06 May, 2011

1 commit

  • The RCU CPU stall warnings can now be controlled using the
    rcu_cpu_stall_suppress boot-time parameter or via the same parameter
    from sysfs. There is therefore no longer any reason to have
    kernel config parameters for this feature. This commit therefore
    removes the RCU_CPU_STALL_DETECTOR and RCU_CPU_STALL_DETECTOR_RUNNABLE
    kernel config parameters. The RCU_CPU_STALL_TIMEOUT parameter remains
    to allow the timeout to be tuned and the RCU_CPU_STALL_VERBOSE parameter
    remains to allow task-stall information to be suppressed if desired.

    Signed-off-by: Paul E. McKenney
    Reviewed-by: Josh Triplett

    Paul E. McKenney
     

25 Feb, 2010

1 commit

  • Adds a lockdep.txt file and updates checklist.txt and
    whatisRCU.txt to reflect the new lockdep-enabled capabilities of
    RCU.

    Signed-off-by: Paul E. McKenney
    Cc: laijs@cn.fujitsu.com
    Cc: dipankar@in.ibm.com
    Cc: mathieu.desnoyers@polymtl.ca
    Cc: josh@joshtriplett.org
    Cc: dvhltc@us.ibm.com
    Cc: niv@us.ibm.com
    Cc: peterz@infradead.org
    Cc: rostedt@goodmis.org
    Cc: Valdis.Kletnieks@vt.edu
    Cc: dhowells@redhat.com
    LKML-Reference:
    Signed-off-by: Ingo Molnar

    Paul E. McKenney
     

16 Jan, 2010

1 commit

  • Add expedited functions. Review documentation and update
    obsolete verbiage. Also fix the advice for the RCU CPU-stall
    kernel configuration parameter, and document RCU CPU-stall
    warnings.

    Signed-off-by: Paul E. McKenney
    Cc: laijs@cn.fujitsu.com
    Cc: dipankar@in.ibm.com
    Cc: mathieu.desnoyers@polymtl.ca
    Cc: josh@joshtriplett.org
    Cc: dvhltc@us.ibm.com
    Cc: niv@us.ibm.com
    Cc: peterz@infradead.org
    Cc: rostedt@goodmis.org
    Cc: Valdis.Kletnieks@vt.edu
    Cc: dhowells@redhat.com
    LKML-Reference:
    Signed-off-by: Ingo Molnar

    Paul E. McKenney
     

09 Jan, 2009

1 commit


19 Dec, 2008

1 commit

  • This patch fixes a long-standing performance bug in classic RCU that
    results in massive internal-to-RCU lock contention on systems with
    more than a few hundred CPUs. Although this patch creates a separate
    flavor of RCU for ease of review and patch maintenance, it is intended
    to replace classic RCU.

    This patch still handles stress better than does mainline, so I am still
    calling it ready for inclusion. This patch is against the -tip tree.
    Nevertheless, experience on an actual 1000+ CPU machine would still be
    most welcome.

    Most of the changes noted below were found while creating an rcutiny
    (which should permit ejecting the current rcuclassic) and while doing
    detailed line-by-line documentation.

    Updates from v9 (http://lkml.org/lkml/2008/12/2/334):

    o Fixes from remainder of line-by-line code walkthrough,
    including comment spelling, initialization, undesirable
    narrowing due to type conversion, removing redundant memory
    barriers, removing redundant local-variable initialization,
    and removing redundant local variables.

    I do not believe that any of these fixes address the CPU-hotplug
    issues that Andi Kleen was seeing, but please do give it a whirl
    in case the machine is smarter than I am.

    A writeup from the walkthrough may be found at the following
    URL, in case you are suffering from terminal insomnia or
    masochism:

    http://www.kernel.org/pub/linux/kernel/people/paulmck/tmp/rcutree-walkthrough.2008.12.16a.pdf

    o Made rcutree tracing use seq_file, as suggested some time
    ago by Lai Jiangshan.

    o Added a .csv variant of the rcudata debugfs trace file, to allow
    people having thousands of CPUs to drop the data into
    a spreadsheet. Tested with oocalc and gnumeric. Updated
    documentation to suit.

    Updates from v8 (http://lkml.org/lkml/2008/11/15/139):

    o Fix a theoretical race between grace-period initialization and
    force_quiescent_state() that could occur if more than three
    jiffies were required to carry out the grace-period
    initialization. Which it might, if you had enough CPUs.

    o Apply Ingo's printk-standardization patch.

    o Substitute local variables for repeated accesses to global
    variables.

    o Fix comment misspellings and redundant (but harmless) increments
    of ->n_rcu_pending (this latter after having explicitly added it).

    o Apply checkpatch fixes.

    Updates from v7 (http://lkml.org/lkml/2008/10/10/291):

    o Fixed a number of problems noted by Gautham Shenoy, including
    the cpu-stall-detection bug that he was having difficulty
    convincing me was real. ;-)

    o Changed cpu-stall detection to wait for ten seconds rather than
    three in order to reduce false positive, as suggested by Ingo
    Molnar.

    o Produced a design document (http://lwn.net/Articles/305782/).
    The act of writing this document uncovered a number of both
    theoretical and "here and now" bugs as noted below.

    o Fix dynticks_nesting accounting confusion, simplify WARN_ON()
    condition, fix kerneldoc comments, and add memory barriers
    in dynticks interface functions.

    o Add more data to tracing.

    o Remove unused "rcu_barrier" field from rcu_data structure.

    o Count calls to rcu_pending() from scheduling-clock interrupt
    to use as a surrogate timebase should jiffies stop counting.

    o Fix a theoretical race between force_quiescent_state() and
    grace-period initialization. Yes, initialization does have to
    go on for some jiffies for this race to occur, but given enough
    CPUs...

    Updates from v6 (http://lkml.org/lkml/2008/9/23/448):

    o Fix a number of checkpatch.pl complaints.

    o Apply review comments from Ingo Molnar and Lai Jiangshan
    on the stall-detection code.

    o Fix several bugs in !CONFIG_SMP builds.

    o Fix a misspelled config-parameter name so that RCU now announces
    at boot time if stall detection is configured.

    o Run tests on numerous combinations of configurations parameters,
    which after the fixes above, now build and run correctly.

    Updates from v5 (http://lkml.org/lkml/2008/9/15/92, bad subject line):

    o Fix a compiler error in the !CONFIG_FANOUT_EXACT case (blew a
    changeset some time ago, and finally got around to retesting
    this option).

    o Fix some tracing bugs in rcupreempt that caused incorrect
    totals to be printed.

    o I now test with a more brutal random-selection online/offline
    script (attached). Probably more brutal than it needs to be
    on the people reading it as well, but so it goes.

    o A number of optimizations and usability improvements:

    o Make rcu_pending() ignore the grace-period timeout when
    there is no grace period in progress.

    o Make force_quiescent_state() avoid going for a global
    lock in the case where there is no grace period in
    progress.

    o Rearrange struct fields to improve struct layout.

    o Make call_rcu() initiate a grace period if RCU was
    idle, rather than waiting for the next scheduling
    clock interrupt.

    o Invoke rcu_irq_enter() and rcu_irq_exit() only when
    idle, as suggested by Andi Kleen. I still don't
    completely trust this change, and might back it out.

    o Make CONFIG_RCU_TRACE be the single config variable
    manipulated for all forms of RCU, instead of the prior
    confusion.

    o Document tracing files and formats for both rcupreempt
    and rcutree.

    Updates from v4 for those missing v5 given its bad subject line:

    o Separated dynticks interface so that NMIs and irqs call separate
    functions, greatly simplifying it. In particular, this code
    no longer requires a proof of correctness. ;-)

    o Separated dynticks state out into its own per-CPU structure,
    avoiding the duplicated accounting.

    o The case where a dynticks-idle CPU runs an irq handler that
    invokes call_rcu() is now correctly handled, forcing that CPU
    out of dynticks-idle mode.

    o Review comments have been applied (thank you all!!!).
    For but one example, fixed the dynticks-ordering issue that
    Manfred pointed out, saving me much debugging. ;-)

    o Adjusted rcuclassic and rcupreempt to handle dynticks changes.

