28 Sep, 2011

1 commit

  • There are numerous broken references to Documentation files (in other
    Documentation files, in comments, etc.). These broken references are
    caused by typo's in the references, and by renames or removals of the
    Documentation files. Some broken references are simply odd.

    Fix these broken references, sometimes by dropping the irrelevant text
    they were part of.

    Signed-off-by: Paul Bolle
    Signed-off-by: Jiri Kosina

    Paul Bolle
     

08 Jul, 2011

1 commit

  • Add an FS-Cache helper to bulk uncache pages on an inode. This will
    only work for the circumstance where the pages in the cache correspond
    1:1 with the pages attached to an inode's page cache.

    This is required for CIFS and NFS: When disabling inode cookie, we were
    returning the cookie and setting cifsi->fscache to NULL but failed to
    invalidate any previously mapped pages. This resulted in "Bad page
    state" errors and manifested in other kind of errors when running
    fsstress. Fix it by uncaching mapped pages when we disable the inode
    cookie.

    This patch should fix the following oops and "Bad page state" errors
    seen during fsstress testing.

    ------------[ cut here ]------------
    kernel BUG at fs/cachefiles/namei.c:201!
    invalid opcode: 0000 [#1] SMP
    Pid: 5, comm: kworker/u:0 Not tainted 2.6.38.7-30.fc15.x86_64 #1 Bochs Bochs
    RIP: 0010: cachefiles_walk_to_object+0x436/0x745 [cachefiles]
    RSP: 0018:ffff88002ce6dd00 EFLAGS: 00010282
    RAX: ffff88002ef165f0 RBX: ffff88001811f500 RCX: 0000000000000000
    RDX: 0000000000000000 RSI: 0000000000000100 RDI: 0000000000000282
    RBP: ffff88002ce6dda0 R08: 0000000000000100 R09: ffffffff81b3a300
    R10: 0000ffff00066c0a R11: 0000000000000003 R12: ffff88002ae54840
    R13: ffff88002ae54840 R14: ffff880029c29c00 R15: ffff88001811f4b0
    FS: 00007f394dd32720(0000) GS:ffff88002ef00000(0000) knlGS:0000000000000000
    CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
    CR2: 00007fffcb62ddf8 CR3: 000000001825f000 CR4: 00000000000006e0
    DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
    DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
    Process kworker/u:0 (pid: 5, threadinfo ffff88002ce6c000, task ffff88002ce55cc0)
    Stack:
    0000000000000246 ffff88002ce55cc0 ffff88002ce6dd58 ffff88001815dc00
    ffff8800185246c0 ffff88001811f618 ffff880029c29d18 ffff88001811f380
    ffff88002ce6dd50 ffffffff814757e4 ffff88002ce6dda0 ffffffff8106ac56
    Call Trace:
    cachefiles_lookup_object+0x78/0xd4 [cachefiles]
    fscache_lookup_object+0x131/0x16d [fscache]
    fscache_object_work_func+0x1bc/0x669 [fscache]
    process_one_work+0x186/0x298
    worker_thread+0xda/0x15d
    kthread+0x84/0x8c
    kernel_thread_helper+0x4/0x10
    RIP cachefiles_walk_to_object+0x436/0x745 [cachefiles]
    ---[ end trace 1d481c9af1804caa ]---

    I tested the uncaching by the following means:

    (1) Create a big file on my NFS server (104857600 bytes).

    (2) Read the file into the cache with md5sum on the NFS client. Look in
    /proc/fs/fscache/stats:

    Pages : mrk=25601 unc=0

    (3) Open the file for read/write ("bash 5<>/warthog/bigfile"). Look in proc
    again:

    Pages : mrk=25601 unc=25601

    Reported-by: Jeff Layton
    Signed-off-by: David Howells
    Reviewed-and-Tested-by: Suresh Jayaraman
    cc: stable@kernel.org
    Signed-off-by: Linus Torvalds

    David Howells
     

31 Mar, 2011

1 commit


23 Jul, 2010

1 commit

  • Make fscache object state transition callbacks use workqueue instead
    of slow-work. New dedicated unbound CPU workqueue fscache_object_wq
    is created. get/put callbacks are renamed and modified to take
    @object and called directly from the enqueue wrapper and the work
    function. While at it, make all open coded instances of get/put to
    use fscache_get/put_object().

    * Unbound workqueue is used.

    * work_busy() output is printed instead of slow-work flags in object
    debugging outputs. They mean basically the same thing bit-for-bit.

    * sysctl fscache.object_max_active added to control concurrency. The
    default value is nr_cpus clamped between 4 and
    WQ_UNBOUND_MAX_ACTIVE.

    * slow_work_sleep_till_thread_needed() is replaced with fscache
    private implementation fscache_object_sleep_till_congested() which
    waits on fscache_object_wq congestion.

    * debugfs support is dropped for now. Tracing API based debug
    facility is planned to be added.

    Signed-off-by: Tejun Heo
    Acked-by: David Howells

    Tejun Heo
     

20 Nov, 2009

8 commits

  • Catch an overly long wait for an old, dying active object when we want to
    replace it with a new one. The probability is that all the slow-work threads
    are hogged, and the delete can't get a look in.

    What we do instead is:

    (1) if there's nothing in the slow work queue, we sleep until either the dying
    object has finished dying or there is something in the slow work queue
    behind which we can queue our object.

    (2) if there is something in the slow work queue, we return ETIMEDOUT to
    fscache_lookup_object(), which then puts us back on the slow work queue,
    presumably behind the deletion that we're blocked by. We are then
    deferred for a while until we work our way back through the queue -
    without blocking a slow-work thread unnecessarily.

    A backtrace similar to the following may appear in the log without this patch:

    INFO: task kslowd004:5711 blocked for more than 120 seconds.
    "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
    kslowd004 D 0000000000000000 0 5711 2 0x00000080
    ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
    ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
    000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
    Call Trace:
    [] ? trace_hardirqs_on+0xd/0xf
    [] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
    [] cachefiles_wait_bit+0x9/0xd [cachefiles]
    [] __wait_on_bit+0x43/0x76
    [] ? ext3_xattr_get+0x1ec/0x270
    [] out_of_line_wait_on_bit+0x69/0x74
    [] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
    [] ? wake_bit_function+0x0/0x2e
    [] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
    [] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
    [] cachefiles_lookup_object+0xac/0x12a [cachefiles]
    [] fscache_lookup_object+0x1c7/0x214 [fscache]
    [] fscache_object_state_machine+0xa5/0x52d [fscache]
    [] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
    [] slow_work_execute+0x18f/0x2d1
    [] slow_work_thread+0x1c5/0x308
    [] ? autoremove_wake_function+0x0/0x34
    [] ? slow_work_thread+0x0/0x308
    [] kthread+0x7a/0x82
    [] child_rip+0xa/0x20
    [] ? restore_args+0x0/0x30
    [] ? kthread+0x0/0x82
    [] ? child_rip+0x0/0x20
    1 lock held by kslowd004/5711:
    #0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]

    Signed-off-by: David Howells

    David Howells
     
  • Start processing an object's operations when that object moves into the DYING
    state as the object cannot be destroyed until all its outstanding operations
    have completed.

