22 Sep, 2009

1 commit

  • KSM is a linux driver that allows dynamicly sharing identical memory pages
    between one or more processes.

    Unlike tradtional page sharing that is made at the allocation of the
    memory, ksm do it dynamicly after the memory was created. Memory is
    periodically scanned; identical pages are identified and merged.

    The sharing is made in a transparent way to the processes that use it.

    Ksm is highly important for hypervisors (kvm), where in production
    enviorments there might be many copys of the same data data among the host
    memory. This kind of data can be: similar kernels, librarys, cache, and
    so on.

    Even that ksm was wrote for kvm, any userspace application that want to
    use it to share its data can try it.

    Ksm may be useful for any application that might have similar (page
    aligment) data strctures among the memory, ksm will find this data merge
    it to one copy, and even if it will be changed and thereforew copy on
    writed, ksm will merge it again as soon as it will be identical again.

    Another reason to consider using ksm is the fact that it might simplify
    alot the userspace code of application that want to use shared private
    data, instead that the application will mange shared area, ksm will do
    this for the application, and even write to this data will be allowed
    without any synchinization acts from the application.

    Ksm was designed to be a loadable module that doesn't change the VM code
    of linux.

    This patch:

    The set_pte_at_notify() macro allows setting a pte in the shadow page
    table directly, instead of flushing the shadow page table entry and then
    getting vmexit to set it. It uses a new change_pte() callback to do so.

    set_pte_at_notify() is an optimization for kvm, and other users of
    mmu_notifiers, for COW pages. It is useful for kvm when ksm is used,
    because it allows kvm not to have to receive vmexit and only then map the
    ksm page into the shadow page table, but instead map it directly at the
    same time as Linux maps the page into the host page table.

    Users of mmu_notifiers who don't implement new mmu_notifier_change_pte()
    callback will just receive the mmu_notifier_invalidate_page() callback.

    Signed-off-by: Izik Eidus
    Signed-off-by: Chris Wright
    Signed-off-by: Hugh Dickins
    Cc: Andrea Arcangeli
    Cc: Rik van Riel
    Cc: Wu Fengguang
    Cc: Balbir Singh
    Cc: Hugh Dickins
    Cc: KAMEZAWA Hiroyuki
    Cc: Lee Schermerhorn
    Cc: Avi Kivity
    Cc: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Izik Eidus
     

29 Jul, 2008

1 commit

  • With KVM/GFP/XPMEM there isn't just the primary CPU MMU pointing to pages.
    There are secondary MMUs (with secondary sptes and secondary tlbs) too.
    sptes in the kvm case are shadow pagetables, but when I say spte in
    mmu-notifier context, I mean "secondary pte". In GRU case there's no
    actual secondary pte and there's only a secondary tlb because the GRU
    secondary MMU has no knowledge about sptes and every secondary tlb miss
    event in the MMU always generates a page fault that has to be resolved by
    the CPU (this is not the case of KVM where the a secondary tlb miss will
    walk sptes in hardware and it will refill the secondary tlb transparently
    to software if the corresponding spte is present). The same way
    zap_page_range has to invalidate the pte before freeing the page, the spte
    (and secondary tlb) must also be invalidated before any page is freed and
    reused.

    Currently we take a page_count pin on every page mapped by sptes, but that
    means the pages can't be swapped whenever they're mapped by any spte
    because they're part of the guest working set. Furthermore a spte unmap
    event can immediately lead to a page to be freed when the pin is released
    (so requiring the same complex and relatively slow tlb_gather smp safe
    logic we have in zap_page_range and that can be avoided completely if the
    spte unmap event doesn't require an unpin of the page previously mapped in
    the secondary MMU).

    The mmu notifiers allow kvm/GRU/XPMEM to attach to the tsk->mm and know
    when the VM is swapping or freeing or doing anything on the primary MMU so
    that the secondary MMU code can drop sptes before the pages are freed,
    avoiding all page pinning and allowing 100% reliable swapping of guest
    physical address space. Furthermore it avoids the code that teardown the
    mappings of the secondary MMU, to implement a logic like tlb_gather in
    zap_page_range that would require many IPI to flush other cpu tlbs, for
    each fixed number of spte unmapped.

    To make an example: if what happens on the primary MMU is a protection
    downgrade (from writeable to wrprotect) the secondary MMU mappings will be
    invalidated, and the next secondary-mmu-page-fault will call
    get_user_pages and trigger a do_wp_page through get_user_pages if it
    called get_user_pages with write=1, and it'll re-establishing an updated
    spte or secondary-tlb-mapping on the copied page. Or it will setup a
    readonly spte or readonly tlb mapping if it's a guest-read, if it calls
    get_user_pages with write=0. This is just an example.

