23 Jul, 2010

1 commit

  • Make fscache object state transition callbacks use workqueue instead
    of slow-work. New dedicated unbound CPU workqueue fscache_object_wq
    is created. get/put callbacks are renamed and modified to take
    @object and called directly from the enqueue wrapper and the work
    function. While at it, make all open coded instances of get/put to
    use fscache_get/put_object().

    * Unbound workqueue is used.

    * work_busy() output is printed instead of slow-work flags in object
    debugging outputs. They mean basically the same thing bit-for-bit.

    * sysctl fscache.object_max_active added to control concurrency. The
    default value is nr_cpus clamped between 4 and
    WQ_UNBOUND_MAX_ACTIVE.

    * slow_work_sleep_till_thread_needed() is replaced with fscache
    private implementation fscache_object_sleep_till_congested() which
    waits on fscache_object_wq congestion.

    * debugfs support is dropped for now. Tracing API based debug
    facility is planned to be added.

    Signed-off-by: Tejun Heo
    Acked-by: David Howells

    Tejun Heo
     

30 Mar, 2010

1 commit


20 Nov, 2009

9 commits

  • Catch an overly long wait for an old, dying active object when we want to
    replace it with a new one. The probability is that all the slow-work threads
    are hogged, and the delete can't get a look in.

    What we do instead is:

    (1) if there's nothing in the slow work queue, we sleep until either the dying
    object has finished dying or there is something in the slow work queue
    behind which we can queue our object.

    (2) if there is something in the slow work queue, we return ETIMEDOUT to
    fscache_lookup_object(), which then puts us back on the slow work queue,
    presumably behind the deletion that we're blocked by. We are then
    deferred for a while until we work our way back through the queue -
    without blocking a slow-work thread unnecessarily.

    A backtrace similar to the following may appear in the log without this patch:

    INFO: task kslowd004:5711 blocked for more than 120 seconds.
    "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
    kslowd004 D 0000000000000000 0 5711 2 0x00000080
    ffff88000340bb80 0000000000000046 ffff88002550d000 0000000000000000
    ffff88002550d000 0000000000000007 ffff88000340bfd8 ffff88002550d2a8
    000000000000ddf0 00000000000118c0 00000000000118c0 ffff88002550d2a8
    Call Trace:
    [] ? trace_hardirqs_on+0xd/0xf
    [] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
    [] cachefiles_wait_bit+0x9/0xd [cachefiles]
    [] __wait_on_bit+0x43/0x76
    [] ? ext3_xattr_get+0x1ec/0x270
    [] out_of_line_wait_on_bit+0x69/0x74
    [] ? cachefiles_wait_bit+0x0/0xd [cachefiles]
    [] ? wake_bit_function+0x0/0x2e
    [] cachefiles_mark_object_active+0x203/0x23b [cachefiles]
    [] cachefiles_walk_to_object+0x558/0x827 [cachefiles]
    [] cachefiles_lookup_object+0xac/0x12a [cachefiles]
    [] fscache_lookup_object+0x1c7/0x214 [fscache]
    [] fscache_object_state_machine+0xa5/0x52d [fscache]
    [] fscache_object_slow_work_execute+0x5f/0xa0 [fscache]
    [] slow_work_execute+0x18f/0x2d1
    [] slow_work_thread+0x1c5/0x308
    [] ? autoremove_wake_function+0x0/0x34
    [] ? slow_work_thread+0x0/0x308
    [] kthread+0x7a/0x82
    [] child_rip+0xa/0x20
    [] ? restore_args+0x0/0x30
    [] ? kthread+0x0/0x82
    [] ? child_rip+0x0/0x20
    1 lock held by kslowd004/5711:
    #0: (&sb->s_type->i_mutex_key#7/1){+.+.+.}, at: [] cachefiles_walk_to_object+0x1b3/0x827 [cachefiles]

    Signed-off-by: David Howells

    David Howells
     
  • FS-Cache objects have an FSCACHE_OBJECT_EV_REQUEUE event that can theoretically
    be raised to ask the state machine to requeue the object for further processing
    before the work function returns to the slow-work facility.

    However, fscache_object_work_execute() was clearing that bit before checking
    the event mask to see whether the object has any pending events that require it
    to be requeued immediately.

    Instead, the bit should be cleared after the check and enqueue.

    Signed-off-by: David Howells

    David Howells
     
  • Start processing an object's operations when that object moves into the DYING
    state as the object cannot be destroyed until all its outstanding operations
    have completed.

    Furthermore, make sure that read and allocation operations handle being woken
    up on a dead object. Such events are recorded in the Allocs.abt and
    Retrvls.abt statistics as viewable through /proc/fs/fscache/stats.