    Furthermore, make sure that read and allocation operations handle being woken
    up on a dead object. Such events are recorded in the Allocs.abt and
    Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.

    The code for waiting for object activation for the read and allocation
    operations is also extracted into its own function as it is much the same in
    all cases, differing only in the stats incremented.

    Signed-off-by: David Howells

    David Howells
     
  • Handle netfs pages that the vmscan algorithm wants to evict from the pagecache
    under OOM conditions, but that are waiting for write to the cache. Under these
    conditions, vmscan calls the releasepage() function of the netfs, asking if a
    page can be discarded.

    The problem is typified by the following trace of a stuck process:

    kslowd005 D 0000000000000000 0 4253 2 0x00000080
    ffff88001b14f370 0000000000000046 ffff880020d0d000 0000000000000007
    0000000000000006 0000000000000001 ffff88001b14ffd8 ffff880020d0d2a8
    000000000000ddf0 00000000000118c0 00000000000118c0 ffff880020d0d2a8
    Call Trace:
    [] __fscache_wait_on_page_write+0x8b/0xa7 [fscache]
    [] ? autoremove_wake_function+0x0/0x34
    [] ? __fscache_check_page_write+0x63/0x70 [fscache]
    [] nfs_fscache_release_page+0x4e/0xc4 [nfs]
    [] nfs_release_page+0x3c/0x41 [nfs]
    [] try_to_release_page+0x32/0x3b
    [] shrink_page_list+0x316/0x4ac
    [] shrink_inactive_list+0x392/0x67c
    [] ? __mutex_unlock_slowpath+0x100/0x10b
    [] ? trace_hardirqs_on_caller+0x10c/0x130
    [] ? mutex_unlock+0x9/0xb
    [] shrink_list+0x8d/0x8f
    [] shrink_zone+0x278/0x33c
    [] ? ktime_get_ts+0xad/0xba
    [] try_to_free_pages+0x22e/0x392
    [] ? isolate_pages_global+0x0/0x212
    [] __alloc_pages_nodemask+0x3dc/0x5cf
    [] grab_cache_page_write_begin+0x65/0xaa
    [] ext3_write_begin+0x78/0x1eb
    [] generic_file_buffered_write+0x109/0x28c
    [] ? current_fs_time+0x22/0x29
    [] __generic_file_aio_write+0x350/0x385
    [] ? generic_file_aio_write+0x4a/0xae
    [] generic_file_aio_write+0x60/0xae
    [] do_sync_write+0xe3/0x120
    [] ? autoremove_wake_function+0x0/0x34
    [] ? __dentry_open+0x1a5/0x2b8
    [] ? dentry_open+0x82/0x89
    [] cachefiles_write_page+0x298/0x335 [cachefiles]
    [] fscache_write_op+0x178/0x2c2 [fscache]
    [] fscache_op_execute+0x7a/0xd1 [fscache]
    [] slow_work_execute+0x18f/0x2d1
    [] slow_work_thread+0x1c5/0x308
    [] ? autoremove_wake_function+0x0/0x34
    [] ? slow_work_thread+0x0/0x308
    [] kthread+0x7a/0x82
    [] child_rip+0xa/0x20
    [] ? restore_args+0x0/0x30
    [] ? tg_shares_up+0x171/0x227
    [] ? kthread+0x0/0x82
    [] ? child_rip+0x0/0x20

    In the above backtrace, the following is happening:

    (1) A page storage operation is being executed by a slow-work thread
    (fscache_write_op()).

    (2) FS-Cache farms the operation out to the cache to perform
    (cachefiles_write_page()).

    (3) CacheFiles is then calling Ext3 to perform the actual write, using Ext3's
    standard write (do_sync_write()) under KERNEL_DS directly from the netfs
    page.

    (4) However, for Ext3 to perform the write, it must allocate some memory, in
    particular, it must allocate at least one page cache page into which it
    can copy the data from the netfs page.

    (5) Under OOM conditions, the memory allocator can't immediately come up with
    a page, so it uses vmscan to find something to discard
    (try_to_free_pages()).

    (6) vmscan finds a clean netfs page it might be able to discard (possibly the
    one it's trying to write out).

    (7) The netfs is called to throw the page away (nfs_release_page()) - but it's
    called with __GFP_WAIT, so the netfs decides to wait for the store to
    complete (__fscache_wait_on_page_write()).

    (8) This blocks a slow-work processing thread - possibly against itself.

    The system ends up stuck because it can't write out any netfs pages to the
    cache without allocating more memory.

    To avoid this, we make FS-Cache cancel some writes that aren't in the middle of
    actually being performed. This means that some data won't make it into the
    cache this time. To support this, a new FS-Cache function is added
    fscache_maybe_release_page() that replaces what the netfs releasepage()
    functions used to do with respect to the cache.

    The decisions fscache_maybe_release_page() makes are counted and displayed
    through /proc/fs/fscache/stats on a line labelled "VmScan". There are four
    counters provided: "nos=N" - pages that weren't pending storage; "gon=N" -
    pages that were pending storage when we first looked, but weren't by the time
    we got the object lock; "bsy=N" - pages that we ignored as they were actively
    being written when we looked; and "can=N" - pages that we cancelled the storage
    of.

    What I'd really like to do is alter the behaviour of the cancellation
    heuristics, depending on how necessary it is to expel pages. If there are
    plenty of other pages that aren't waiting to be written to the cache that
    could be ejected first, then it would be nice to hold up on immediate
    cancellation of cache writes - but I don't see a way of doing that.

