10 Jun, 2011

1 commit


04 May, 2011

1 commit


15 Oct, 2010

1 commit

  • All file_operations should get a .llseek operation so we can make
    nonseekable_open the default for future file operations without a
    .llseek pointer.

    The three cases that we can automatically detect are no_llseek, seq_lseek
    and default_llseek. For cases where we can we can automatically prove that
    the file offset is always ignored, we use noop_llseek, which maintains
    the current behavior of not returning an error from a seek.

    New drivers should normally not use noop_llseek but instead use no_llseek
    and call nonseekable_open at open time. Existing drivers can be converted
    to do the same when the maintainer knows for certain that no user code
    relies on calling seek on the device file.

    The generated code is often incorrectly indented and right now contains
    comments that clarify for each added line why a specific variant was
    chosen. In the version that gets submitted upstream, the comments will
    be gone and I will manually fix the indentation, because there does not
    seem to be a way to do that using coccinelle.

    Some amount of new code is currently sitting in linux-next that should get
    the same modifications, which I will do at the end of the merge window.

    Many thanks to Julia Lawall for helping me learn to write a semantic
    patch that does all this.

    ===== begin semantic patch =====
    // This adds an llseek= method to all file operations,
    // as a preparation for making no_llseek the default.
    //
    // The rules are
    // - use no_llseek explicitly if we do nonseekable_open
    // - use seq_lseek for sequential files
    // - use default_llseek if we know we access f_pos
    // - use noop_llseek if we know we don't access f_pos,
    // but we still want to allow users to call lseek
    //
    @ open1 exists @
    identifier nested_open;
    @@
    nested_open(...)
    {

    }

    @ open exists@
    identifier open_f;
    identifier i, f;
    identifier open1.nested_open;
    @@
    int open_f(struct inode *i, struct file *f)
    {

    }

    @ read disable optional_qualifier exists @
    identifier read_f;
    identifier f, p, s, off;
    type ssize_t, size_t, loff_t;
    expression E;
    identifier func;
    @@
    ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
    {

    }

    @ read_no_fpos disable optional_qualifier exists @
    identifier read_f;
    identifier f, p, s, off;
    type ssize_t, size_t, loff_t;
    @@
    ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off)
    {
    ... when != off
    }

    @ write @
    identifier write_f;
    identifier f, p, s, off;
    type ssize_t, size_t, loff_t;
    expression E;
    identifier func;
    @@
    ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
    {

    }

    @ write_no_fpos @
    identifier write_f;
    identifier f, p, s, off;
    type ssize_t, size_t, loff_t;
    @@
    ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off)
    {
    ... when != off
    }

    @ fops0 @
    identifier fops;
    @@
    struct file_operations fops = {
    ...
    };

    @ has_llseek depends on fops0 @
    identifier fops0.fops;
    identifier llseek_f;
    @@
    struct file_operations fops = {
    ...
    .llseek = llseek_f,
    ...
    };

    @ has_read depends on fops0 @
    identifier fops0.fops;
    identifier read_f;
    @@
    struct file_operations fops = {
    ...
    .read = read_f,
    ...
    };

    @ has_write depends on fops0 @
    identifier fops0.fops;
    identifier write_f;
    @@
    struct file_operations fops = {
    ...
    .write = write_f,
    ...
    };

    @ has_open depends on fops0 @
    identifier fops0.fops;
    identifier open_f;
    @@
    struct file_operations fops = {
    ...
    .open = open_f,
    ...
    };

    // use no_llseek if we call nonseekable_open
    ////////////////////////////////////////////
    @ nonseekable1 depends on !has_llseek && has_open @
    identifier fops0.fops;
    identifier nso ~= "nonseekable_open";
    @@
    struct file_operations fops = {
    ... .open = nso, ...
    +.llseek = no_llseek, /* nonseekable */
    };

    @ nonseekable2 depends on !has_llseek @
    identifier fops0.fops;
    identifier open.open_f;
    @@
    struct file_operations fops = {
    ... .open = open_f, ...
    +.llseek = no_llseek, /* open uses nonseekable */
    };

    // use seq_lseek for sequential files
    /////////////////////////////////////
    @ seq depends on !has_llseek @
    identifier fops0.fops;
    identifier sr ~= "seq_read";
    @@
    struct file_operations fops = {
    ... .read = sr, ...
    +.llseek = seq_lseek, /* we have seq_read */
    };

    // use default_llseek if there is a readdir
    ///////////////////////////////////////////
    @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier readdir_e;
    @@
    // any other fop is used that changes pos
    struct file_operations fops = {
    ... .readdir = readdir_e, ...
    +.llseek = default_llseek, /* readdir is present */
    };