    The code for waiting for object activation for the read and allocation
    operations is also extracted into its own function as it is much the same in
    all cases, differing only in the stats incremented.

    Signed-off-by: David Howells

    David Howells
     
  • We must make sure that FSCACHE_COOKIE_LOOKING_UP is cleared on lookup failure
    (if an object reaches the LC_DYING state), and we should clear it before
    clearing FSCACHE_COOKIE_CREATING.

    If this doesn't happen then fscache_wait_for_deferred_lookup() may hold
    allocation and retrieval operations indefinitely until they're interrupted by
    signals - which in turn pins the dying object until they go away.

    Signed-off-by: David Howells

    David Howells
     
  • The object-available state in the object processing state machine (as
    processed by fscache_object_available()) can't rely on the cookie to be
    available because the FSCACHE_COOKIE_CREATING bit may have been cleared by
    fscache_obtained_object() prior to the object being put into the
    FSCACHE_OBJECT_AVAILABLE state.

    Clearing the FSCACHE_COOKIE_CREATING bit on a cookie permits
    __fscache_relinquish_cookie() to proceed and detach the cookie from the
    object.

    To deal with this, we don't dereference object->cookie in
    fscache_object_available() if the object has already been detached.

    In addition, a couple of assertions are added into fscache_drop_object() to
    make sure the object is unbound from the cookie before it gets there.

    Signed-off-by: David Howells

    David Howells
     
  • Count entries to and exits from cache operation table functions. Maintain
    these as a single counter that's added to or removed from as appropriate.

    Signed-off-by: David Howells

    David Howells
     
  • Allow the current state of all fscache objects to be dumped by doing:

    cat /proc/fs/fscache/objects

    By default, all objects and all fields will be shown. This can be restricted
    by adding a suitable key to one of the caller's keyrings (such as the session
    keyring):

    keyctl add user fscache:objlist "" @s

    The are:

    K Show hexdump of object key (don't show if not given)
    A Show hexdump of object aux data (don't show if not given)

    And paired restrictions:

    C Show objects that have a cookie
    c Show objects that don't have a cookie
    B Show objects that are busy
    b Show objects that aren't busy
    W Show objects that have pending writes
    w Show objects that don't have pending writes
    R Show objects that have outstanding reads
    r Show objects that don't have outstanding reads
    S Show objects that have slow work queued
    s Show objects that don't have slow work queued

    If neither side of a restriction pair is given, then both are implied. For
    example:

    keyctl add user fscache:objlist KB @s

    shows objects that are busy, and lists their object keys, but does not dump
    their auxiliary data. It also implies "CcWwRrSs", but as 'B' is given, 'b' is
    not implied.

    Signed-off-by: David Howells

    David Howells
     
  • Annotate slow-work runqueue proc lines for FS-Cache work items. Objects
    include the object ID and the state. Operations include the object ID, the
    operation ID and the operation type and state.

    Signed-off-by: David Howells

    David Howells
     
  • Wait for outstanding slow work items belonging to a module to clear when
    unregistering that module as a user of the facility. This prevents the put_ref
    code of a work item from being taken away before it returns.

    Signed-off-by: David Howells

    David Howells
     

03 Apr, 2009

1 commit

  • Implement the cache object management state machine.

    The following documentation is added to illuminate the working of this state
    machine. It will also be added as:

    Documentation/filesystems/caching/object.txt

    ====================================================
    IN-KERNEL CACHE OBJECT REPRESENTATION AND MANAGEMENT
    ====================================================

    ==============
    REPRESENTATION
    ==============

    FS-Cache maintains an in-kernel representation of each object that a netfs is
    currently interested in. Such objects are represented by the fscache_cookie
    struct and are referred to as cookies.

    FS-Cache also maintains a separate in-kernel representation of the objects that
    a cache backend is currently actively caching. Such objects are represented by
    the fscache_object struct. The cache backends allocate these upon request, and
    are expected to embed them in their own representations. These are referred to
    as objects.

    There is a 1:N relationship between cookies and objects. A cookie may be
    represented by multiple objects - an index may exist in more than one cache -
    or even by no objects (it may not be cached).

