27 Jun, 2006

1 commit

  • Overloading of page fault notification with the notify_die() has performance
    issues(since the only interested components for page fault is kprobes and/or
    kdb) and hence this patch introduces the new notifier call chain exclusively
    for page fault notifications their by avoiding notifying unnecessary
    components in the do_page_fault() code path.

    Signed-off-by: Anil S Keshavamurthy
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Anil S Keshavamurthy
     

28 Mar, 2006

1 commit

  • The kernel's implementation of notifier chains is unsafe. There is no
    protection against entries being added to or removed from a chain while the
    chain is in use. The issues were discussed in this thread:

    http://marc.theaimsgroup.com/?l=linux-kernel&m=113018709002036&w=2

    We noticed that notifier chains in the kernel fall into two basic usage
    classes:

    "Blocking" chains are always called from a process context
    and the callout routines are allowed to sleep;

    "Atomic" chains can be called from an atomic context and
    the callout routines are not allowed to sleep.

    We decided to codify this distinction and make it part of the API. Therefore
    this set of patches introduces three new, parallel APIs: one for blocking
    notifiers, one for atomic notifiers, and one for "raw" notifiers (which is
    really just the old API under a new name). New kinds of data structures are
    used for the heads of the chains, and new routines are defined for
    registration, unregistration, and calling a chain. The three APIs are
    explained in include/linux/notifier.h and their implementation is in
    kernel/sys.c.

    With atomic and blocking chains, the implementation guarantees that the chain
    links will not be corrupted and that chain callers will not get messed up by
    entries being added or removed. For raw chains the implementation provides no
    guarantees at all; users of this API must provide their own protections. (The
    idea was that situations may come up where the assumptions of the atomic and
    blocking APIs are not appropriate, so it should be possible for users to
    handle these things in their own way.)

    There are some limitations, which should not be too hard to live with. For
    atomic/blocking chains, registration and unregistration must always be done in
    a process context since the chain is protected by a mutex/rwsem. Also, a
    callout routine for a non-raw chain must not try to register or unregister
    entries on its own chain. (This did happen in a couple of places and the code
    had to be changed to avoid it.)

    Since atomic chains may be called from within an NMI handler, they cannot use
    spinlocks for synchronization. Instead we use RCU. The overhead falls almost
    entirely in the unregister routine, which is okay since unregistration is much
    less frequent that calling a chain.

    Here is the list of chains that we adjusted and their classifications. None
    of them use the raw API, so for the moment it is only a placeholder.

    ATOMIC CHAINS
    -------------
    arch/i386/kernel/traps.c: i386die_chain
    arch/ia64/kernel/traps.c: ia64die_chain
    arch/powerpc/kernel/traps.c: powerpc_die_chain
    arch/sparc64/kernel/traps.c: sparc64die_chain
    arch/x86_64/kernel/traps.c: die_chain
    drivers/char/ipmi/ipmi_si_intf.c: xaction_notifier_list
    kernel/panic.c: panic_notifier_list
    kernel/profile.c: task_free_notifier
    net/bluetooth/hci_core.c: hci_notifier
    net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_chain
    net/ipv4/netfilter/ip_conntrack_core.c: ip_conntrack_expect_chain
    net/ipv6/addrconf.c: inet6addr_chain
    net/netfilter/nf_conntrack_core.c: nf_conntrack_chain
    net/netfilter/nf_conntrack_core.c: nf_conntrack_expect_chain
    net/netlink/af_netlink.c: netlink_chain

    BLOCKING CHAINS
    ---------------
    arch/powerpc/platforms/pseries/reconfig.c: pSeries_reconfig_chain
    arch/s390/kernel/process.c: idle_chain
    arch/x86_64/kernel/process.c idle_notifier
    drivers/base/memory.c: memory_chain
    drivers/cpufreq/cpufreq.c cpufreq_policy_notifier_list
    drivers/cpufreq/cpufreq.c cpufreq_transition_notifier_list
    drivers/macintosh/adb.c: adb_client_list
    drivers/macintosh/via-pmu.c sleep_notifier_list
    drivers/macintosh/via-pmu68k.c sleep_notifier_list
    drivers/macintosh/windfarm_core.c wf_client_list
    drivers/usb/core/notify.c usb_notifier_list
    drivers/video/fbmem.c fb_notifier_list
    kernel/cpu.c cpu_chain
    kernel/module.c module_notify_list
    kernel/profile.c munmap_notifier
    kernel/profile.c task_exit_notifier
    kernel/sys.c reboot_notifier_list
    net/core/dev.c netdev_chain
    net/decnet/dn_dev.c: dnaddr_chain
    net/ipv4/devinet.c: inetaddr_chain

    It's possible that some of these classifications are wrong. If they are,
    please let us know or submit a patch to fix them. Note that any chain that
    gets called very frequently should be atomic, because the rwsem read-locking
    used for blocking chains is very likely to incur cache misses on SMP systems.
    (However, if the chain's callout routines may sleep then the chain cannot be
    atomic.)

    The patch set was written by Alan Stern and Chandra Seetharaman, incorporating
    material written by Keith Owens and suggestions from Paul McKenney and Andrew
    Morton.

    [jes@sgi.com: restructure the notifier chain initialization macros]
    Signed-off-by: Alan Stern
    Signed-off-by: Chandra Seetharaman
    Signed-off-by: Jes Sorensen
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Alan Stern
     

05 Sep, 2005

1 commit

  • This patch adds a notify to the die_nmi notify that the system is about to
    be taken down. If the notify is handled with a NOTIFY_STOP return, the
    system is given a new lease on life.

    We also change the nmi watchdog to carry on if die_nmi returns.

    This give debug code a chance to a) catch watchdog timeouts and b) possibly
    allow the system to continue, realizing that the time out may be due to
    debugger activities such as single stepping which is usually done with
    "other" cpus held.

    Signed-off-by: George Anzinger
    Cc: Keith Owens
    Signed-off-by: George Anzinger
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    George Anzinger
     

26 Jun, 2005

1 commit

  • 2.6.12-rc6-mm1 has a few remaining synchronize_kernel()s, some (but not
    all) in comments. This patch changes these synchronize_kernel() calls (and
    comments) to synchronize_rcu() or synchronize_sched() as follows:

    - arch/x86_64/kernel/mce.c mce_read(): change to synchronize_sched() to
    handle races with machine-check exceptions (synchronize_rcu() would not cut
    it given RCU implementations intended for hardcore realtime use.

    - drivers/input/serio/i8042.c i8042_stop(): change to synchronize_sched() to
    handle races with i8042_interrupt() interrupt handler. Again,
    synchronize_rcu() would not cut it given RCU implementations intended for
    hardcore realtime use.

    - include/*/kdebug.h comments: change to synchronize_sched() to handle races
    with NMIs. As before, synchronize_rcu() would not cut it...

    - include/linux/list.h comment: change to synchronize_rcu(), since this
    comment is for list_del_rcu().

    - security/keys/key.c unregister_key_type(): change to synchronize_rcu(),
    since this is interacting with RCU read side.

    - security/keys/process_keys.c install_session_keyring(): change to
    synchronize_rcu(), since this is interacting with RCU read side.

    Signed-off-by: "Paul E. McKenney"
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Paul E. McKenney
     

17 Apr, 2005

1 commit

  • Initial git repository build. I'm not bothering with the full history,
    even though we have it. We can create a separate "historical" git
    archive of that later if we want to, and in the meantime it's about
    3.2GB when imported into git - space that would just make the early
    git days unnecessarily complicated, when we don't have a lot of good
    infrastructure for it.

    Let it rip!

    Linus Torvalds