    Attached is an updated patch to Classic RCU that applies a hierarchy,
    greatly reducing the contention on the top-level lock for large machines.
    This passes 10-hour concurrent rcutorture and online-offline testing on
    128-CPU ppc64 without dynticks enabled, and exposes some timekeeping
    bugs in presence of dynticks (exciting working on a system where
    "sleep 1" hangs until interrupted...), which were fixed in the
    2.6.27 kernel. It is getting more reliable than mainline by some
    measures, so the next version will be against -tip for inclusion.
    See also Manfred Spraul's recent patches (or his earlier work from
    2004 at http://marc.info/?l=linux-kernel&m=108546384711797&w=2).
    We will converge onto a common patch in the fullness of time, but are
    currently exploring different regions of the design space. That said,
    I have already gratefully stolen quite a few of Manfred's ideas.

    This patch provides CONFIG_RCU_FANOUT, which controls the bushiness
    of the RCU hierarchy. Defaults to 32 on 32-bit machines and 64 on
    64-bit machines. If CONFIG_NR_CPUS is less than CONFIG_RCU_FANOUT,
    there is no hierarchy. By default, the RCU initialization code will
    adjust CONFIG_RCU_FANOUT to balance the hierarchy, so strongly NUMA
    architectures may choose to set CONFIG_RCU_FANOUT_EXACT to disable
    this balancing, allowing the hierarchy to be exactly aligned to the
    underlying hardware. Up to two levels of hierarchy are permitted
    (in addition to the root node), allowing up to 16,384 CPUs on 32-bit
    systems and up to 262,144 CPUs on 64-bit systems. I just know that I
    am going to regret saying this, but this seems more than sufficient
    for the foreseeable future. (Some architectures might wish to set
    CONFIG_RCU_FANOUT=4, which would limit such architectures to 64 CPUs.
    If this becomes a real problem, additional levels can be added, but I
    doubt that it will make a significant difference on real hardware.)

    In the common case, a given CPU will manipulate its private rcu_data
    structure and the rcu_node structure that it shares with its immediate
    neighbors. This can reduce both lock and memory contention by multiple
    orders of magnitude, which should eliminate the need for the strange
    manipulations that are reported to be required when running Linux on
    very large systems.

    Some shortcomings:

    o More bugs will probably surface as a result of an ongoing
    line-by-line code inspection.

    Patches will be provided as required.

    o There are probably hangs, rcutorture failures, &c. Seems
    quite stable on a 128-CPU machine, but that is kind of small
    compared to 4096 CPUs. However, seems to do better than
    mainline.

    Patches will be provided as required.

    o The memory footprint of this version is several KB larger
    than rcuclassic.

    A separate UP-only rcutiny patch will be provided, which will
    reduce the memory footprint significantly, even compared
    to the old rcuclassic. One such patch passes light testing,
    and has a memory footprint smaller even than rcuclassic.
    Initial reaction from various embedded guys was "it is not
    worth it", so am putting it aside.

    Credits:

    o Manfred Spraul for ideas, review comments, and bugs spotted,
    as well as some good friendly competition. ;-)

    o Josh Triplett, Ingo Molnar, Peter Zijlstra, Mathieu Desnoyers,
    Lai Jiangshan, Andi Kleen, Andy Whitcroft, and Andrew Morton
    for reviews and comments.

    o Thomas Gleixner for much-needed help with some timer issues
    (see patches below).

    o Jon M. Tollefson, Tim Pepper, Andrew Theurer, Jose R. Santos,
    Andy Whitcroft, Darrick Wong, Nishanth Aravamudan, Anton
    Blanchard, Dave Kleikamp, and Nathan Lynch for keeping machines
    alive despite my heavy abuse^Wtesting.

    Signed-off-by: Paul E. McKenney
    Signed-off-by: Ingo Molnar

    Paul E. McKenney
     

04 Dec, 2008

1 commit


17 Oct, 2007

1 commit