    // use default_llseek if at least one of read/write touches f_pos
    /////////////////////////////////////////////////////////////////
    @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier read.read_f;
    @@
    // read fops use offset
    struct file_operations fops = {
    ... .read = read_f, ...
    +.llseek = default_llseek, /* read accesses f_pos */
    };

    @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier write.write_f;
    @@
    // write fops use offset
    struct file_operations fops = {
    ... .write = write_f, ...
    + .llseek = default_llseek, /* write accesses f_pos */
    };

    // Use noop_llseek if neither read nor write accesses f_pos
    ///////////////////////////////////////////////////////////

    @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier read_no_fpos.read_f;
    identifier write_no_fpos.write_f;
    @@
    // write fops use offset
    struct file_operations fops = {
    ...
    .write = write_f,
    .read = read_f,
    ...
    +.llseek = noop_llseek, /* read and write both use no f_pos */
    };

    @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier write_no_fpos.write_f;
    @@
    struct file_operations fops = {
    ... .write = write_f, ...
    +.llseek = noop_llseek, /* write uses no f_pos */
    };

    @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    identifier read_no_fpos.read_f;
    @@
    struct file_operations fops = {
    ... .read = read_f, ...
    +.llseek = noop_llseek, /* read uses no f_pos */
    };

    @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @
    identifier fops0.fops;
    @@
    struct file_operations fops = {
    ...
    +.llseek = noop_llseek, /* no read or write fn */
    };
    ===== End semantic patch =====

    Signed-off-by: Arnd Bergmann
    Cc: Julia Lawall
    Cc: Christoph Hellwig

    Arnd Bergmann
     

01 Aug, 2010

1 commit

  • This patch moves the declaration of of_get_address(), of_get_pci_address(),
    and of_pci_address_to_resource() out of arch code and into the common
    linux/of_address header file.

    This patch also fixes some of the asm/prom.h ordering issues. It still
    includes some header files that it ideally shouldn't be, but at least the
    ordering is consistent now so that of_* overrides work.

    Signed-off-by: Grant Likely

    Grant Likely
     

23 Apr, 2010

1 commit


30 Mar, 2010

1 commit

  • …it slab.h inclusion from percpu.h

    percpu.h is included by sched.h and module.h and thus ends up being
    included when building most .c files. percpu.h includes slab.h which
    in turn includes gfp.h making everything defined by the two files
    universally available and complicating inclusion dependencies.

    percpu.h -> slab.h dependency is about to be removed. Prepare for
    this change by updating users of gfp and slab facilities include those
    headers directly instead of assuming availability. As this conversion
    needs to touch large number of source files, the following script is
    used as the basis of conversion.

    http://userweb.kernel.org/~tj/misc/slabh-sweep.py

    The script does the followings.

    * Scan files for gfp and slab usages and update includes such that
    only the necessary includes are there. ie. if only gfp is used,
    gfp.h, if slab is used, slab.h.

    * When the script inserts a new include, it looks at the include
    blocks and try to put the new include such that its order conforms
    to its surrounding. It's put in the include block which contains
    core kernel includes, in the same order that the rest are ordered -
    alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
    doesn't seem to be any matching order.

    * If the script can't find a place to put a new include (mostly
    because the file doesn't have fitting include block), it prints out
    an error message indicating which .h file needs to be added to the
    file.

    The conversion was done in the following steps.

    1. The initial automatic conversion of all .c files updated slightly
    over 4000 files, deleting around 700 includes and adding ~480 gfp.h
    and ~3000 slab.h inclusions. The script emitted errors for ~400
    files.

    2. Each error was manually checked. Some didn't need the inclusion,
    some needed manual addition while adding it to implementation .h or
    embedding .c file was more appropriate for others. This step added
    inclusions to around 150 files.

    3. The script was run again and the output was compared to the edits
    from #2 to make sure no file was left behind.

    4. Several build tests were done and a couple of problems were fixed.
    e.g. lib/decompress_*.c used malloc/free() wrappers around slab
    APIs requiring slab.h to be added manually.

    5. The script was run on all .h files but without automatically
    editing them as sprinkling gfp.h and slab.h inclusions around .h
    files could easily lead to inclusion dependency hell. Most gfp.h
    inclusion directives were ignored as stuff from gfp.h was usually
    wildly available and often used in preprocessor macros. Each
    slab.h inclusion directive was examined and added manually as
    necessary.

    6. percpu.h was updated not to include slab.h.