    Signed-off-by: David Howells

    David Howells
     
  • FS-Cache doesn't correctly handle the netfs requesting a read from the cache
    on an object that failed or was withdrawn by the cache. A trace similar to
    the following might be seen:

    CacheFiles: Lookup failed error -105
    [exe ] unexpected submission OP165afe [OBJ6cac OBJECT_LC_DYING]
    [exe ] objstate=OBJECT_LC_DYING [OBJECT_LC_DYING]
    [exe ] objflags=0
    [exe ] objevent=9 [fffffffffffffffb]
    [exe ] ops=0 inp=0 exc=0
    Pid: 6970, comm: exe Not tainted 2.6.32-rc6-cachefs #50
    Call Trace:
    [] fscache_submit_op+0x3ff/0x45a [fscache]
    [] __fscache_read_or_alloc_pages+0x187/0x3c4 [fscache]
    [] ? nfs_readpage_from_fscache_complete+0x0/0x66 [nfs]
    [] __nfs_readpages_from_fscache+0x7e/0x176 [nfs]
    [] ? __alloc_pages_nodemask+0x11c/0x5cf
    [] nfs_readpages+0x114/0x1d7 [nfs]
    [] __do_page_cache_readahead+0x15f/0x1ec
    [] ? __do_page_cache_readahead+0x73/0x1ec
    [] ra_submit+0x1c/0x20
    [] ondemand_readahead+0x227/0x23a
    [] page_cache_sync_readahead+0x17/0x19
    [] generic_file_aio_read+0x236/0x5a0
    [] nfs_file_read+0xe4/0xf3 [nfs]
    [] do_sync_read+0xe3/0x120
    [] ? _spin_unlock_irq+0x2b/0x31
    [] ? autoremove_wake_function+0x0/0x34
    [] ? selinux_file_permission+0x5d/0x10f
    [] ? thread_return+0x3e/0x101
    [] ? security_file_permission+0x11/0x13
    [] vfs_read+0xaa/0x16f
    [] ? trace_hardirqs_on_caller+0x10c/0x130
    [] sys_read+0x45/0x6c
    [] system_call_fastpath+0x16/0x1b

    The object state might also be OBJECT_DYING or OBJECT_WITHDRAWING.

    This should be handled by simply rejecting the new operation with ENOBUFS.
    There's no need to log an error for it. Events of this type now appear in the
    stats file under Ops:rej.

    Signed-off-by: David Howells

    David Howells
     
  • FS-Cache has two structs internally for keeping track of the internal state of
    a cached file: the fscache_cookie struct, which represents the netfs's state,
    and fscache_object struct, which represents the cache's state. Each has a
    pointer that points to the other (when both are in existence), and each has a
    spinlock for pointer maintenance.

    Since netfs operations approach these structures from the cookie side, they get
    the cookie lock first, then the object lock. Cache operations, on the other
    hand, approach from the object side, and get the object lock first. It is not
    then permitted for a cache operation to get the cookie lock whilst it is
    holding the object lock lest deadlock occur; instead, it must do one of two
    things:

    (1) increment the cookie usage counter, drop the object lock and then get both
    locks in order, or

    (2) simply hold the object lock as certain parts of the cookie may not be
    altered whilst the object lock is held.

    It is also not permitted to follow either pointer without holding the lock at
    the end you start with. To break the pointers between the cookie and the
    object, both locks must be held.

    fscache_write_op(), however, violates the locking rules: It attempts to get the
    cookie lock without (a) checking that the cookie pointer is a valid pointer,
    and (b) holding the object lock to protect the cookie pointer whilst it follows
    it. This is so that it can access the pending page store tree without
    interference from __fscache_write_page().

    This is fixed by splitting the cookie lock, such that the page store tracking
    tree is protected by its own lock, and checking that the cookie pointer is
    non-NULL before we attempt to follow it whilst holding the object lock.

    The new lock is subordinate to both the cookie lock and the object lock, and so
    should be taken after those.

    Signed-off-by: David Howells

    David Howells
     
  • Permit the operations to retrieve data from the cache or to allocate space in
    the cache for future writes to be interrupted whilst they're waiting for
    permission for the operation to proceed. Typically this wait occurs whilst the
    cache object is being looked up on disk in the background.

    If an interruption occurs, and the operation has not yet been given the
    go-ahead to run, the operation is dequeued and cancelled, and control returns
    to the read operation of the netfs routine with none of the requested pages
    having been read or in any way marked as known by the cache.

    This means that the initial wait is done interruptibly rather than
    uninterruptibly.

    In addition, extra stats values are made available to show the number of ops
    cancelled and the number of cache space allocations interrupted.

    Signed-off-by: David Howells

    David Howells
     
  • Count entries to and exits from cache operation table functions. Maintain
    these as a single counter that's added to or removed from as appropriate.

    Signed-off-by: David Howells

    David Howells
     
  • Allow the current state of all fscache objects to be dumped by doing:

    cat /proc/fs/fscache/objects

    By default, all objects and all fields will be shown. This can be restricted
    by adding a suitable key to one of the caller's keyrings (such as the session
    keyring):

    keyctl add user fscache:objlist "" @s

    The are:

    K Show hexdump of object key (don't show if not given)
    A Show hexdump of object aux data (don't show if not given)

    And paired restrictions:

    C Show objects that have a cookie
    c Show objects that don't have a cookie
    B Show objects that are busy
    b Show objects that aren't busy
    W Show objects that have pending writes
    w Show objects that don't have pending writes
    R Show objects that have outstanding reads
    r Show objects that don't have outstanding reads
    S Show objects that have slow work queued
    s Show objects that don't have slow work queued

    If neither side of a restriction pair is given, then both are implied. For
    example:

    keyctl add user fscache:objlist KB @s

    shows objects that are busy, and lists their object keys, but does not dump
    their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
    not implied.

    Signed-off-by: David Howells

    David Howells
     

13 Jun, 2009

1 commit


25 Apr, 2009

1 commit


03 Apr, 2009

6 commits

  • Add an FS-Cache cache-backend that permits a mounted filesystem to be used as a
    backing store for the cache.

    CacheFiles uses a userspace daemon to do some of the cache management - such as
    reaping stale nodes and culling. This is called cachefilesd and lives in
    /sbin. The source for the daemon can be downloaded from:

    http://people.redhat.com/~dhowells/cachefs/cachefilesd.c

    And an example configuration from:

    http://people.redhat.com/~dhowells/cachefs/cachefilesd.conf

    The filesystem and data integrity of the cache are only as good as those of the
    filesystem providing the backing services. Note that CacheFiles does not
    attempt to journal anything since the journalling interfaces of the various
    filesystems are very specific in nature.

    CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
    to communication with the daemon. Only one thing may have this open at once,
    and whilst it is open, a cache is at least partially in existence. The daemon
    opens this and sends commands down it to control the cache.

    CacheFiles is currently limited to a single cache.

    CacheFiles attempts to maintain at least a certain percentage of free space on
    the filesystem, shrinking the cache by culling the objects it contains to make
    space if necessary - see the "Cache Culling" section. This means it can be
    placed on the same medium as a live set of data, and will expand to make use of
    spare space and automatically contract when the set of data requires more
    space.

    ============
    REQUIREMENTS
    ============

    The use of CacheFiles and its daemon requires the following features to be
    available in the system and in the cache filesystem:

    - dnotify.

    - extended attributes (xattrs).

    - openat() and friends.

    - bmap() support on files in the filesystem (FIBMAP ioctl).

    - The use of bmap() to detect a partial page at the end of the file.

    It is strongly recommended that the "dir_index" option is enabled on Ext3
    filesystems being used as a cache.

    =============
    CONFIGURATION
    =============

    The cache is configured by a script in /etc/cachefilesd.conf. These commands
    set up cache ready for use. The following script commands are available:

    (*) brun %
    (*) bcull %
    (*) bstop %
    (*) frun %
    (*) fcull %
    (*) fstop %

    Configure the culling limits. Optional. See the section on culling
    The defaults are 7% (run), 5% (cull) and 1% (stop) respectively.

    The commands beginning with a 'b' are file space (block) limits, those
    beginning with an 'f' are file count limits.

    (*) dir

    Specify the directory containing the root of the cache. Mandatory.

    (*) tag

    Specify a tag to FS-Cache to use in distinguishing multiple caches.
    Optional. The default is "CacheFiles".

    (*) debug

    Specify a numeric bitmask to control debugging in the kernel module.
    Optional. The default is zero (all off). The following values can be
    OR'd into the mask to collect various information:

    1 Turn on trace of function entry (_enter() macros)
    2 Turn on trace of function exit (_leave() macros)
    4 Turn on trace of internal debug points (_debug())

    This mask can also be set through sysfs, eg:

    echo 5 >/sys/modules/cachefiles/parameters/debug

    ==================
    STARTING THE CACHE
    ==================

    The cache is started by running the daemon. The daemon opens the cache device,
    configures the cache and tells it to begin caching. At that point the cache
    binds to fscache and the cache becomes live.

    The daemon is run as follows:

    /sbin/cachefilesd [-d]* [-s] [-n] [-f ]

    The flags are:

    (*) -d

    Increase the debugging level. This can be specified multiple times and
    is cumulative with itself.

    (*) -s

    Send messages to stderr instead of syslog.

    (*) -n

    Don't daemonise and go into background.

    (*) -f

    Use an alternative configuration file rather than the default one.

    ===============
    THINGS TO AVOID
    ===============

    Do not mount other things within the cache as this will cause problems. The
    kernel module contains its own very cut-down path walking facility that ignores
    mountpoints, but the daemon can't avoid them.

    Do not create, rename or unlink files and directories in the cache whilst the
    cache is active, as this may cause the state to become uncertain.

    Renaming files in the cache might make objects appear to be other objects (the
    filename is part of the lookup key).

    Do not change or remove the extended attributes attached to cache files by the
    cache as this will cause the cache state management to get confused.

    Do not create files or directories in the cache, lest the cache get confused or
    serve incorrect data.

    Do not chmod files in the cache. The module creates things with minimal
    permissions to prevent random users being able to access them directly.

    =============
    CACHE CULLING
    =============

    The cache may need culling occasionally to make space. This involves
    discarding objects from the cache that have been used less recently than
    anything else. Culling is based on the access time of data objects. Empty
    directories are culled if not in use.

    Cache culling is done on the basis of the percentage of blocks and the
    percentage of files available in the underlying filesystem. There are six
    "limits":

    (*) brun
    (*) frun

    If the amount of free space and the number of available files in the cache
    rises above both these limits, then culling is turned off.

    (*) bcull
    (*) fcull

    If the amount of available space or the number of available files in the
    cache falls below either of these limits, then culling is started.

    (*) bstop
    (*) fstop

    If the amount of available space or the number of available files in the
    cache falls below either of these limits, then no further allocation of
    disk space or files is permitted until culling has raised things above
    these limits again.

    These must be configured thusly:

    0 < bcull < brun < 100
    0 < fcull < frun < 100

    Note that these are percentages of available space and available files, and do
    _not_ appear as 100 minus the percentage displayed by the "df" program.

    The userspace daemon scans the cache to build up a table of cullable objects.
    These are then culled in least recently used order. A new scan of the cache is
    started as soon as space is made in the table. Objects will be skipped if
    their atimes have changed or if the kernel module says it is still using them.

    ===============
    CACHE STRUCTURE
    ===============

    The CacheFiles module will create two directories in the directory it was
    given:

    (*) cache/

    (*) graveyard/

    The active cache objects all reside in the first directory. The CacheFiles
    kernel module moves any retired or culled objects that it can't simply unlink
    to the graveyard from which the daemon will actually delete them.

    The daemon uses dnotify to monitor the graveyard directory, and will delete
    anything that appears therein.

    The module represents index objects as directories with the filename "I..." or
    "J...". Note that the "cache/" directory is itself a special index.

    Data objects are represented as files if they have no children, or directories
    if they do. Their filenames all begin "D..." or "E...". If represented as a
    directory, data objects will have a file in the directory called "data" that
    actually holds the data.

    Special objects are similar to data objects, except their filenames begin
    "S..." or "T...".

    If an object has children, then it will be represented as a directory.
    Immediately in the representative directory are a collection of directories
    named for hash values of the child object keys with an '@' prepended. Into
    this directory, if possible, will be placed the representations of the child
    objects:

    INDEX INDEX INDEX DATA FILES
    ========= ========== ================================= ================
    cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400
    cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...DB1ry
    cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...N22ry
    cache/@4a/I03nfs/@30/Ji000000000000000--fHg8hi8400/@75/Es0g000w...FP1ry

    If the key is so long that it exceeds NAME_MAX with the decorations added on to
    it, then it will be cut into pieces, the first few of which will be used to
    make a nest of directories, and the last one of which will be the objects
    inside the last directory. The names of the intermediate directories will have
    '+' prepended:

    J1223/@23/+xy...z/+kl...m/Epqr

    Note that keys are raw data, and not only may they exceed NAME_MAX in size,
    they may also contain things like '/' and NUL characters, and so they may not
    be suitable for turning directly into a filename.

    To handle this, CacheFiles will use a suitably printable filename directly and
    "base-64" encode ones that aren't directly suitable. The two versions of
    object filenames indicate the encoding:

    OBJECT TYPE PRINTABLE ENCODED
    =============== =============== ===============
    Index "I..." "J..."
    Data "D..." "E..."
    Special "S..." "T..."

    Intermediate directories are always "@" or "+" as appropriate.

    Each object in the cache has an extended attribute label that holds the object
    type ID (required to distinguish special objects) and the auxiliary data from
    the netfs. The latter is used to detect stale objects in the cache and update
    or retire them.

    Note that CacheFiles will erase from the cache any file it doesn't recognise or
    any file of an incorrect type (such as a FIFO file or a device file).

    ==========================
    SECURITY MODEL AND SELINUX
    ==========================

    CacheFiles is implemented to deal properly with the LSM security features of
    the Linux kernel and the SELinux facility.

    One of the problems that CacheFiles faces is that it is generally acting on
    behalf of a process, and running in that process's context, and that includes a
    security context that is not appropriate for accessing the cache - either
    because the files in the cache are inaccessible to that process, or because if
    the process creates a file in the cache, that file may be inaccessible to other
    processes.