    This allows to map any page pointed by any pte (and in turn visible in the
    primary CPU MMU), into a secondary MMU (be it a pure tlb like GRU, or an
    full MMU with both sptes and secondary-tlb like the shadow-pagetable layer
    with kvm), or a remote DMA in software like XPMEM (hence needing of
    schedule in XPMEM code to send the invalidate to the remote node, while no
    need to schedule in kvm/gru as it's an immediate event like invalidating
    primary-mmu pte).

    At least for KVM without this patch it's impossible to swap guests
    reliably. And having this feature and removing the page pin allows
    several other optimizations that simplify life considerably.

    Dependencies:

    1) mm_take_all_locks() to register the mmu notifier when the whole VM
    isn't doing anything with "mm". This allows mmu notifier users to keep
    track if the VM is in the middle of the invalidate_range_begin/end
    critical section with an atomic counter incraese in range_begin and
    decreased in range_end. No secondary MMU page fault is allowed to map
    any spte or secondary tlb reference, while the VM is in the middle of
    range_begin/end as any page returned by get_user_pages in that critical
    section could later immediately be freed without any further
    ->invalidate_page notification (invalidate_range_begin/end works on
    ranges and ->invalidate_page isn't called immediately before freeing
    the page). To stop all page freeing and pagetable overwrites the
    mmap_sem must be taken in write mode and all other anon_vma/i_mmap
    locks must be taken too.

    2) It'd be a waste to add branches in the VM if nobody could possibly
    run KVM/GRU/XPMEM on the kernel, so mmu notifiers will only enabled if
    CONFIG_KVM=m/y. In the current kernel kvm won't yet take advantage of
    mmu notifiers, but this already allows to compile a KVM external module
    against a kernel with mmu notifiers enabled and from the next pull from
    kvm.git we'll start using them. And GRU/XPMEM will also be able to
    continue the development by enabling KVM=m in their config, until they
    submit all GRU/XPMEM GPLv2 code to the mainline kernel. Then they can
    also enable MMU_NOTIFIERS in the same way KVM does it (even if KVM=n).
    This guarantees nobody selects MMU_NOTIFIER=y if KVM and GRU and XPMEM
    are all =n.

    The mmu_notifier_register call can fail because mm_take_all_locks may be
    interrupted by a signal and return -EINTR. Because mmu_notifier_reigster
    is used when a driver startup, a failure can be gracefully handled. Here
    an example of the change applied to kvm to register the mmu notifiers.
    Usually when a driver startups other allocations are required anyway and
    -ENOMEM failure paths exists already.

    struct kvm *kvm_arch_create_vm(void)
    {
    struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
    + int err;

    if (!kvm)
    return ERR_PTR(-ENOMEM);

    INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);

    + kvm->arch.mmu_notifier.ops = &kvm_mmu_notifier_ops;
    + err = mmu_notifier_register(&kvm->arch.mmu_notifier, current->mm);
    + if (err) {
    + kfree(kvm);
    + return ERR_PTR(err);
    + }
    +
    return kvm;
    }

    mmu_notifier_unregister returns void and it's reliable.

    The patch also adds a few needed but missing includes that would prevent
    kernel to compile after these changes on non-x86 archs (x86 didn't need
    them by luck).

    [akpm@linux-foundation.org: coding-style fixes]
    [akpm@linux-foundation.org: fix mm/filemap_xip.c build]
    [akpm@linux-foundation.org: fix mm/mmu_notifier.c build]
    Signed-off-by: Andrea Arcangeli
    Signed-off-by: Nick Piggin
    Signed-off-by: Christoph Lameter
    Cc: Jack Steiner
    Cc: Robin Holt
    Cc: Nick Piggin
    Cc: Peter Zijlstra
    Cc: Kanoj Sarcar
    Cc: Roland Dreier
    Cc: Steve Wise
    Cc: Avi Kivity
    Cc: Hugh Dickins
    Cc: Rusty Russell
    Cc: Anthony Liguori
    Cc: Chris Wright
    Cc: Marcelo Tosatti
    Cc: Eric Dumazet
    Cc: "Paul E. McKenney"
    Cc: Izik Eidus
    Cc: Anthony Liguori
    Cc: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli