17 Jan, 2020

3 commits

  • klp_shadow_alloc() is not handled in the sample of shadow variable API.
    It is not strictly necessary because livepatch_fix1_dummy_free() is
    able to handle the potential failure. But it is an example and it should
    use the API a clean way.

    Signed-off-by: Petr Mladek
    Reviewed-by: Joe Lawrence
    Acked-by: Miroslav Benes
    Reviewed-by: Kamalesh Babulal
    Signed-off-by: Jiri Kosina

    Petr Mladek
     
  • The commit e91c2518a5d22a ("livepatch: Initialize shadow variables
    safely by a custom callback") leads to the following static checker
    warning:

    samples/livepatch/livepatch-shadow-fix1.c:86 livepatch_fix1_dummy_alloc()
    error: 'klp_shadow_alloc()' 'leak' too small (4 vs 8)

    It is because klp_shadow_alloc() is used a wrong way:

    int *leak;
    shadow_leak = klp_shadow_alloc(d, SV_LEAK, sizeof(leak), GFP_KERNEL,
    shadow_leak_ctor, leak);

    The code is supposed to store the "leak" pointer into the shadow variable.
    3rd parameter correctly passes size of the data (size of pointer). But
    the 5th parameter is wrong. It should pass pointer to the data (pointer
    to the pointer) but it passes the pointer directly.

    It works because shadow_leak_ctor() handle "ctor_data" as the data
    instead of pointer to the data. But it is semantically wrong and
    confusing.

    The same problem is also in the module used by selftests. In this case,
    "pvX" variables are introduced. They represent the data stored in
    the shadow variables.

    Reported-by: Dan Carpenter
    Signed-off-by: Petr Mladek
    Reviewed-by: Joe Lawrence
    Acked-by: Miroslav Benes
    Reviewed-by: Kamalesh Babulal
    Signed-off-by: Jiri Kosina

    Petr Mladek
     
  • The "leak" pointer, in the sample of shadow variable API, is allocated
    as sizeof(int). Let's help developers and static analyzers with
    understanding the code by using the appropriate pointer type.

    Reported-by: Dan Carpenter
    Signed-off-by: Petr Mladek
    Reviewed-by: Joe Lawrence
    Acked-by: Miroslav Benes
    Reviewed-by: Kamalesh Babulal
    Signed-off-by: Jiri Kosina

    Petr Mladek
     

21 May, 2019

2 commits

  • Based on 2 normalized pattern(s):

    this program is free software you can redistribute it and or modify
    it under the terms of the gnu general public license as published by
    the free software foundation either version 2 of the license or at
    your option any later version this program is distributed in the
    hope that it will be useful but without any warranty without even
    the implied warranty of merchantability or fitness for a particular
    purpose see the gnu general public license for more details you
    should have received a copy of the gnu general public license along
    with this program if not see http www gnu org licenses

    this program is free software you can redistribute it and or modify
    it under the terms of the gnu general public license as published by
    the free software foundation either version 2 of the license or at
    your option any later version this program is distributed in the
    hope that it will be useful but without any warranty without even
    the implied warranty of merchantability or fitness for a particular
    purpose see the gnu general public license for more details [based]
    [from] [clk] [highbank] [c] you should have received a copy of the
    gnu general public license along with this program if not see http
    www gnu org licenses

    extracted by the scancode license scanner the SPDX license identifier

    GPL-2.0-or-later

    has been chosen to replace the boilerplate/reference in 355 file(s).

    Signed-off-by: Thomas Gleixner
    Reviewed-by: Kate Stewart
    Reviewed-by: Jilayne Lovejoy
    Reviewed-by: Steve Winslow
    Reviewed-by: Allison Randal
    Cc: linux-spdx@vger.kernel.org
    Link: https://lkml.kernel.org/r/20190519154041.837383322@linutronix.de
    Signed-off-by: Greg Kroah-Hartman

    Thomas Gleixner
     
  • Add SPDX license identifiers to all Make/Kconfig files which:

    - Have no license information of any form

    These files fall under the project license, GPL v2 only. The resulting SPDX
    license identifier is:

    GPL-2.0-only

    Signed-off-by: Thomas Gleixner
    Signed-off-by: Greg Kroah-Hartman

    Thomas Gleixner
     

05 Mar, 2019

1 commit


25 Jan, 2019

1 commit

  • Sparse reported warnings about non-static symbols. For the variables
    a simple static attribute is fine - for the functions referenced by
    livepatch via klp_func the symbol-names must be unmodified in the
    symbol table and the patchable code has to be emitted. The resolution
    is to attach __used attribute to the shared statically declared functions.

    Link: https://lore.kernel.org/lkml/1544965657-26804-1-git-send-email-hofrat@osadl.org/
    Suggested-by: Joe Lawrence
    Signed-off-by: Nicholas Mc Guire
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Nicholas Mc Guire
     

12 Jan, 2019

1 commit

  • The possibility to re-enable a registered patch was useful for immediate
    patches where the livepatch module had to stay until the system reboot.
    The improved consistency model allows to achieve the same result by
    unloading and loading the livepatch module again.

    Also we are going to add a feature called atomic replace. It will allow
    to create a patch that would replace all already registered patches.
    The aim is to handle dependent patches more securely. It will obsolete
    the stack of patches that helped to handle the dependencies so far.
    Then it might be unclear when a cumulative patch re-enabling is safe.

    It would be complicated to support the many modes. Instead we could
    actually make the API and code easier to understand.

    Therefore, remove the two step public API. All the checks and init calls
    are moved from klp_register_patch() to klp_enabled_patch(). Also the patch
    is automatically freed, including the sysfs interface when the transition
    to the disabled state is completed.

    As a result, there is never a disabled patch on the top of the stack.
    Therefore we do not need to check the stack in __klp_enable_patch().
    And we could simplify the check in __klp_disable_patch().

    Also the API and logic is much easier. It is enough to call
    klp_enable_patch() in module_init() call. The patch can be disabled
    by writing '0' into /sys/kernel/livepatch//enabled. Then the module
    can be removed once the transition finishes and sysfs interface is freed.

    The only problem is how to free the structures and kobjects safely.
    The operation is triggered from the sysfs interface. We could not put
    the related kobject from there because it would cause lock inversion
    between klp_mutex and kernfs locks, see kn->count lockdep map.

    Therefore, offload the free task to a workqueue. It is perfectly fine:

    + The patch can no longer be used in the livepatch operations.

    + The module could not be removed until the free operation finishes
    and module_put() is called.

    + The operation is asynchronous already when the first
    klp_try_complete_transition() fails and another call
    is queued with a delay.

    Suggested-by: Josh Poimboeuf
    Signed-off-by: Petr Mladek
    Acked-by: Miroslav Benes
    Acked-by: Josh Poimboeuf
    Signed-off-by: Jiri Kosina

    Petr Mladek
     

18 Dec, 2018

1 commit

  • kzalloc() return should always be checked - notably in example code
    where this may be seen as reference. On failure of allocation in
    livepatch_fix1_dummy_alloc() respectively dummy_alloc() previous
    allocation is freed (thanks to Petr Mladek for
    catching this) and NULL returned.

    Signed-off-by: Nicholas Mc Guire
    Fixes: 439e7271dc2b ("livepatch: introduce shadow variable API")
    Acked-by: Joe Lawrence
    Reviewed-by: Petr Mladek
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Nicholas Mc Guire
     

17 Apr, 2018

2 commits

  • We might need to do some actions before the shadow variable is freed.
    For example, we might need to remove it from a list or free some data
    that it points to.

    This is already possible now. The user can get the shadow variable
    by klp_shadow_get(), do the necessary actions, and then call
    klp_shadow_free().

    This patch allows to do it a more elegant way. The user could implement
    the needed actions in a callback that is passed to klp_shadow_free()
    as a parameter. The callback usually does reverse operations to
    the constructor callback that can be called by klp_shadow_*alloc().

    It is especially useful for klp_shadow_free_all(). There we need to do
    these extra actions for each found shadow variable with the given ID.

    Note that the memory used by the shadow variable itself is still released
    later by rcu callback. It is needed to protect internal structures that
    keep all shadow variables. But the destructor is called immediately.
    The shadow variable must not be access anyway after klp_shadow_free()
    is called. The user is responsible to protect this any suitable way.

    Be aware that the destructor is called under klp_shadow_lock. It is
    the same as for the contructor in klp_shadow_alloc().

    Signed-off-by: Petr Mladek
    Acked-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Petr Mladek
     
  • The existing API allows to pass a sample data to initialize the shadow
    data. It works well when the data are position independent. But it fails
    miserably when we need to set a pointer to the shadow structure itself.

    Unfortunately, we might need to initialize the pointer surprisingly
    often because of struct list_head. It is even worse because the list
    might be hidden in other common structures, for example, struct mutex,
    struct wait_queue_head.

    For example, this was needed to fix races in ALSA sequencer. It required
    to add mutex into struct snd_seq_client. See commit b3defb791b26ea06
    ("ALSA: seq: Make ioctls race-free") and commit d15d662e89fc667b9
    ("ALSA: seq: Fix racy pool initializations")

    This patch makes the API more safe. A custom constructor function and data
    are passed to klp_shadow_*alloc() functions instead of the sample data.

    Note that ctor_data are no longer a template for shadow->data. It might
    point to any data that might be necessary when the constructor is called.

    Also note that the constructor is called under klp_shadow_lock. It is
    an internal spin_lock that synchronizes alloc() vs. get() operations,
    see klp_shadow_get_or_alloc(). On one hand, this adds a risk of ABBA
    deadlocks. On the other hand, it allows to do some operations safely.
    For example, we could add the new structure into an existing list.
    This must be done only once when the structure is allocated.

    Reported-by: Nicolai Stange
    Signed-off-by: Petr Mladek
    Acked-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Petr Mladek
     

11 Jan, 2018

1 commit

  • Immediate flag has been used to disable per-task consistency and patch
    all tasks immediately. It could be useful if the patch doesn't change any
    function or data semantics.

    However, it causes problems on its own. The consistency problem is
    currently broken with respect to immediate patches.

    func a
    patches 1i
    2i
    3

    When the patch 3 is applied, only 2i function is checked (by stack
    checking facility). There might be a task sleeping in 1i though. Such
    task is migrated to 3, because we do not check 1i in
    klp_check_stack_func() at all.

    Coming atomic replace feature would be easier to implement and more
    reliable without immediate.

    Thus, remove immediate feature completely and save us from the problems.

    Note that force feature has the similar problem. However it is
    considered as a last resort. If used, administrator should not apply any
    new live patches and should plan for reboot into an updated kernel.

    The architectures would now need to provide HAVE_RELIABLE_STACKTRACE to
    fully support livepatch.

    Signed-off-by: Miroslav Benes
    Acked-by: Josh Poimboeuf
    Signed-off-by: Jiri Kosina

    Miroslav Benes
     

19 Oct, 2017

1 commit

  • Provide livepatch modules a klp_object (un)patching notification
    mechanism. Pre and post-(un)patch callbacks allow livepatch modules to
    setup or synchronize changes that would be difficult to support in only
    patched-or-unpatched code contexts.

    Callbacks can be registered for target module or vmlinux klp_objects,
    but each implementation is klp_object specific.

    - Pre-(un)patch callbacks run before any (un)patching transition
    starts.

    - Post-(un)patch callbacks run once an object has been (un)patched and
    the klp_patch fully transitioned to its target state.

    Example use cases include modification of global data and registration
    of newly available services/handlers.

