07 Feb, 2008

1 commit

  • Un-obfuscate pagb_lock, remove mutex_lock->spin_lock macros, call
    spin_lock directly, remove extraneous cookie holdover from old xfs code,
    and change lock type to spinlock_t.

    SGI-PV: 970382
    SGI-Modid: xfs-linux-melb:xfs-kern:29743a

    Signed-off-by: Eric Sandeen
    Signed-off-by: Donald Douwsma
    Signed-off-by: Tim Shimmin

    Eric Sandeen
     

15 Oct, 2007

1 commit

  • One of the perpetual scaling problems XFS has is indexing it's incore
    inodes. We currently uses hashes and the default hash sizes chosen can
    only ever be a tradeoff between memory consumption and the maximum
    realistic size of the cache.

    As a result, anyone who has millions of inodes cached on a filesystem
    needs to tunes the size of the cache via the ihashsize mount option to
    allow decent scalability with inode cache operations.

    A further problem is the separate inode cluster hash, whose size is based
    on the ihashsize but is smaller, and so under certain conditions (sparse
    cluster cache population) this can become a limitation long before the
    inode hash is causing issues.

    The following patchset removes the inode hash and cluster hash and
    replaces them with radix trees to avoid the scalability limitations of the
    hashes. It also reduces the size of the inodes by 3 pointers....

    SGI-PV: 969561
    SGI-Modid: xfs-linux-melb:xfs-kern:29481a

    Signed-off-by: David Chinner
    Signed-off-by: Christoph Hellwig
    Signed-off-by: Tim Shimmin

    David Chinner
     

14 Jul, 2007

2 commits

  • In media spaces, video is often stored in a frame-per-file format. When
    dealing with uncompressed realtime HD video streams in this format, it is
    crucial that files do not get fragmented and that multiple files a placed
    contiguously on disk.

    When multiple streams are being ingested and played out at the same time,
    it is critical that the filesystem does not cross the streams and
    interleave them together as this creates seek and readahead cache miss
    latency and prevents both ingest and playout from meeting frame rate
    targets.

    This patch set creates a "stream of files" concept into the allocator to
    place all the data from a single stream contiguously on disk so that RAID
    array readahead can be used effectively. Each additional stream gets
    placed in different allocation groups within the filesystem, thereby
    ensuring that we don't cross any streams. When an AG fills up, we select a
    new AG for the stream that is not in use.

    The core of the functionality is the stream tracking - each inode that we
    create in a directory needs to be associated with the directories' stream.
    Hence every time we create a file, we look up the directories' stream
    object and associate the new file with that object.

    Once we have a stream object for a file, we use the AG that the stream
    object point to for allocations. If we can't allocate in that AG (e.g. it
    is full) we move the entire stream to another AG. Other inodes in the same
    stream are moved to the new AG on their next allocation (i.e. lazy
    update).

    Stream objects are kept in a cache and hold a reference on the inode.
    Hence the inode cannot be reclaimed while there is an outstanding stream
    reference. This means that on unlink we need to remove the stream
    association and we also need to flush all the associations on certain
    events that want to reclaim all unreferenced inodes (e.g. filesystem
    freeze).

    SGI-PV: 964469
    SGI-Modid: xfs-linux-melb:xfs-kern:29096a

    Signed-off-by: David Chinner
    Signed-off-by: Barry Naujok
    Signed-off-by: Donald Douwsma
    Signed-off-by: Christoph Hellwig
    Signed-off-by: Tim Shimmin
    Signed-off-by: Vlad Apostolov

    David Chinner
     
  • When we have a couple of hundred transactions on the fly at once, they all
    typically modify the on disk superblock in some way.
    create/unclink/mkdir/rmdir modify inode counts, allocation/freeing modify
    free block counts.

    When these counts are modified in a transaction, they must eventually lock
    the superblock buffer and apply the mods. The buffer then remains locked
    until the transaction is committed into the incore log buffer. The result
    of this is that with enough transactions on the fly the incore superblock
    buffer becomes a bottleneck.

    The result of contention on the incore superblock buffer is that
    transaction rates fall - the more pressure that is put on the superblock
    buffer, the slower things go.

    The key to removing the contention is to not require the superblock fields
    in question to be locked. We do that by not marking the superblock dirty
    in the transaction. IOWs, we modify the incore superblock but do not
    modify the cached superblock buffer. In short, we do not log superblock
    modifications to critical fields in the superblock on every transaction.
    In fact we only do it just before we write the superblock to disk every
    sync period or just before unmount.

    This creates an interesting problem - if we don't log or write out the
    fields in every transaction, then how do the values get recovered after a
    crash? the answer is simple - we keep enough duplicate, logged information
    in other structures that we can reconstruct the correct count after log
    recovery has been performed.

    It is the AGF and AGI structures that contain the duplicate information;
    after recovery, we walk every AGI and AGF and sum their individual
    counters to get the correct value, and we do a transaction into the log to
    correct them. An optimisation of this is that if we have a clean unmount
    record, we know the value in the superblock is correct, so we can avoid
    the summation walk under normal conditions and so mount/recovery times do
    not change under normal operation.

    One wrinkle that was discovered during development was that the blocks
    used in the freespace btrees are never accounted for in the AGF counters.
    This was once a valid optimisation to make; when the filesystem is full,
    the free space btrees are empty and consume no space. Hence when it
    matters, the "accounting" is correct. But that means the when we do the
    AGF summations, we would not have a correct count and xfs_check would
    complain. Hence a new counter was added to track the number of blocks used
    by the free space btrees. This is an *on-disk format change*.

    As a result of this, lazy superblock counters are a mkfs option and at the
    moment on linux there is no way to convert an old filesystem. This is
    possible - xfs_db can be used to twiddle the right bits and then
    xfs_repair will do the format conversion for you. Similarly, you can
    convert backwards as well. At some point we'll add functionality to
    xfs_admin to do the bit twiddling easily....

    SGI-PV: 964999
    SGI-Modid: xfs-linux-melb:xfs-kern:28652a

    Signed-off-by: David Chinner
    Signed-off-by: Christoph Hellwig
    Signed-off-by: Tim Shimmin

    David Chinner
     

28 Sep, 2006

1 commit


29 Mar, 2006

1 commit


02 Nov, 2005

3 commits


17 Apr, 2005

1 commit

  • Initial git repository build. I'm not bothering with the full history,
    even though we have it. We can create a separate "historical" git
    archive of that later if we want to, and in the meantime it's about
    3.2GB when imported into git - space that would just make the early
    git days unnecessarily complicated, when we don't have a lot of good
    infrastructure for it.

    Let it rip!

    Linus Torvalds