02 May, 2011

1 commit


22 Dec, 2010

3 commits

  • Add a common function to copy decompressed data from working buffer
    to bio pages.

    Signed-off-by: Li Zefan

    Li Zefan
     
  • Lzo is a much faster compression algorithm than gzib, so would allow
    more users to enable transparent compression, and some users can
    choose from compression ratio and speed for different applications

    Usage:

    # mount -t btrfs -o compress[=] dev /mnt
    or
    # mount -t btrfs -o compress-force[=] dev /mnt

    "-o compress" without argument is still allowed for compatability.

    Compatibility:

    If we mount a filesystem with lzo compression, it will not be able be
    mounted in old kernels. One reason is, otherwise btrfs will directly
    dump compressed data, which sits in inline extent, to user.

    Performance:

    The test copied a linux source tarball (~400M) from an ext4 partition
    to the btrfs partition, and then extracted it.

    (time in second)
    lzo zlib nocompress
    copy: 10.6 21.7 14.9
    extract: 70.1 94.4 66.6

    (data size in MB)
    lzo zlib nocompress
    copy: 185.87 108.69 394.49
    extract: 193.80 132.36 381.21

    Changelog:

    v1 -> v2:
    - Select LZO_COMPRESS and LZO_DECOMPRESS in btrfs Kconfig.
    - Add incompability flag.
    - Fix error handling in compress code.

    Signed-off-by: Li Zefan

    Li Zefan
     
  • Make the code aware of compression type, instead of always assuming
    zlib compression.

    Also make the zlib workspace function as common code for all
    compression types.

    Signed-off-by: Li Zefan

    Li Zefan
     

30 Oct, 2008

1 commit

  • This is a large change for adding compression on reading and writing,
    both for inline and regular extents. It does some fairly large
    surgery to the writeback paths.

    Compression is off by default and enabled by mount -o compress. Even
    when the -o compress mount option is not used, it is possible to read
    compressed extents off the disk.

    If compression for a given set of pages fails to make them smaller, the
    file is flagged to avoid future compression attempts later.

    * While finding delalloc extents, the pages are locked before being sent down
    to the delalloc handler. This allows the delalloc handler to do complex things
    such as cleaning the pages, marking them writeback and starting IO on their
    behalf.

    * Inline extents are inserted at delalloc time now. This allows us to compress
    the data before inserting the inline extent, and it allows us to insert
    an inline extent that spans multiple pages.

    * All of the in-memory extent representations (extent_map.c, ordered-data.c etc)
    are changed to record both an in-memory size and an on disk size, as well
    as a flag for compression.

    From a disk format point of view, the extent pointers in the file are changed
    to record the on disk size of a given extent and some encoding flags.
    Space in the disk format is allocated for compression encoding, as well
    as encryption and a generic 'other' field. Neither the encryption or the
    'other' field are currently used.

    In order to limit the amount of data read for a single random read in the
    file, the size of a compressed extent is limited to 128k. This is a
    software only limit, the disk format supports u64 sized compressed extents.

    In order to limit the ram consumed while processing extents, the uncompressed
    size of a compressed extent is limited to 256k. This is a software only limit
    and will be subject to tuning later.

    Checksumming is still done on compressed extents, and it is done on the
    uncompressed version of the data. This way additional encodings can be
    layered on without having to figure out which encoding to checksum.

    Compression happens at delalloc time, which is basically singled threaded because
    it is usually done by a single pdflush thread. This makes it tricky to
    spread the compression load across all the cpus on the box. We'll have to
    look at parallel pdflush walks of dirty inodes at a later time.

    Decompression is hooked into readpages and it does spread across CPUs nicely.

    Signed-off-by: Chris Mason

    Chris Mason