    See Documentation/livepatch/callbacks.txt for details and
    samples/livepatch/ for examples.

    Signed-off-by: Joe Lawrence
    Acked-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Joe Lawrence
     

15 Sep, 2017

1 commit

  • Add exported API for livepatch modules:

    klp_shadow_get()
    klp_shadow_alloc()
    klp_shadow_get_or_alloc()
    klp_shadow_free()
    klp_shadow_free_all()

    that implement "shadow" variables, which allow callers to associate new
    shadow fields to existing data structures. This is intended to be used
    by livepatch modules seeking to emulate additions to data structure
    definitions.

    See Documentation/livepatch/shadow-vars.txt for a summary of the new
    shadow variable API, including a few common use cases.

    See samples/livepatch/livepatch-shadow-* for example modules that
    demonstrate shadow variables.

    [jkosina@suse.cz: fix __klp_shadow_get_or_alloc() comment as spotted by
    Josh]
    Signed-off-by: Joe Lawrence
    Acked-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Joe Lawrence
     

08 Mar, 2017

2 commits

  • Currently we do not allow patch module to unload since there is no
    method to determine if a task is still running in the patched code.

    The consistency model gives us the way because when the unpatching
    finishes we know that all tasks were marked as safe to call an original
    function. Thus every new call to the function calls the original code
    and at the same time no task can be somewhere in the patched code,
    because it had to leave that code to be marked as safe.

    We can safely let the patch module go after that.

    Completion is used for synchronization between module removal and sysfs
    infrastructure in a similar way to commit 942e443127e9 ("module: Fix
    mod->mkobj.kobj potentially freed too early").

    Note that we still do not allow the removal for immediate model, that is
    no consistency model. The module refcount may increase in this case if
    somebody disables and enables the patch several times. This should not
    cause any harm.

    With this change a call to try_module_get() is moved to
    __klp_enable_patch from klp_register_patch to make module reference
    counting symmetric (module_put() is in a patch disable path) and to
    allow to take a new reference to a disabled module when being enabled.

    Finally, we need to be very careful about possible races between
    klp_unregister_patch(), kobject_put() functions and operations
    on the related sysfs files.

    kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise,
    it might be blocked by enabled_store() that needs the mutex as well.
    In addition, enabled_store() must check if the patch was not
    unregisted in the meantime.

    There is no need to do the same for other kobject_put() callsites
    at the moment. Their sysfs operations neither take the lock nor
    they access any data that might be freed in the meantime.

    There was an attempt to use kobjects the right way and prevent these
    races by design. But it made the patch definition more complicated
    and opened another can of worms. See
    https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com

    [Thanks to Petr Mladek for improving the commit message.]

    Signed-off-by: Miroslav Benes
    Signed-off-by: Josh Poimboeuf
    Reviewed-by: Petr Mladek
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Josh Poimboeuf
     
  • Change livepatch to use a basic per-task consistency model. This is the
    foundation which will eventually enable us to patch those ~10% of
    security patches which change function or data semantics. This is the
    biggest remaining piece needed to make livepatch more generally useful.

    This code stems from the design proposal made by Vojtech [1] in November
    2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
    consistency and syscall barrier switching combined with kpatch's stack
    trace switching. There are also a number of fallback options which make
    it quite flexible.

    Patches are applied on a per-task basis, when the task is deemed safe to
    switch over. When a patch is enabled, livepatch enters into a
    transition state where tasks are converging to the patched state.
    Usually this transition state can complete in a few seconds. The same
    sequence occurs when a patch is disabled, except the tasks converge from
    the patched state to the unpatched state.

    An interrupt handler inherits the patched state of the task it
    interrupts. The same is true for forked tasks: the child inherits the
    patched state of the parent.

    Livepatch uses several complementary approaches to determine when it's
    safe to patch tasks:

    1. The first and most effective approach is stack checking of sleeping
    tasks. If no affected functions are on the stack of a given task,
    the task is patched. In most cases this will patch most or all of
    the tasks on the first try. Otherwise it'll keep trying
    periodically. This option is only available if the architecture has
    reliable stacks (HAVE_RELIABLE_STACKTRACE).

    2. The second approach, if needed, is kernel exit switching. A
    task is switched when it returns to user space from a system call, a
    user space IRQ, or a signal. It's useful in the following cases:

    a) Patching I/O-bound user tasks which are sleeping on an affected
    function. In this case you have to send SIGSTOP and SIGCONT to
    force it to exit the kernel and be patched.
    b) Patching CPU-bound user tasks. If the task is highly CPU-bound
    then it will get patched the next time it gets interrupted by an
    IRQ.
    c) In the future it could be useful for applying patches for
    architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
    this case you would have to signal most of the tasks on the
    system. However this isn't supported yet because there's
    currently no way to patch kthreads without
    HAVE_RELIABLE_STACKTRACE.

    3. For idle "swapper" tasks, since they don't ever exit the kernel, they
    instead have a klp_update_patch_state() call in the idle loop which
    allows them to be patched before the CPU enters the idle state.

    (Note there's not yet such an approach for kthreads.)

    All the above approaches may be skipped by setting the 'immediate' flag
    in the 'klp_patch' struct, which will disable per-task consistency and
    patch all tasks immediately. This can be useful if the patch doesn't
    change any function or data semantics. Note that, even with this flag
    set, it's possible that some tasks may still be running with an old
    version of the function, until that function returns.

    There's also an 'immediate' flag in the 'klp_func' struct which allows
    you to specify that certain functions in the patch can be applied
    without per-task consistency. This might be useful if you want to patch
    a common function like schedule(), and the function change doesn't need
    consistency but the rest of the patch does.

    For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
    must set patch->immediate which causes all tasks to be patched
    immediately. This option should be used with care, only when the patch
    doesn't change any function or data semantics.

    In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
    may be allowed to use per-task consistency if we can come up with
    another way to patch kthreads.

    The /sys/kernel/livepatch//transition file shows whether a patch
    is in transition. Only a single patch (the topmost patch on the stack)
    can be in transition at a given time. A patch can remain in transition
    indefinitely, if any of the tasks are stuck in the initial patch state.

    A transition can be reversed and effectively canceled by writing the
    opposite value to the /sys/kernel/livepatch//enabled file while
    the transition is in progress. Then all the tasks will attempt to
    converge back to the original patch state.

    [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz

    Signed-off-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Acked-by: Ingo Molnar # for the scheduler changes
    Signed-off-by: Jiri Kosina

    Josh Poimboeuf
     

01 Apr, 2016

1 commit

  • Reuse module loader code to write relocations, thereby eliminating the need
    for architecture specific relocation code in livepatch. Specifically, reuse
    the apply_relocate_add() function in the module loader to write relocations
    instead of duplicating functionality in livepatch's arch-dependent
    klp_write_module_reloc() function.

    In order to accomplish this, livepatch modules manage their own relocation
    sections (marked with the SHF_RELA_LIVEPATCH section flag) and
    livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section
    index). To apply livepatch relocation sections, livepatch symbols
    referenced by relocs are resolved and then apply_relocate_add() is called
    to apply those relocations.

    In addition, remove x86 livepatch relocation code and the s390
    klp_write_module_reloc() function stub. They are no longer needed since
    relocation work has been offloaded to module loader.

    Lastly, mark the module as a livepatch module so that the module loader
    canappropriately identify and initialize it.

    Signed-off-by: Jessica Yu
    Reviewed-by: Miroslav Benes
    Acked-by: Josh Poimboeuf
    Acked-by: Heiko Carstens # for s390 changes
    Signed-off-by: Jiri Kosina

    Jessica Yu
     

04 Feb, 2015

1 commit


24 Dec, 2014

1 commit


22 Dec, 2014

1 commit