    Furthermore, both cookies and objects are hierarchical. The two hierarchies
    correspond, but the cookies tree is a superset of the union of the object trees
    of multiple caches:

    NETFS INDEX TREE : CACHE 1 : CACHE 2
    : :
    : +-----------+ :
    +----------->| IObject | :
    +-----------+ | : +-----------+ :
    | ICookie |-------+ : | :
    +-----------+ | : | : +-----------+
    | +------------------------------>| IObject |
    | : | : +-----------+
    | : V : |
    | : +-----------+ : |
    V +----------->| IObject | : |
    +-----------+ | : +-----------+ : |
    | ICookie |-------+ : | : V
    +-----------+ | : | : +-----------+
    | +------------------------------>| IObject |
    +-----+-----+ : | : +-----------+
    | | : | : |
    V | : V : |
    +-----------+ | : +-----------+ : |
    | ICookie |------------------------->| IObject | : |
    +-----------+ | : +-----------+ : |
    | V : | : V
    | +-----------+ : | : +-----------+
    | | ICookie |-------------------------------->| IObject |
    | +-----------+ : | : +-----------+
    V | : V : |
    +-----------+ | : +-----------+ : |
    | DCookie |------------------------->| DObject | : |
    +-----------+ | : +-----------+ : |
    | : : |
    +-------+-------+ : : |
    | | : : |
    V V : : V
    +-----------+ +-----------+ : : +-----------+
    | DCookie | | DCookie |------------------------>| DObject |
    +-----------+ +-----------+ : : +-----------+
    : :

    In the above illustration, ICookie and IObject represent indices and DCookie
    and DObject represent data storage objects. Indices may have representation in
    multiple caches, but currently, non-index objects may not. Objects of any type
    may also be entirely unrepresented.

    As far as the netfs API goes, the netfs is only actually permitted to see
    pointers to the cookies. The cookies themselves and any objects attached to
    those cookies are hidden from it.

    ===============================
    OBJECT MANAGEMENT STATE MACHINE
    ===============================

    Within FS-Cache, each active object is managed by its own individual state
    machine. The state for an object is kept in the fscache_object struct, in
    object->state. A cookie may point to a set of objects that are in different
    states.

    Each state has an action associated with it that is invoked when the machine
    wakes up in that state. There are four logical sets of states:

    (1) Preparation: states that wait for the parent objects to become ready. The
    representations are hierarchical, and it is expected that an object must
    be created or accessed with respect to its parent object.

    (2) Initialisation: states that perform lookups in the cache and validate
    what's found and that create on disk any missing metadata.

    (3) Normal running: states that allow netfs operations on objects to proceed
    and that update the state of objects.

    (4) Termination: states that detach objects from their netfs cookies, that
    delete objects from disk, that handle disk and system errors and that free
    up in-memory resources.

    In most cases, transitioning between states is in response to signalled events.
    When a state has finished processing, it will usually set the mask of events in
    which it is interested (object->event_mask) and relinquish the worker thread.
    Then when an event is raised (by calling fscache_raise_event()), if the event
    is not masked, the object will be queued for processing (by calling
    fscache_enqueue_object()).

    PROVISION OF CPU TIME
    ---------------------

    The work to be done by the various states is given CPU time by the threads of
    the slow work facility (see Documentation/slow-work.txt). This is used in
    preference to the workqueue facility because:

    (1) Threads may be completely occupied for very long periods of time by a
    particular work item. These state actions may be doing sequences of
    synchronous, journalled disk accesses (lookup, mkdir, create, setxattr,
    getxattr, truncate, unlink, rmdir, rename).

    (2) Threads may do little actual work, but may rather spend a lot of time
    sleeping on I/O. This means that single-threaded and 1-per-CPU-threaded
    workqueues don't necessarily have the right numbers of threads.

    LOCKING SIMPLIFICATION
    ----------------------

    Because only one worker thread may be operating on any particular object's
    state machine at once, this simplifies the locking, particularly with respect
    to disconnecting the netfs's representation of a cache object (fscache_cookie)
    from the cache backend's representation (fscache_object) - which may be
    requested from either end.

    =================
    THE SET OF STATES
    =================

    The object state machine has a set of states that it can be in. There are
    preparation states in which the object sets itself up and waits for its parent
    object to transit to a state that allows access to its children:

    (1) State FSCACHE_OBJECT_INIT.

    Initialise the object and wait for the parent object to become active. In
    the cache, it is expected that it will not be possible to look an object
    up from the parent object, until that parent object itself has been looked
    up.

    There are initialisation states in which the object sets itself up and accesses
    disk for the object metadata:

    (2) State FSCACHE_OBJECT_LOOKING_UP.

    Look up the object on disk, using the parent as a starting point.
    FS-Cache expects the cache backend to probe the cache to see whether this
    object is represented there, and if it is, to see if it's valid (coherency
    management).

    The cache should call fscache_object_lookup_negative() to indicate lookup
    failure for whatever reason, and should call fscache_obtained_object() to
    indicate success.

    At the completion of lookup, FS-Cache will let the netfs go ahead with
    read operations, no matter whether the file is yet cached. If not yet
    cached, read operations will be immediately rejected with ENODATA until
    the first known page is uncached - as to that point there can be no data
    to be read out of the cache for that file that isn't currently also held
    in the pagecache.

    (3) State FSCACHE_OBJECT_CREATING.

    Create an object on disk, using the parent as a starting point. This
    happens if the lookup failed to find the object, or if the object's
    coherency data indicated what's on disk is out of date. In this state,
    FS-Cache expects the cache to create

    The cache should call fscache_obtained_object() if creation completes
    successfully, fscache_object_lookup_negative() otherwise.

    At the completion of creation, FS-Cache will start processing write
    operations the netfs has queued for an object. If creation failed, the
    write ops will be transparently discarded, and nothing recorded in the
    cache.

    There are some normal running states in which the object spends its time
    servicing netfs requests:

    (4) State FSCACHE_OBJECT_AVAILABLE.

    A transient state in which pending operations are started, child objects
    are permitted to advance from FSCACHE_OBJECT_INIT state, and temporary
    lookup data is freed.

    (5) State FSCACHE_OBJECT_ACTIVE.

    The normal running state. In this state, requests the netfs makes will be
    passed on to the cache.

    (6) State FSCACHE_OBJECT_UPDATING.

    The state machine comes here to update the object in the cache from the
    netfs's records. This involves updating the auxiliary data that is used
    to maintain coherency.

    And there are terminal states in which an object cleans itself up, deallocates
    memory and potentially deletes stuff from disk:

    (7) State FSCACHE_OBJECT_LC_DYING.

    The object comes here if it is dying because of a lookup or creation
    error. This would be due to a disk error or system error of some sort.
    Temporary data is cleaned up, and the parent is released.

    (8) State FSCACHE_OBJECT_DYING.

    The object comes here if it is dying due to an error, because its parent
    cookie has been relinquished by the netfs or because the cache is being
    withdrawn.

    Any child objects waiting on this one are given CPU time so that they too
    can destroy themselves. This object waits for all its children to go away
    before advancing to the next state.

    (9) State FSCACHE_OBJECT_ABORT_INIT.

    The object comes to this state if it was waiting on its parent in
    FSCACHE_OBJECT_INIT, but its parent died. The object will destroy itself
    so that the parent may proceed from the FSCACHE_OBJECT_DYING state.

    (10) State FSCACHE_OBJECT_RELEASING.
    (11) State FSCACHE_OBJECT_RECYCLING.

    The object comes to one of these two states when dying once it is rid of
    all its children, if it is dying because the netfs relinquished its
    cookie. In the first state, the cached data is expected to persist, and
    in the second it will be deleted.

    (12) State FSCACHE_OBJECT_WITHDRAWING.

    The object transits to this state if the cache decides it wants to
    withdraw the object from service, perhaps to make space, but also due to
    error or just because the whole cache is being withdrawn.

    (13) State FSCACHE_OBJECT_DEAD.

    The object transits to this state when the in-memory object record is
    ready to be deleted. The object processor shouldn't ever see an object in
    this state.

    THE SET OF EVENTS
    -----------------

    There are a number of events that can be raised to an object state machine:

    (*) FSCACHE_OBJECT_EV_UPDATE

    The netfs requested that an object be updated. The state machine will ask
    the cache backend to update the object, and the cache backend will ask the
    netfs for details of the change through its cookie definition ops.

    (*) FSCACHE_OBJECT_EV_CLEARED

    This is signalled in two circumstances:

    (a) when an object's last child object is dropped and

    (b) when the last operation outstanding on an object is completed.

    This is used to proceed from the dying state.

    (*) FSCACHE_OBJECT_EV_ERROR

    This is signalled when an I/O error occurs during the processing of some
    object.

    (*) FSCACHE_OBJECT_EV_RELEASE
    (*) FSCACHE_OBJECT_EV_RETIRE

    These are signalled when the netfs relinquishes a cookie it was using.
    The event selected depends on whether the netfs asks for the backing
    object to be retired (deleted) or retained.

    (*) FSCACHE_OBJECT_EV_WITHDRAW

    This is signalled when the cache backend wants to withdraw an object.
    This means that the object will have to be detached from the netfs's
    cookie.

    Because the withdrawing releasing/retiring events are all handled by the object
    state machine, it doesn't matter if there's a collision with both ends trying
    to sever the connection at the same time. The state machine can just pick
    which one it wants to honour, and that effects the other.

    Signed-off-by: David Howells
    Acked-by: Steve Dickson
    Acked-by: Trond Myklebust
    Acked-by: Al Viro
    Tested-by: Daire Byrne

    David Howells