    The way CacheFiles works is to temporarily change the security context (fsuid,
    fsgid and actor security label) that the process acts as - without changing the
    security context of the process when it the target of an operation performed by
    some other process (so signalling and suchlike still work correctly).

    When the CacheFiles module is asked to bind to its cache, it:

    (1) Finds the security label attached to the root cache directory and uses
    that as the security label with which it will create files. By default,
    this is:

    cachefiles_var_t

    (2) Finds the security label of the process which issued the bind request
    (presumed to be the cachefilesd daemon), which by default will be:

    cachefilesd_t

    and asks LSM to supply a security ID as which it should act given the
    daemon's label. By default, this will be:

    cachefiles_kernel_t

    SELinux transitions the daemon's security ID to the module's security ID
    based on a rule of this form in the policy.

    type_transition ;

    For instance:

    type_transition cachefilesd_t kernel_t : process cachefiles_kernel_t;

    The module's security ID gives it permission to create, move and remove files
    and directories in the cache, to find and access directories and files in the
    cache, to set and access extended attributes on cache objects, and to read and
    write files in the cache.

    The daemon's security ID gives it only a very restricted set of permissions: it
    may scan directories, stat files and erase files and directories. It may
    not read or write files in the cache, and so it is precluded from accessing the
    data cached therein; nor is it permitted to create new files in the cache.

    There are policy source files available in:

    http://people.redhat.com/~dhowells/fscache/cachefilesd-0.8.tar.bz2

    and later versions. In that tarball, see the files:

    cachefilesd.te
    cachefilesd.fc
    cachefilesd.if

    They are built and installed directly by the RPM.

    If a non-RPM based system is being used, then copy the above files to their own
    directory and run:

    make -f /usr/share/selinux/devel/Makefile
    semodule -i cachefilesd.pp

    You will need checkpolicy and selinux-policy-devel installed prior to the
    build.

    By default, the cache is located in /var/fscache, but if it is desirable that
    it should be elsewhere, than either the above policy files must be altered, or
    an auxiliary policy must be installed to label the alternate location of the
    cache.

    For instructions on how to add an auxiliary policy to enable the cache to be
    located elsewhere when SELinux is in enforcing mode, please see:

    /usr/share/doc/cachefilesd-*/move-cache.txt

    When the cachefilesd rpm is installed; alternatively, the document can be found
    in the sources.

    ==================
    A NOTE ON SECURITY
    ==================

    CacheFiles makes use of the split security in the task_struct. It allocates
    its own task_security structure, and redirects current->act_as to point to it
    when it acts on behalf of another process, in that process's context.

    The reason it does this is that it calls vfs_mkdir() and suchlike rather than
    bypassing security and calling inode ops directly. Therefore the VFS and LSM
    may deny the CacheFiles access to the cache data because under some
    circumstances the caching code is running in the security context of whatever
    process issued the original syscall on the netfs.

    Furthermore, should CacheFiles create a file or directory, the security
    parameters with that object is created (UID, GID, security label) would be
    derived from that process that issued the system call, thus potentially
    preventing other processes from accessing the cache - including CacheFiles's
    cache management daemon (cachefilesd).

    What is required is to temporarily override the security of the process that
    issued the system call. We can't, however, just do an in-place change of the
    security data as that affects the process as an object, not just as a subject.
    This means it may lose signals or ptrace events for example, and affects what
    the process looks like in /proc.

    So CacheFiles makes use of a logical split in the security between the
    objective security (task->sec) and the subjective security (task->act_as). The
    objective security holds the intrinsic security properties of a process and is
    never overridden. This is what appears in /proc, and is what is used when a
    process is the target of an operation by some other process (SIGKILL for
    example).

    The subjective security holds the active security properties of a process, and
    may be overridden. This is not seen externally, and is used whan a process
    acts upon another object, for example SIGKILLing another process or opening a
    file.

    LSM hooks exist that allow SELinux (or Smack or whatever) to reject a request
    for CacheFiles to run in a context of a specific security label, or to create
    files and directories with another security label.

    This documentation is added by the patch to:

    Documentation/filesystems/caching/cachefiles.txt

    Signed-Off-By: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells
     
  • Add and document asynchronous operation handling for use by FS-Cache's data
    storage and retrieval routines.

    The following documentation is added to:

    Documentation/filesystems/caching/operations.txt

    ================================
    ASYNCHRONOUS OPERATIONS HANDLING
    ================================

    ========
    OVERVIEW
    ========

    FS-Cache has an asynchronous operations handling facility that it uses for its
    data storage and retrieval routines. Its operations are represented by
    fscache_operation structs, though these are usually embedded into some other
    structure.

    This facility is available to and expected to be be used by the cache backends,
    and FS-Cache will create operations and pass them off to the appropriate cache
    backend for completion.

    To make use of this facility, should be #included.

    ===============================
    OPERATION RECORD INITIALISATION
    ===============================

    An operation is recorded in an fscache_operation struct:

    struct fscache_operation {
    union {
    struct work_struct fast_work;
    struct slow_work slow_work;
    };
    unsigned long flags;
    fscache_operation_processor_t processor;
    ...
    };

    Someone wanting to issue an operation should allocate something with this
    struct embedded in it. They should initialise it by calling:

    void fscache_operation_init(struct fscache_operation *op,
    fscache_operation_release_t release);

    with the operation to be initialised and the release function to use.

    The op->flags parameter should be set to indicate the CPU time provision and
    the exclusivity (see the Parameters section).

    The op->fast_work, op->slow_work and op->processor flags should be set as
    appropriate for the CPU time provision (see the Parameters section).

    FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
    operation and waited for afterwards.

    ==========
    PARAMETERS
    ==========

    There are a number of parameters that can be set in the operation record's flag
    parameter. There are three options for the provision of CPU time in these
    operations:

    (1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
    may decide it wants to handle an operation itself without deferring it to
    another thread.

    This is, for example, used in read operations for calling readpages() on
    the backing filesystem in CacheFiles. Although readpages() does an
    asynchronous data fetch, the determination of whether pages exist is done
    synchronously - and the netfs does not proceed until this has been
    determined.

    If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
    before submitting the operation, and the operating thread must wait for it
    to be cleared before proceeding:

    wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
    fscache_wait_bit, TASK_UNINTERRUPTIBLE);

    (2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
    will be given to keventd to process. Such an operation is not permitted
    to sleep on I/O.

    This is, for example, used by CacheFiles to copy data from a backing fs
    page to a netfs page after the backing fs has read the page in.

    If this option is used, op->fast_work and op->processor must be
    initialised before submitting the operation:

    INIT_WORK(&op->fast_work, do_some_work);

    (3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
    will be given to the slow work facility to process. Such an operation is
    permitted to sleep on I/O.

