (pv_enabled())
		goto queue;

	if (virt_spin_lock(lock))
		return;

	/*
	 * Wait for in-progress pending->locked hand-overs with a bounded
	 * number of spins so that we guarantee forward progress.
	 *
	 * 0,1,0 -> 0,0,1
	 */
	if (val == _Q_PENDING_VAL) {
		int cnt = _Q_PENDING_LOOPS;
		val = smp_cond_load_acquire(&lock->val.counter,
					       (VAL != _Q_PENDING_VAL) || !cnt--);
	}

	/*
	 * If we observe any contention; queue.
	 */
	if (val & ~_Q_LOCKED_MASK)
		goto queue;

	/*
	 * trylock || pending
	 *
	 * 0,0,0 -> 0,0,1 ; trylock
	 * 0,0,1 -> 0,1,1 ; pending
	 */
	val = queued_fetch_set_pending_acquire(lock);

	/*
	 * If we observe any contention; undo and queue.
	 */
	if (unlikely(val & ~_Q_LOCKED_MASK)) {
		if (!(val & _Q_PENDING_MASK))
			clear_pending(lock);
		goto queue;
	}

	/*
	 * We're pending, wait for the owner to go away.
	 *
	 * 0,1,1 -> 0,1,0
	 *
	 * this wait loop must be a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because not all
	 * clear_pending_set_locked() implementations imply full
	 * barriers.
	 */
	if (val & _Q_LOCKED_MASK)
		smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_MASK));

	/*
	 * take ownership and clear the pending bit.
	 *
	 * 0,1,0 -> 0,0,1
	 */
	clear_pending_set_locked(lock);
	return;

	/*
	 * End of pending bit optimistic spinning and beginning of MCS
	 * queuing.
	 */
queue:
	node = this_cpu_ptr(&mcs_nodes[0]);
	idx = node->count++;
	tail = encode_tail(smp_processor_id(), idx);

	node += idx;

	/*
	 * Ensure that we increment the head node->count before initialising
	 * the actual node. If the compiler is kind enough to reorder these
	 * stores, then an IRQ could overwrite our assignments.
	 */
	barrier();

	node->locked = 0;
	node->next = NULL;
	pv_init_node(node);

	/*
	 * We touched a (possibly) cold cacheline in the per-cpu queue node;
	 * attempt the trylock once more in the hope someone let go while we
	 * weren't watching.
	 */
	if (queued_spin_trylock(lock))
		goto release;

	/*
	 * We have already touched the queueing cacheline; don't bother with
	 * pending stuff.
	 *
	 * p,*,* -> n,*,*
	 *
	 * RELEASE, such that the stores to @node must be complete.
	 */
	old = xchg_tail(lock, tail);
	next = NULL;

	/*
	 * if there was a previous node; link it and wait until reaching the
	 * head of the waitqueue.
	 */
	if (old & _Q_TAIL_MASK) {
		prev = decode_tail(old);

		/*
		 * We must ensure that the stores to @node are observed before
		 * the write to prev->next. The address dependency from
		 * xchg_tail is not sufficient to ensure this because the read
		 * component of xchg_tail is unordered with respect to the
		 * initialisation of @node.
		 */
		smp_store_release(&prev->next, node);

		pv_wait_node(node, prev);
		arch_mcs_spin_lock_contended(&node->locked);

		/*
		 * While waiting for the MCS lock, the next pointer may have
		 * been set by another lock waiter. We optimistically load
		 * the next pointer & prefetch the cacheline for writing
		 * to reduce latency in the upcoming MCS unlock operation.
		 */
		next = READ_ONCE(node->next);
		if (next)
			prefetchw(next);
	}

	/*
	 * we're at the head of the waitqueue, wait for the owner & pending to
	 * go away.
	 *
	 * *,x,y -> *,0,0
	 *
	 * this wait loop must use a load-acquire such that we match the
	 * store-release that clears the locked bit and create lock
	 * sequentiality; this is because the set_locked() function below
	 * does not imply a full barrier.
	 *
	 * The PV pv_wait_head_or_lock function, if active, will acquire
	 * the lock and return a non-zero value. So we have to skip the
	 * smp_cond_load_acquire() call. As the next PV queue head hasn't been
	 * designated yet, there is no way for the locked value to become
	 * _Q_SLOW_VAL. So both the set_locked() and the
	 * atomic_cmpxchg_relaxed() calls will be safe.
	 *
	 * If PV isn't active, 0 will be returned instead.
	 *
	 */
	if ((val = pv_wait_head_or_lock(lock, node)))
		goto locked;

	val = smp_cond_load_acquire(&lock->val.counter, !(VAL & _Q_LOCKED_PENDING_MASK));

locked:
	/*
	 * claim the lock:
	 *
	 * n,0,0 -> 0,0,1 : lock, uncontended
	 * *,*,0 -> *,*,1 : lock, contended
	 *
	 * If the queue head is the only one in the queue (lock value == tail)
	 * and nobody is pending, clear the tail code and grab the lock.
	 * Otherwise, we only need to grab the lock.
	 */

	/* In the PV case we might already have _Q_LOCKED_VAL set */
	if ((val & _Q_TAIL_MASK) == tail) {
		/*
		 * The smp_cond_load_acquire() call above has provided the
		 * necessary acquire semantics required for locking.
		 */
		old = atomic_cmpxchg_relaxed(&lock->val, val, _Q_LOCKED_VAL);
		if (old == val)
			goto release; /* No contention */
	}

	/* Either somebody is queued behind us or _Q_PENDING_VAL is set */
	set_locked(lock);

	/*
	 * contended path; wait for next if not observed yet, release.
	 */
	if (!next) {
		while (!(next = READ_ONCE(node->next)))
			cpu_relax();
	}

	arch_mcs_spin_unlock_contended(&next->locked);
	pv_kick_node(lock, next);

release:
	/*
	 * release the node
	 */
	__this_cpu_dec(mcs_nodes[0].count);
}
EXPORT_SYMBOL(queued_spin_lock_slowpath);

/*
 * Generate the paravirt code for queued_spin_unlock_slowpath().
 */
#if !defined(_GEN_PV_LOCK_SLOWPATH) && defined(CONFIG_PARAVIRT_SPINLOCKS)
#define _GEN_PV_LOCK_SLOWPATH

#undef  pv_enabled
#define pv_enabled()	true

#undef pv_init_node
#undef pv_wait_node
#undef pv_kick_node
#undef pv_wait_head_or_lock

#undef  queued_spin_lock_slowpath
#define queued_spin_lock_slowpath	__pv_queued_spin_lock_slowpath

#include "qspinlock_paravirt.h"
#include "qspinlock.c"

#endif