    7. Build test were done on the following configurations and failures
    were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
    distributed build env didn't work with gcov compiles) and a few
    more options had to be turned off depending on archs to make things
    build (like ipr on powerpc/64 which failed due to missing writeq).

    * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
    * powerpc and powerpc64 SMP allmodconfig
    * sparc and sparc64 SMP allmodconfig
    * ia64 SMP allmodconfig
    * s390 SMP allmodconfig
    * alpha SMP allmodconfig
    * um on x86_64 SMP allmodconfig

    8. percpu.h modifications were reverted so that it could be applied as
    a separate patch and serve as bisection point.

    Given the fact that I had only a couple of failures from tests on step
    6, I'm fairly confident about the coverage of this conversion patch.
    If there is a breakage, it's likely to be something in one of the arch
    headers which should be easily discoverable easily on most builds of
    the specific arch.

    Signed-off-by: Tejun Heo <tj@kernel.org>
    Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
    Cc: Ingo Molnar <mingo@redhat.com>
    Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>

    Tejun Heo
     

15 Mar, 2010

1 commit


26 Jun, 2009

2 commits

  • On Mon, Nov 17, 2008 at 01:26:13AM -0600, Sonny Rao wrote:
    > On Fri, Nov 07, 2008 at 04:28:29PM +1100, Paul Mackerras wrote:
    > > Sonny Rao writes:
    > >
    > > > Fix the BSR driver to allow small BSR devices, which are limited to a
    > > > single 4k space, on a 64k page kernel. Previously the driver would
    > > > reject the mmap since the size was smaller than PAGESIZE (or because
    > > > the size was greater than the size of the device). Now, we check for
    > > > this case use remap_4k_pfn(). Also, take out code to set vm_flags,
    > > > as the remap_pfn functions will do this for us.
    > >
    > > Thanks.
    > >
    > > Do we know that the BSR size will always be 4k if it's not a multiple
    > > of 64k? Is it possible that we could get 8k, 16k or 32k or BSRs?
    > > If it is possible, what does the user need to be able to do? Do they
    > > just want to map 4k, or might then want to map the whole thing?
    >
    >
    > Hi Paul, I took a look at changing the driver to reject a request for
    > mapping more than a single 4k page, however the only indication we get
    > of the requested size in the mmap function is the vma size, and this
    > is always one page at minimum. So, it's not possible to determine if
    > the user wants one 4k page or more. As I noted in my first response,
    > there is only one case where this is even possible and I don't think
    > it is a significant concern.
    >
    > I did notice that I left out the check to see if the user is trying to
    > map more than the device length, so I fixed that. Here's the revised
    > patch.

    Alright, I've reworked this now so that if we get one of these cases
    where there's a bsr that's > 4k and < 64k on a 64k kernel we'll only
    advertise that it is a 4k BSR to userspace. I think this is the best
    solution since user programs are only supposed to look at sysfs to
    determine how much can be mapped, and libbsr does this as well.

    Please consider for 2.6.31 as a fix, thanks.

    Signed-off-by: Benjamin Herrenschmidt

    Sonny Rao
     
  • Add a 4096 byte BSR size which will be used on new machines. Also, remove
    the warning when we run into an unknown size, as this can spam the kernel
    log excessively.

    Signed-off-by: Sonny Rao
    Signed-off-by: Benjamin Herrenschmidt

    Sonny Rao
     

30 Mar, 2009

1 commit


13 Jan, 2009

1 commit


03 Dec, 2008

1 commit

  • This adds support for multiple BSR nodes in the OF device tree.

    Previously, the BSR driver only supported a single OF node describing
    a BSR. Apparently when an LPAR is set to use "all system resources"
    the BSR appears as a single node, but when it is handed out in pieces,
    each 8 byte piece gets its own node. So, this keeps a list of BSR
    devices instead of the array and includes all nodes.

    Also, this makes the code be more inclusive of what BSR devices we
    accept by only checking compatibility and not the device name property
    (which might change in the future versions of BSR).

    Signed-off-by: Sonny Rao
    Signed-off-by: Paul Mackerras

    Sonny Rao
     

17 Oct, 2008

1 commit


15 Jul, 2008

1 commit

  • Adds a character driver for BSR support on IBM POWER systems including
    Power5 and Power6. The BSR is an optional processor facility not currently
    implemented by any other processors. It's primary purpose is fast large SMP
    synchronization. More details on the BSR are in comments to the code which
    follows. This patch adds BSR driver to pseries_defconfig.

    Signed-off-by: Sonny Rao
    Signed-off-by: Joel Schopp
    Signed-off-by: Benjamin Herrenschmidt

    Sonny Rao