    This is, for example, used by FS-Cache to handle background writes of
    pages that have just been fetched from a remote server.

    If this option is used, op->slow_work and op->processor must be
    initialised before submitting the operation:

    fscache_operation_init_slow(op, processor)

    Furthermore, operations may be one of two types:

    (1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
    conjunction with any other operation on the object being operated upon.

    An example of this is the attribute change operation, in which the file
    being written to may need truncation.

    (2) Shareable. Operations of this type may be running simultaneously. It's
    up to the operation implementation to prevent interference between other
    operations running at the same time.

    =========
    PROCEDURE
    =========

    Operations are used through the following procedure:

    (1) The submitting thread must allocate the operation and initialise it
    itself. Normally this would be part of a more specific structure with the
    generic op embedded within.

    (2) The submitting thread must then submit the operation for processing using
    one of the following two functions:

    int fscache_submit_op(struct fscache_object *object,
    struct fscache_operation *op);

    int fscache_submit_exclusive_op(struct fscache_object *object,
    struct fscache_operation *op);

    The first function should be used to submit non-exclusive ops and the
    second to submit exclusive ones. The caller must still set the
    FSCACHE_OP_EXCLUSIVE flag.

    If successful, both functions will assign the operation to the specified
    object and return 0. -ENOBUFS will be returned if the object specified is
    permanently unavailable.

    The operation manager will defer operations on an object that is still
    undergoing lookup or creation. The operation will also be deferred if an
    operation of conflicting exclusivity is in progress on the object.

    If the operation is asynchronous, the manager will retain a reference to
    it, so the caller should put their reference to it by passing it to:

    void fscache_put_operation(struct fscache_operation *op);

    (3) If the submitting thread wants to do the work itself, and has marked the
    operation with FSCACHE_OP_MYTHREAD, then it should monitor
    FSCACHE_OP_WAITING as described above and check the state of the object if
    necessary (the object might have died whilst the thread was waiting).

    When it has finished doing its processing, it should call
    fscache_put_operation() on it.

    (4) The operation holds an effective lock upon the object, preventing other
    exclusive ops conflicting until it is released. The operation can be
    enqueued for further immediate asynchronous processing by adjusting the
    CPU time provisioning option if necessary, eg:

    op->flags &= ~FSCACHE_OP_TYPE;
    op->flags |= ~FSCACHE_OP_FAST;

    and calling:

    void fscache_enqueue_operation(struct fscache_operation *op)

    This can be used to allow other things to have use of the worker thread
    pools.

    =====================
    ASYNCHRONOUS CALLBACK
    =====================

    When used in asynchronous mode, the worker thread pool will invoke the
    processor method with a pointer to the operation. This should then get at the
    container struct by using container_of():

    static void fscache_write_op(struct fscache_operation *_op)
    {
    struct fscache_storage *op =
    container_of(_op, struct fscache_storage, op);
    ...
    }

    The caller holds a reference on the operation, and will invoke
    fscache_put_operation() when the processor function returns. The processor
    function is at liberty to call fscache_enqueue_operation() or to take extra
    references.

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells
     
  • Implement the cache object management state machine.

    The following documentation is added to illuminate the working of this state
    machine. It will also be added as:

    Documentation/filesystems/caching/object.txt

    ====================================================
    IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
    ====================================================

    ==============
    REPRESENTATION
    ==============

    FS-Cache maintains an in-kernel representation of each object that a netfs is
    currently interested in. Such objects are represented by the fscache_cookie
    struct and are referred to as cookies.

    FS-Cache also maintains a separate in-kernel representation of the objects that
    a cache backend is currently actively caching. Such objects are represented by
    the fscache_object struct. The cache backends allocate these upon request, and
    are expected to embed them in their own representations. These are referred to
    as objects.

    There is a 1:N relationship between cookies and objects. A cookie may be
    represented by multiple objects - an index may exist in more than one cache -
    or even by no objects (it may not be cached).

    Furthermore, both cookies and objects are hierarchical. The two hierarchies
    correspond, but the cookies tree is a superset of the union of the object trees
    of multiple caches:

    NETFS INDEX TREE : CACHE 1 : CACHE 2
    : :
    : +-----------+ :
    +----------->| IObject | :
    +-----------+ | : +-----------+ :
    | ICookie |-------+ : | :
    +-----------+ | : | : +-----------+
    | +------------------------------>| IObject |
    | : | : +-----------+
    | : V : |
    | : +-----------+ : |
    V +----------->| IObject | : |
    +-----------+ | : +-----------+ : |
    | ICookie |-------+ : | : V
    +-----------+ | : | : +-----------+
    | +------------------------------>| IObject |
    +-----+-----+ : | : +-----------+
    | | : | : |
    V | : V : |
    +-----------+ | : +-----------+ : |
    | ICookie |------------------------->| IObject | : |
    +-----------+ | : +-----------+ : |
    | V : | : V
    | +-----------+ : | : +-----------+
    | | ICookie |-------------------------------->| IObject |
    | +-----------+ : | : +-----------+
    V | : V : |
    +-----------+ | : +-----------+ : |
    | DCookie |------------------------->| DObject | : |
    +-----------+ | : +-----------+ : |
    | : : |
    +-------+-------+ : : |
    | | : : |
    V V : : V
    +-----------+ +-----------+ : : +-----------+
    | DCookie | | DCookie |------------------------>| DObject |
    +-----------+ +-----------+ : : +-----------+
    : :

    In the above illustration, ICookie and IObject represent indices and DCookie
    and DObject represent data storage objects. Indices may have representation in
    multiple caches, but currently, non-index objects may not. Objects of any type
    may also be entirely unrepresented.

    As far as the netfs API goes, the netfs is only actually permitted to see
    pointers to the cookies. The cookies themselves and any objects attached to
    those cookies are hidden from it.

    ===============================
    OBJECT MANAGEMENT STATE MACHINE
    ===============================

    Within FS-Cache, each active object is managed by its own individual state
    machine. The state for an object is kept in the fscache_object struct, in
    object->state. A cookie may point to a set of objects that are in different
    states.

    Each state has an action associated with it that is invoked when the machine
    wakes up in that state. There are four logical sets of states:

    (1) Preparation: states that wait for the parent objects to become ready. The
    representations are hierarchical, and it is expected that an object must
    be created or accessed with respect to its parent object.

    (2) Initialisation: states that perform lookups in the cache and validate
    what's found and that create on disk any missing metadata.

    (3) Normal running: states that allow netfs operations on objects to proceed
    and that update the state of objects.

    (4) Termination: states that detach objects from their netfs cookies, that
    delete objects from disk, that handle disk and system errors and that free
    up in-memory resources.

    In most cases, transitioning between states is in response to signalled events.
    When a state has finished processing, it will usually set the mask of events in
    which it is interested (object->event_mask) and relinquish the worker thread.
    Then when an event is raised (by calling fscache_raise_event()), if the event
    is not masked, the object will be queued for processing (by calling
    fscache_enqueue_object()).

    PROVISION OF CPU TIME
    ---------------------

    The work to be done by the various states is given CPU time by the threads of
    the slow work facility (see Documentation/slow-work.txt). This is used in
    preference to the workqueue facility because:

    (1) Threads may be completely occupied for very long periods of time by a
    particular work item. These state actions may be doing sequences of
    synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
    getxattr, truncate, unlink, rmdir, rename).

    (2) Threads may do little actual work, but may rather spend a lot of time
    sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded
    workqueues don't necessarily have the right numbers of threads.

    LOCKING SIMPLIFICATION
    ----------------------

    Because only one worker thread may be operating on any particular object's
    state machine at once, this simplifies the locking, particularly with respect
    to disconnecting the netfs's representation of a cache object (fscache_cookie)
    from the cache backend's representation (fscache_object) - which may be
    requested from either end.

    =================
    THE SET OF STATES
    =================

    The object state machine has a set of states that it can be in. There are
    preparation states in which the object sets itself up and waits for its parent
    object to transit to a state that allows access to its children:

    (1) State FSCACHE_OBJECT_INIT.

    Initialise the object and wait for the parent object to become active. In
    the cache, it is expected that it will not be possible to look an object
    up from the parent object, until that parent object itself has been looked
    up.

    There are initialisation states in which the object sets itself up and accesses
    disk for the object metadata:

    (2) State FSCACHE_OBJECT_LOOKING_UP.

    Look up the object on disk, using the parent as a starting point.
    FS-Cache expects the cache backend to probe the cache to see whether this
    object is represented there, and if it is, to see if it's valid (coherency
    management).

    The cache should call fscache_object_lookup_negative() to indicate lookup
    failure for whatever reason, and should call fscache_obtained_object() to
    indicate success.

    At the completion of lookup, FS-Cache will let the netfs go ahead with
    read operations, no matter whether the file is yet cached. If not yet
    cached, read operations will be immediately rejected with ENODATA until
    the first known page is uncached - as to that point there can be no data
    to be read out of the cache for that file that isn't currently also held
    in the pagecache.

    (3) State FSCACHE_OBJECT_CREATING.

    Create an object on disk, using the parent as a starting point. This
    happens if the lookup failed to find the object, or if the object's
    coherency data indicated what's on disk is out of date. In this state,
    FS-Cache expects the cache to create

    The cache should call fscache_obtained_object() if creation completes
    successfully, fscache_object_lookup_negative() otherwise.

    At the completion of creation, FS-Cache will start processing write
    operations the netfs has queued for an object. If creation failed, the
    write ops will be transparently discarded, and nothing recorded in the
    cache.

    There are some normal running states in which the object spends its time
    servicing netfs requests:

    (4) State FSCACHE_OBJECT_AVAILABLE.

    A transient state in which pending operations are started, child objects
    are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
    lookup data is freed.

    (5) State FSCACHE_OBJECT_ACTIVE.

    The normal running state. In this state, requests the netfs makes will be
    passed on to the cache.

    (6) State FSCACHE_OBJECT_UPDATING.

    The state machine comes here to update the object in the cache from the
    netfs's records. This involves updating the auxiliary data that is used
    to maintain coherency.

    And there are terminal states in which an object cleans itself up, deallocates
    memory and potentially deletes stuff from disk:

    (7) State FSCACHE_OBJECT_LC_DYING.

    The object comes here if it is dying because of a lookup or creation
    error. This would be due to a disk error or system error of some sort.
    Temporary data is cleaned up, and the parent is released.

    (8) State FSCACHE_OBJECT_DYING.

    The object comes here if it is dying due to an error, because its parent
    cookie has been relinquished by the netfs or because the cache is being
    withdrawn.

    Any child objects waiting on this one are given CPU time so that they too
    can destroy themselves. This object waits for all its children to go away
    before advancing to the next state.

    (9) State FSCACHE_OBJECT_ABORT_INIT.

    The object comes to this state if it was waiting on its parent in
    FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself
    so that the parent may proceed from the FSCACHE_OBJECT_DYING state.

    (10) State FSCACHE_OBJECT_RELEASING.
    (11) State FSCACHE_OBJECT_RECYCLING.

    The object comes to one of these two states when dying once it is rid of
    all its children, if it is dying because the netfs relinquished its
    cookie. In the first state, the cached data is expected to persist, and
    in the second it will be deleted.

    (12) State FSCACHE_OBJECT_WITHDRAWING.

    The object transits to this state if the cache decides it wants to
    withdraw the object from service, perhaps to make space, but also due to
    error or just because the whole cache is being withdrawn.

    (13) State FSCACHE_OBJECT_DEAD.

    The object transits to this state when the in-memory object record is
    ready to be deleted. The object processor shouldn't ever see an object in
    this state.

    THE SET OF EVENTS
    -----------------

    There are a number of events that can be raised to an object state machine:

    (*) FSCACHE_OBJECT_EV_UPDATE

    The netfs requested that an object be updated. The state machine will ask
    the cache backend to update the object, and the cache backend will ask the
    netfs for details of the change through its cookie definition ops.

    (*) FSCACHE_OBJECT_EV_CLEARED

    This is signalled in two circumstances:

    (a) when an object's last child object is dropped and

    (b) when the last operation outstanding on an object is completed.

    This is used to proceed from the dying state.

    (*) FSCACHE_OBJECT_EV_ERROR

    This is signalled when an I/O error occurs during the processing of some
    object.

    (*) FSCACHE_OBJECT_EV_RELEASE
    (*) FSCACHE_OBJECT_EV_RETIRE

    These are signalled when the netfs relinquishes a cookie it was using.
    The event selected depends on whether the netfs asks for the backing
    object to be retired (deleted) or retained.

    (*) FSCACHE_OBJECT_EV_WITHDRAW

    This is signalled when the cache backend wants to withdraw an object.
    This means that the object will have to be detached from the netfs's
    cookie.

    Because the withdrawing releasing/retiring events are all handled by the object
    state machine, it doesn't matter if there's a collision with both ends trying
    to sever the connection at the same time. The state machine can just pick
    which one it wants to honour, and that effects the other.

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells
     
  • Make FS-Cache create its /proc interface and present various statistical
    information through it. Also provide the functions for updating this
    information.

    These features are enabled by:

    CONFIG_FSCACHE_PROC
    CONFIG_FSCACHE_STATS
    CONFIG_FSCACHE_HISTOGRAM

    The /proc directory for FS-Cache is also exported so that caching modules can
    add their own statistics there too.

    The FS-Cache module is loadable at this point, and the statistics files can be
    examined by userspace:

    cat /proc/fs/fscache/stats
    cat /proc/fs/fscache/histogram

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells
     
  • Add the API for a generic facility (FS-Cache) by which caches may declare them
    selves open for business, and may obtain work to be done from network
    filesystems. The header file is included by:

    #include

    Documentation for the API is also added to:

    Documentation/filesystems/caching/backend-api.txt

    This API is not usable without the implementation of the utility functions
    which will be added in further patches.

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells
     
  • Add the API for a generic facility (FS-Cache) by which filesystems (such as AFS
    or NFS) may call on local caching capabilities without having to know anything
    about how the cache works, or even if there is a cache:

    +---------+
    | | +--------------+
    | NFS |--+ | |
    | | | +-->| CacheFS |
    +---------+ | +----------+ | | /dev/hda5 |
    | | | | +--------------+
    +---------+ +-->| | |
    | | | |--+
    | AFS |----->| FS-Cache |
    | | | |--+
    +---------+ +-->| | |
    | | | | +--------------+
    +---------+ | +----------+ | | |
    | | | +-->| CacheFiles |
    | ISOFS |--+ | /var/cache |
    | | +--------------+
    +---------+

    General documentation and documentation of the netfs specific API are provided
    in addition to the header files.

    As this patch stands, it is possible to build a filesystem against the facility
    and attempt to use it. All that will happen is that all requests will be
    immediately denied as if no cache is present.

    Further patches will implement the core of the facility. The facility will
    transfer requests from networking filesystems to appropriate caches if
    possible, or else gracefully deny them.

    If this facility is disabled in the kernel configuration, then all its
    operations will trivially reduce to nothing during compilation.

    WHY NOT I_MAPPING?
    ==================

    I have added my own API to implement caching rather than using i_mapping to do
    this for a number of reasons. These have been discussed a lot on the LKML and
    CacheFS mailing lists, but to summarise the basics:

    (1) Most filesystems don't do hole reportage. Holes in files are treated as
    blocks of zeros and can't be distinguished otherwise, making it difficult
    to distinguish blocks that have been read from the network and cached from
    those that haven't.

    (2) The backing inode must be fully populated before being exposed to
    userspace through the main inode because the VM/VFS goes directly to the
    backing inode and does not interrogate the front inode's VM ops.

    Therefore:

    (a) The backing inode must fit entirely within the cache.

    (b) All backed files currently open must fit entirely within the cache at
    the same time.

    (c) A working set of files in total larger than the cache may not be
    cached.

    (d) A file may not grow larger than the available space in the cache.

    (e) A file that's open and cached, and remotely grows larger than the
    cache is potentially stuffed.

    (3) Writes go to the backing filesystem, and can only be transferred to the
    network when the file is closed.

    (4) There's no record of what changes have been made, so the whole file must
    be written back.

    (5) The pages belong to the backing filesystem, and all metadata associated
    with that page are relevant only to the backing filesystem, and not
    anything stacked atop it.

    OVERVIEW
    ========

    FS-Cache provides (or will provide) the following facilities:

    (1) Caches can be added / removed at any time, even whilst in use.

    (2) Adds a facility by which tags can be used to refer to caches, even if
    they're not available yet.

    (3) More than one cache can be used at once. Caches can be selected
    explicitly by use of tags.

    (4) The netfs is provided with an interface that allows either party to
    withdraw caching facilities from a file (required for (1)).

    (5) A netfs may annotate cache objects that belongs to it. This permits the
    storage of coherency maintenance data.

    (6) Cache objects will be pinnable and space reservations will be possible.

    (7) The interface to the netfs returns as few errors as possible, preferring
    rather to let the netfs remain oblivious.

    (8) Cookies are used to represent indices, files and other objects to the
    netfs. The simplest cookie is just a NULL pointer - indicating nothing
    cached there.

    (9) The netfs is allowed to propose - dynamically - any index hierarchy it
    desires, though it must be aware that the index search function is
    recursive, stack space is limited, and indices can only be children of
    indices.

    (10) Indices can be used to group files together to reduce key size and to make
    group invalidation easier. The use of indices may make lookup quicker,
    but that's cache dependent.

    (11) Data I/O is effectively done directly to and from the netfs's pages. The
    netfs indicates that page A is at index B of the data-file represented by
    cookie C, and that it should be read or written. The cache backend may or
    may not start I/O on that page, but if it does, a netfs callback will be
    invoked to indicate completion. The I/O may be either synchronous or
    asynchronous.

    (12) Cookies can be "retired" upon release. At this point FS-Cache will mark
    them as obsolete and the index hierarchy rooted at that point will get
    recycled.

    (13) The netfs provides a "match" function for index searches. In addition to
    saying whether a match was made or not, this can also specify that an
    entry should be updated or deleted.

    FS-Cache maintains a virtual index tree in which all indices, files, objects
    and pages are kept. Bits of this tree may actually reside in one or more
    caches.

    FSDEF
    |
    +------------------------------------+
    | |
    NFS AFS
    | |
    +--------------------------+ +-----------+
    | | | |
    homedir mirror afs.org redhat.com
    | | |
    +------------+ +---------------+ +----------+
    | | | | | |
    00001 00002 00007 00125 vol00001 vol00002
    | | | | |
    +---+---+ +-----+ +---+ +------+------+ +-----+----+
    | | | | | | | | | | | | |
    PG0 PG1 PG2 PG0 XATTR PG0 PG1 DIRENT DIRENT DIRENT R/W R/O Bak
    | |
    PG0 +-------+
    | |
    00001 00003
    |
    +---+---+
    | | |
    PG0 PG1 PG2

    In the example above, two netfs's can be seen to be backed: NFS and AFS. These
    have different index hierarchies:

    (*) The NFS primary index will probably contain per-server indices. Each
    server index is indexed by NFS file handles to get data file objects.
    Each data file objects can have an array of pages, but may also have
    further child objects, such as extended attributes and directory entries.
    Extended attribute objects themselves have page-array contents.

    (*) The AFS primary index contains per-cell indices. Each cell index contains
    per-logical-volume indices. Each of volume index contains up to three
    indices for the read-write, read-only and backup mirrors of those volumes.
    Each of these contains vnode data file objects, each of which contains an
    array of pages.

    The very top index is the FS-Cache master index in which individual netfs's
    have entries.

    Any index object may reside in more than one cache, provided it only has index
    children. Any index with non-index object children will be assumed to only
    reside in one cache.

    The FS-Cache overview can be found in:

    Documentation/filesystems/caching/fscache.txt

    The netfs API to FS-Cache can be found in:

    Documentation/filesystems/caching/netfs-api.txt

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells