20 Jul, 2019

1 commit

  • Pull adfs updates from Al Viro:
    "More ADFS patches from Russell King"

    * 'work.adfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
    fs/adfs: add time stamp and file type helpers
    fs/adfs: super: limit idlen according to directory type
    fs/adfs: super: fix use-after-free bug
    fs/adfs: super: safely update options on remount
    fs/adfs: super: correct superblock flags
    fs/adfs: clean up indirect disc addresses and fragment IDs
    fs/adfs: clean up error message printing
    fs/adfs: use %pV for error messages
    fs/adfs: use format_version from disc_record
    fs/adfs: add helper to get filesystem size
    fs/adfs: add helper to get discrecord from map
    fs/adfs: correct disc record structure

    Linus Torvalds
     

27 Jun, 2019

11 commits


19 Jun, 2019

1 commit

  • Based on 2 normalized pattern(s):

    this program is free software you can redistribute it and or modify
    it under the terms of the gnu general public license version 2 as
    published by the free software foundation

    this program is free software you can redistribute it and or modify
    it under the terms of the gnu general public license version 2 as
    published by the free software foundation #

    extracted by the scancode license scanner the SPDX license identifier

    GPL-2.0-only

    has been chosen to replace the boilerplate/reference in 4122 file(s).

    Signed-off-by: Thomas Gleixner
    Reviewed-by: Enrico Weigelt
    Reviewed-by: Kate Stewart
    Reviewed-by: Allison Randal
    Cc: linux-spdx@vger.kernel.org
    Link: https://lkml.kernel.org/r/20190604081206.933168790@linutronix.de
    Signed-off-by: Greg Kroah-Hartman

    Thomas Gleixner
     

07 Jun, 2019

1 commit

  • Pull ADFS cleanups/fixes from Russell King:
    "As a result of some of Al Viro's great work, here are a few cleanups
    with fixes for adfs:

    - factor out filename comparison, so we can be sure that
    adfs_compare() (used for namei compare) and adfs_match() (used for
    lookup) have the same behaviour.

    - factor out filename lowering (which is not the same as tolower()
    which will lower top-bit-set characters) to ensure that we have the
    same behaviour when comparing filenames as when we hash them.

    - factor out the object fixups, so we are applying all fixups to
    directory objects in the same way, independent of the disk format.

    - factor out the object name fixup (into the previously factored out
    function) to ensure that filenames are appropriately translated -
    for example, adfs allows '/' in filenames, which being the Unix
    path separator, need to be translated to a different character,
    which is normally '.' (DOS 8.3 filenames represent the . as a / on
    adfs, so this is the expected reverse translation.)

    - remove filename truncation; Al asked about this and apparently the
    decision is to remove it. In any case, adfs's truncation was buggy,
    so this rids us of that bug by removing the truncation feature.

    - we now have only one location which adds the "filetype" suffix to
    the filename, so there's no point that code being out of line.

    - since we translate '/' into '.', an adfs filename of "/" or "//"
    would end up being translated to "." and ".." which have special
    meanings. In this case, change the first character to "^" to avoid
    these special directory names being abused"

    * tag 'for-rc-adfs' of git://git.armlinux.org.uk/~rmk/linux-arm:
    fs/adfs: fix filename fixup handling for "/" and "//" names
    fs/adfs: move append_filetype_suffix() into adfs_object_fixup()
    fs/adfs: remove truncated filename hashing
    fs/adfs: factor out filename fixup
    fs/adfs: factor out object fixups
    fs/adfs: factor out filename case lowering
    fs/adfs: factor out filename comparison

    Linus Torvalds
     

31 May, 2019

7 commits


21 May, 2019

1 commit


08 May, 2019

1 commit

  • …kernel/git/gustavoars/linux

    Pull Wimplicit-fallthrough updates from Gustavo A. R. Silva:
    "Mark switch cases where we are expecting to fall through.

    This is part of the ongoing efforts to enable -Wimplicit-fallthrough.

    Most of them have been baking in linux-next for a whole development
    cycle. And with Stephen Rothwell's help, we've had linux-next
    nag-emails going out for newly introduced code that triggers
    -Wimplicit-fallthrough to avoid gaining more of these cases while we
    work to remove the ones that are already present.

    We are getting close to completing this work. Currently, there are
    only 32 of 2311 of these cases left to be addressed in linux-next. I'm
    auditing every case; I take a look into the code and analyze it in
    order to determine if I'm dealing with an actual bug or a false
    positive, as explained here:

    https://lore.kernel.org/lkml/c2fad584-1705-a5f2-d63c-824e9b96cf50@embeddedor.com/

    While working on this, I've found and fixed the several missing
    break/return bugs, some of them introduced more than 5 years ago.

    Once this work is finished, we'll be able to universally enable
    "-Wimplicit-fallthrough" to avoid any of these kinds of bugs from
    entering the kernel again"

    * tag 'Wimplicit-fallthrough-5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (27 commits)
    memstick: mark expected switch fall-throughs
    drm/nouveau/nvkm: mark expected switch fall-throughs
    NFC: st21nfca: Fix fall-through warnings
    NFC: pn533: mark expected switch fall-throughs
    block: Mark expected switch fall-throughs
    ASN.1: mark expected switch fall-through
    lib/cmdline.c: mark expected switch fall-throughs
    lib: zstd: Mark expected switch fall-throughs
    scsi: sym53c8xx_2: sym_nvram: Mark expected switch fall-through
    scsi: sym53c8xx_2: sym_hipd: mark expected switch fall-throughs
    scsi: ppa: mark expected switch fall-through
    scsi: osst: mark expected switch fall-throughs
    scsi: lpfc: lpfc_scsi: Mark expected switch fall-throughs
    scsi: lpfc: lpfc_nvme: Mark expected switch fall-through
    scsi: lpfc: lpfc_nportdisc: Mark expected switch fall-through
    scsi: lpfc: lpfc_hbadisc: Mark expected switch fall-throughs
    scsi: lpfc: lpfc_els: Mark expected switch fall-throughs
    scsi: lpfc: lpfc_ct: Mark expected switch fall-throughs
    scsi: imm: mark expected switch fall-throughs
    scsi: csiostor: csio_wr: mark expected switch fall-through
    ...

    Linus Torvalds
     

02 May, 2019

1 commit


09 Apr, 2019

1 commit

  • In preparation to enabling -Wimplicit-fallthrough, mark switch cases
    where we are expecting to fall through.

    Warning level 3 was used: -Wimplicit-fallthrough=3

    This patch is part of the ongoing efforts to enable
    -Wimplicit-fallthrough

    Reviewed-by: Kees Cook
    Signed-off-by: Gustavo A. R. Silva

    Gustavo A. R. Silva
     

23 Aug, 2018

1 commit

  • We just truncate the seconds to 32-bit in one place now, so this can
    trivially be converted over to using timespec64 consistently.

    Link: http://lkml.kernel.org/r/20180620100133.4035614-1-arnd@arndb.de
    Signed-off-by: Arnd Bergmann
    Cc: Al Viro
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Arnd Bergmann
     

04 Aug, 2018

1 commit

  • We never look them up in there; inode_fake_hash() will make them appear
    hashed for mark_inode_dirty() purposes. And don't leave them around
    until memory pressure kicks them out - we never look them up again.

    Signed-off-by: Al Viro

    Al Viro
     

15 Jun, 2018

1 commit

  • Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
    "This is a late set of changes from Deepa Dinamani doing an automated
    treewide conversion of the inode and iattr structures from 'timespec'
    to 'timespec64', to push the conversion from the VFS layer into the
    individual file systems.

    As Deepa writes:

    'The series aims to switch vfs timestamps to use struct timespec64.
    Currently vfs uses struct timespec, which is not y2038 safe.

    The series involves the following:
    1. Add vfs helper functions for supporting struct timepec64
    timestamps.
    2. Cast prints of vfs timestamps to avoid warnings after the switch.
    3. Simplify code using vfs timestamps so that the actual replacement
    becomes easy.
    4. Convert vfs timestamps to use struct timespec64 using a script.
    This is a flag day patch.

    Next steps:
    1. Convert APIs that can handle timespec64, instead of converting
    timestamps at the boundaries.
    2. Update internal data structures to avoid timestamp conversions'

    Thomas Gleixner adds:

    'I think there is no point to drag that out for the next merge
    window. The whole thing needs to be done in one go for the core
    changes which means that you're going to play that catchup game
    forever. Let's get over with it towards the end of the merge window'"

    * tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
    pstore: Remove bogus format string definition
    vfs: change inode times to use struct timespec64
    pstore: Convert internal records to timespec64
    udf: Simplify calls to udf_disk_stamp_to_time
    fs: nfs: get rid of memcpys for inode times
    ceph: make inode time prints to be long long
    lustre: Use long long type to print inode time
    fs: add timespec64_truncate()

    Linus Torvalds
     

13 Jun, 2018

1 commit

  • The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
    patch replaces cases of:

    kmalloc(a * b, gfp)

    with:
    kmalloc_array(a * b, gfp)

    as well as handling cases of:

    kmalloc(a * b * c, gfp)

    with:

    kmalloc(array3_size(a, b, c), gfp)

    as it's slightly less ugly than:

    kmalloc_array(array_size(a, b), c, gfp)

    This does, however, attempt to ignore constant size factors like:

    kmalloc(4 * 1024, gfp)

    though any constants defined via macros get caught up in the conversion.

    Any factors with a sizeof() of "unsigned char", "char", and "u8" were
    dropped, since they're redundant.

    The tools/ directory was manually excluded, since it has its own
    implementation of kmalloc().

    The Coccinelle script used for this was:

    // Fix redundant parens around sizeof().
    @@
    type TYPE;
    expression THING, E;
    @@

    (
    kmalloc(
    - (sizeof(TYPE)) * E
    + sizeof(TYPE) * E
    , ...)
    |
    kmalloc(
    - (sizeof(THING)) * E
    + sizeof(THING) * E
    , ...)
    )

    // Drop single-byte sizes and redundant parens.
    @@
    expression COUNT;
    typedef u8;
    typedef __u8;
    @@

    (
    kmalloc(
    - sizeof(u8) * (COUNT)
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(__u8) * (COUNT)
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(char) * (COUNT)
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(unsigned char) * (COUNT)
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(u8) * COUNT
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(__u8) * COUNT
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(char) * COUNT
    + COUNT
    , ...)
    |
    kmalloc(
    - sizeof(unsigned char) * COUNT
    + COUNT
    , ...)
    )

    // 2-factor product with sizeof(type/expression) and identifier or constant.
    @@
    type TYPE;
    expression THING;
    identifier COUNT_ID;
    constant COUNT_CONST;
    @@

    (
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * (COUNT_ID)
    + COUNT_ID, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * COUNT_ID
    + COUNT_ID, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * (COUNT_CONST)
    + COUNT_CONST, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * COUNT_CONST
    + COUNT_CONST, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * (COUNT_ID)
    + COUNT_ID, sizeof(THING)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * COUNT_ID
    + COUNT_ID, sizeof(THING)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * (COUNT_CONST)
    + COUNT_CONST, sizeof(THING)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * COUNT_CONST
    + COUNT_CONST, sizeof(THING)
    , ...)
    )

    // 2-factor product, only identifiers.
    @@
    identifier SIZE, COUNT;
    @@

    - kmalloc
    + kmalloc_array
    (
    - SIZE * COUNT
    + COUNT, SIZE
    , ...)

    // 3-factor product with 1 sizeof(type) or sizeof(expression), with
    // redundant parens removed.
    @@
    expression THING;
    identifier STRIDE, COUNT;
    type TYPE;
    @@

    (
    kmalloc(
    - sizeof(TYPE) * (COUNT) * (STRIDE)
    + array3_size(COUNT, STRIDE, sizeof(TYPE))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE) * (COUNT) * STRIDE
    + array3_size(COUNT, STRIDE, sizeof(TYPE))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE) * COUNT * (STRIDE)
    + array3_size(COUNT, STRIDE, sizeof(TYPE))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE) * COUNT * STRIDE
    + array3_size(COUNT, STRIDE, sizeof(TYPE))
    , ...)
    |
    kmalloc(
    - sizeof(THING) * (COUNT) * (STRIDE)
    + array3_size(COUNT, STRIDE, sizeof(THING))
    , ...)
    |
    kmalloc(
    - sizeof(THING) * (COUNT) * STRIDE
    + array3_size(COUNT, STRIDE, sizeof(THING))
    , ...)
    |
    kmalloc(
    - sizeof(THING) * COUNT * (STRIDE)
    + array3_size(COUNT, STRIDE, sizeof(THING))
    , ...)
    |
    kmalloc(
    - sizeof(THING) * COUNT * STRIDE
    + array3_size(COUNT, STRIDE, sizeof(THING))
    , ...)
    )

    // 3-factor product with 2 sizeof(variable), with redundant parens removed.
    @@
    expression THING1, THING2;
    identifier COUNT;
    type TYPE1, TYPE2;
    @@

    (
    kmalloc(
    - sizeof(TYPE1) * sizeof(TYPE2) * COUNT
    + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE1) * sizeof(THING2) * (COUNT)
    + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
    , ...)
    |
    kmalloc(
    - sizeof(THING1) * sizeof(THING2) * COUNT
    + array3_size(COUNT, sizeof(THING1), sizeof(THING2))
    , ...)
    |
    kmalloc(
    - sizeof(THING1) * sizeof(THING2) * (COUNT)
    + array3_size(COUNT, sizeof(THING1), sizeof(THING2))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE1) * sizeof(THING2) * COUNT
    + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
    , ...)
    |
    kmalloc(
    - sizeof(TYPE1) * sizeof(THING2) * (COUNT)
    + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
    , ...)
    )

    // 3-factor product, only identifiers, with redundant parens removed.
    @@
    identifier STRIDE, SIZE, COUNT;
    @@

    (
    kmalloc(
    - (COUNT) * STRIDE * SIZE
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - COUNT * (STRIDE) * SIZE
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - COUNT * STRIDE * (SIZE)
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - (COUNT) * (STRIDE) * SIZE
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - COUNT * (STRIDE) * (SIZE)
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - (COUNT) * STRIDE * (SIZE)
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - (COUNT) * (STRIDE) * (SIZE)
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    |
    kmalloc(
    - COUNT * STRIDE * SIZE
    + array3_size(COUNT, STRIDE, SIZE)
    , ...)
    )

    // Any remaining multi-factor products, first at least 3-factor products,
    // when they're not all constants...
    @@
    expression E1, E2, E3;
    constant C1, C2, C3;
    @@

    (
    kmalloc(C1 * C2 * C3, ...)
    |
    kmalloc(
    - (E1) * E2 * E3
    + array3_size(E1, E2, E3)
    , ...)
    |
    kmalloc(
    - (E1) * (E2) * E3
    + array3_size(E1, E2, E3)
    , ...)
    |
    kmalloc(
    - (E1) * (E2) * (E3)
    + array3_size(E1, E2, E3)
    , ...)
    |
    kmalloc(
    - E1 * E2 * E3
    + array3_size(E1, E2, E3)
    , ...)
    )

    // And then all remaining 2 factors products when they're not all constants,
    // keeping sizeof() as the second factor argument.
    @@
    expression THING, E1, E2;
    type TYPE;
    constant C1, C2, C3;
    @@

    (
    kmalloc(sizeof(THING) * C2, ...)
    |
    kmalloc(sizeof(TYPE) * C2, ...)
    |
    kmalloc(C1 * C2 * C3, ...)
    |
    kmalloc(C1 * C2, ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * (E2)
    + E2, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(TYPE) * E2
    + E2, sizeof(TYPE)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * (E2)
    + E2, sizeof(THING)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - sizeof(THING) * E2
    + E2, sizeof(THING)
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - (E1) * E2
    + E1, E2
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - (E1) * (E2)
    + E1, E2
    , ...)
    |
    - kmalloc
    + kmalloc_array
    (
    - E1 * E2
    + E1, E2
    , ...)
    )

    Signed-off-by: Kees Cook

    Kees Cook
     

06 Jun, 2018

1 commit

  • struct timespec is not y2038 safe. Transition vfs to use
    y2038 safe struct timespec64 instead.

    The change was made with the help of the following cocinelle
    script. This catches about 80% of the changes.
    All the header file and logic changes are included in the
    first 5 rules. The rest are trivial substitutions.
    I avoid changing any of the function signatures or any other
    filesystem specific data structures to keep the patch simple
    for review.

    The script can be a little shorter by combining different cases.
    But, this version was sufficient for my usecase.

    virtual patch

    @ depends on patch @
    identifier now;
    @@
    - struct timespec
    + struct timespec64
    current_time ( ... )
    {
    - struct timespec now = current_kernel_time();
    + struct timespec64 now = current_kernel_time64();
    ...
    - return timespec_trunc(
    + return timespec64_trunc(
    ... );
    }

    @ depends on patch @
    identifier xtime;
    @@
    struct \( iattr \| inode \| kstat \) {
    ...
    - struct timespec xtime;
    + struct timespec64 xtime;
    ...
    }

    @ depends on patch @
    identifier t;
    @@
    struct inode_operations {
    ...
    int (*update_time) (...,
    - struct timespec t,
    + struct timespec64 t,
    ...);
    ...
    }

    @ depends on patch @
    identifier t;
    identifier fn_update_time =~ "update_time$";
    @@
    fn_update_time (...,
    - struct timespec *t,
    + struct timespec64 *t,
    ...) { ... }

    @ depends on patch @
    identifier t;
    @@
    lease_get_mtime( ... ,
    - struct timespec *t
    + struct timespec64 *t
    ) { ... }

    @te depends on patch forall@
    identifier ts;
    local idexpression struct inode *inode_node;
    identifier i_xtime =~ "^i_[acm]time$";
    identifier ia_xtime =~ "^ia_[acm]time$";
    identifier fn_update_time =~ "update_time$";
    identifier fn;
    expression e, E3;
    local idexpression struct inode *node1;
    local idexpression struct inode *node2;
    local idexpression struct iattr *attr1;
    local idexpression struct iattr *attr2;
    local idexpression struct iattr attr;
    identifier i_xtime1 =~ "^i_[acm]time$";
    identifier i_xtime2 =~ "^i_[acm]time$";
    identifier ia_xtime1 =~ "^ia_[acm]time$";
    identifier ia_xtime2 =~ "^ia_[acm]time$";
    @@
    (
    (
    - struct timespec ts;
    + struct timespec64 ts;
    |
    - struct timespec ts = current_time(inode_node);
    + struct timespec64 ts = current_time(inode_node);
    )

    i_xtime, &ts)
    + timespec64_equal(&inode_node->i_xtime, &ts)
    |
    - timespec_equal(&ts, &inode_node->i_xtime)
    + timespec64_equal(&ts, &inode_node->i_xtime)
    |
    - timespec_compare(&inode_node->i_xtime, &ts)
    + timespec64_compare(&inode_node->i_xtime, &ts)
    |
    - timespec_compare(&ts, &inode_node->i_xtime)
    + timespec64_compare(&ts, &inode_node->i_xtime)
    |
    ts = current_time(e)
    |
    fn_update_time(..., &ts,...)
    |
    inode_node->i_xtime = ts
    |
    node1->i_xtime = ts
    |
    ts = inode_node->i_xtime
    |
    ia_xtime ...+> = ts
    |
    ts = attr1->ia_xtime
    |
    ts.tv_sec
    |
    ts.tv_nsec
    |
    btrfs_set_stack_timespec_sec(..., ts.tv_sec)
    |
    btrfs_set_stack_timespec_nsec(..., ts.tv_nsec)
    |
    - ts = timespec64_to_timespec(
    + ts =
    ...
    -)
    |
    - ts = ktime_to_timespec(
    + ts = ktime_to_timespec64(
    ...)
    |
    - ts = E3
    + ts = timespec_to_timespec64(E3)
    |
    - ktime_get_real_ts(&ts)
    + ktime_get_real_ts64(&ts)
    |
    fn(...,
    - ts
    + timespec64_to_timespec(ts)
    ,...)
    )
    ...+>
    (

    )
    |
    - timespec_equal(&node1->i_xtime1, &node2->i_xtime2)
    + timespec64_equal(&node1->i_xtime2, &node2->i_xtime2)
    |
    - timespec_equal(&node1->i_xtime1, &attr2->ia_xtime2)
    + timespec64_equal(&node1->i_xtime2, &attr2->ia_xtime2)
    |
    - timespec_compare(&node1->i_xtime1, &node2->i_xtime2)
    + timespec64_compare(&node1->i_xtime1, &node2->i_xtime2)
    |
    node1->i_xtime1 =
    - timespec_trunc(attr1->ia_xtime1,
    + timespec64_trunc(attr1->ia_xtime1,
    ...)
    |
    - attr1->ia_xtime1 = timespec_trunc(attr2->ia_xtime2,
    + attr1->ia_xtime1 = timespec64_trunc(attr2->ia_xtime2,
    ...)
    |
    - ktime_get_real_ts(&attr1->ia_xtime1)
    + ktime_get_real_ts64(&attr1->ia_xtime1)
    |
    - ktime_get_real_ts(&attr.ia_xtime1)
    + ktime_get_real_ts64(&attr.ia_xtime1)
    )

    @ depends on patch @
    struct inode *node;
    struct iattr *attr;
    identifier fn;
    identifier i_xtime =~ "^i_[acm]time$";
    identifier ia_xtime =~ "^ia_[acm]time$";
    expression e;
    @@
    (
    - fn(node->i_xtime);
    + fn(timespec64_to_timespec(node->i_xtime));
    |
    fn(...,
    - node->i_xtime);
    + timespec64_to_timespec(node->i_xtime));
    |
    - e = fn(attr->ia_xtime);
    + e = fn(timespec64_to_timespec(attr->ia_xtime));
    )

    @ depends on patch forall @
    struct inode *node;
    struct iattr *attr;
    identifier i_xtime =~ "^i_[acm]time$";
    identifier ia_xtime =~ "^ia_[acm]time$";
    identifier fn;
    @@
    {
    + struct timespec ts;
    i_xtime);
    fn (...,
    - &node->i_xtime,
    + &ts,
    ...);
    |
    + ts = timespec64_to_timespec(attr->ia_xtime);
    fn (...,
    - &attr->ia_xtime,
    + &ts,
    ...);
    )
    ...+>
    }

    @ depends on patch forall @
    struct inode *node;
    struct iattr *attr;
    struct kstat *stat;
    identifier ia_xtime =~ "^ia_[acm]time$";
    identifier i_xtime =~ "^i_[acm]time$";
    identifier xtime =~ "^[acm]time$";
    identifier fn, ret;
    @@
    {
    + struct timespec ts;
    i_xtime);
    ret = fn (...,
    - &node->i_xtime,
    + &ts,
    ...);
    |
    + ts = timespec64_to_timespec(node->i_xtime);
    ret = fn (...,
    - &node->i_xtime);
    + &ts);
    |
    + ts = timespec64_to_timespec(attr->ia_xtime);
    ret = fn (...,
    - &attr->ia_xtime,
    + &ts,
    ...);
    |
    + ts = timespec64_to_timespec(attr->ia_xtime);
    ret = fn (...,
    - &attr->ia_xtime);
    + &ts);
    |
    + ts = timespec64_to_timespec(stat->xtime);
    ret = fn (...,
    - &stat->xtime);
    + &ts);
    )
    ...+>
    }

    @ depends on patch @
    struct inode *node;
    struct inode *node2;
    identifier i_xtime1 =~ "^i_[acm]time$";
    identifier i_xtime2 =~ "^i_[acm]time$";
    identifier i_xtime3 =~ "^i_[acm]time$";
    struct iattr *attrp;
    struct iattr *attrp2;
    struct iattr attr ;
    identifier ia_xtime1 =~ "^ia_[acm]time$";
    identifier ia_xtime2 =~ "^ia_[acm]time$";
    struct kstat *stat;
    struct kstat stat1;
    struct timespec64 ts;
    identifier xtime =~ "^[acmb]time$";
    expression e;
    @@
    (
    ( node->i_xtime2 \| attrp->ia_xtime2 \| attr.ia_xtime2 \) = node->i_xtime1 ;
    |
    node->i_xtime2 = \( node2->i_xtime1 \| timespec64_trunc(...) \);
    |
    node->i_xtime2 = node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
    |
    node->i_xtime1 = node->i_xtime3 = \(ts \| current_time(...) \);
    |
    stat->xtime = node2->i_xtime1;
    |
    stat1.xtime = node2->i_xtime1;
    |
    ( node->i_xtime2 \| attrp->ia_xtime2 \) = attrp->ia_xtime1 ;
    |
    ( attrp->ia_xtime1 \| attr.ia_xtime1 \) = attrp2->ia_xtime2;
    |
    - e = node->i_xtime1;
    + e = timespec64_to_timespec( node->i_xtime1 );
    |
    - e = attrp->ia_xtime1;
    + e = timespec64_to_timespec( attrp->ia_xtime1 );
    |
    node->i_xtime1 = current_time(...);
    |
    node->i_xtime2 = node->i_xtime1 = node->i_xtime3 =
    - e;
    + timespec_to_timespec64(e);
    |
    node->i_xtime1 = node->i_xtime3 =
    - e;
    + timespec_to_timespec64(e);
    |
    - node->i_xtime1 = e;
    + node->i_xtime1 = timespec_to_timespec64(e);
    )

    Signed-off-by: Deepa Dinamani
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:
    Cc:

    Deepa Dinamani
     

23 May, 2018

2 commits


28 Nov, 2017

1 commit

  • This is a pure automated search-and-replace of the internal kernel
    superblock flags.

    The s_flags are now called SB_*, with the names and the values for the
    moment mirroring the MS_* flags that they're equivalent to.

    Note how the MS_xyz flags are the ones passed to the mount system call,
    while the SB_xyz flags are what we then use in sb->s_flags.

    The script to do this was:

    # places to look in; re security/*: it generally should *not* be
    # touched (that stuff parses mount(2) arguments directly), but
    # there are two places where we really deal with superblock flags.
    FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
    include/linux/fs.h include/uapi/linux/bfs_fs.h \
    security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
    # the list of MS_... constants
    SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
    DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
    POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
    I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
    ACTIVE NOUSER"

    SED_PROG=
    for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done

    # we want files that contain at least one of MS_...,
    # with fs/namespace.c and fs/pnode.c excluded.
    L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')

    for f in $L; do sed -i $f $SED_PROG; done

    Requested-by: Al Viro
    Signed-off-by: Linus Torvalds

    Linus Torvalds
     

02 Nov, 2017

1 commit

  • Many source files in the tree are missing licensing information, which
    makes it harder for compliance tools to determine the correct license.

    By default all files without license information are under the default
    license of the kernel, which is GPL version 2.

    Update the files which contain no license information with the 'GPL-2.0'
    SPDX license identifier. The SPDX identifier is a legally binding
    shorthand, which can be used instead of the full boiler plate text.

    This patch is based on work done by Thomas Gleixner and Kate Stewart and
    Philippe Ombredanne.

    How this work was done:

    Patches were generated and checked against linux-4.14-rc6 for a subset of
    the use cases:
    - file had no licensing information it it.
    - file was a */uapi/* one with no licensing information in it,
    - file was a */uapi/* one with existing licensing information,

    Further patches will be generated in subsequent months to fix up cases
    where non-standard license headers were used, and references to license
    had to be inferred by heuristics based on keywords.

    The analysis to determine which SPDX License Identifier to be applied to
    a file was done in a spreadsheet of side by side results from of the
    output of two independent scanners (ScanCode & Windriver) producing SPDX
    tag:value files created by Philippe Ombredanne. Philippe prepared the
    base worksheet, and did an initial spot review of a few 1000 files.

    The 4.13 kernel was the starting point of the analysis with 60,537 files
    assessed. Kate Stewart did a file by file comparison of the scanner
    results in the spreadsheet to determine which SPDX license identifier(s)
    to be applied to the file. She confirmed any determination that was not
    immediately clear with lawyers working with the Linux Foundation.

    Criteria used to select files for SPDX license identifier tagging was:
    - Files considered eligible had to be source code files.
    - Make and config files were included as candidates if they contained >5
    lines of source
    - File already had some variant of a license header in it (even if
    Reviewed-by: Philippe Ombredanne
    Reviewed-by: Thomas Gleixner
    Signed-off-by: Greg Kroah-Hartman

    Greg Kroah-Hartman
     

11 Oct, 2016

1 commit

  • Pull more vfs updates from Al Viro:
    ">rename2() work from Miklos + current_time() from Deepa"

    * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
    fs: Replace current_fs_time() with current_time()
    fs: Replace CURRENT_TIME_SEC with current_time() for inode timestamps
    fs: Replace CURRENT_TIME with current_time() for inode timestamps
    fs: proc: Delete inode time initializations in proc_alloc_inode()
    vfs: Add current_time() api
    vfs: add note about i_op->rename changes to porting
    fs: rename "rename2" i_op to "rename"
    vfs: remove unused i_op->rename
    fs: make remaining filesystems use .rename2
    libfs: support RENAME_NOREPLACE in simple_rename()
    fs: support RENAME_NOREPLACE for local filesystems
    ncpfs: fix unused variable warning

    Linus Torvalds
     

28 Sep, 2016

1 commit

  • CURRENT_TIME macro is not appropriate for filesystems as it
    doesn't use the right granularity for filesystem timestamps.
    Use current_time() instead.

    CURRENT_TIME is also not y2038 safe.

    This is also in preparation for the patch that transitions
    vfs timestamps to use 64 bit time and hence make them
    y2038 safe. As part of the effort current_time() will be
    extended to do range checks. Hence, it is necessary for all
    file system timestamps to use current_time(). Also,
    current_time() will be transitioned along with vfs to be
    y2038 safe.

    Note that whenever a single call to current_time() is used
    to change timestamps in different inodes, it is because they
    share the same time granularity.

    Signed-off-by: Deepa Dinamani
    Reviewed-by: Arnd Bergmann
    Acked-by: Felipe Balbi
    Acked-by: Steven Whitehouse
    Acked-by: Ryusuke Konishi
    Acked-by: David Sterba
    Signed-off-by: Al Viro

    Deepa Dinamani
     

22 Sep, 2016

1 commit

  • inode_change_ok() will be resposible for clearing capabilities and IMA
    extended attributes and as such will need dentry. Give it as an argument
    to inode_change_ok() instead of an inode. Also rename inode_change_ok()
    to setattr_prepare() to better relect that it does also some
    modifications in addition to checks.

    Reviewed-by: Christoph Hellwig
    Signed-off-by: Jan Kara

    Jan Kara
     

07 Aug, 2016

1 commit

  • Pull more vfs updates from Al Viro:
    "Assorted cleanups and fixes.

    In the "trivial API change" department - ->d_compare() losing 'parent'
    argument"

    * 'for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
    cachefiles: Fix race between inactivating and culling a cache object
    9p: use clone_fid()
    9p: fix braino introduced in "9p: new helper - v9fs_parent_fid()"
    vfs: make dentry_needs_remove_privs() internal
    vfs: remove file_needs_remove_privs()
    vfs: fix deadlock in file_remove_privs() on overlayfs
    get rid of 'parent' argument of ->d_compare()
    cifs, msdos, vfat, hfs+: don't bother with parent in ->d_compare()
    affs ->d_compare(): don't bother with ->d_inode
    fold _d_rehash() and __d_rehash() together
    fold dentry_rcuwalk_invalidate() into its only remaining caller

    Linus Torvalds
     

06 Aug, 2016

1 commit

  • Pull qstr constification updates from Al Viro:
    "Fairly self-contained bunch - surprising lot of places passes struct
    qstr * as an argument when const struct qstr * would suffice; it
    complicates analysis for no good reason.

    I'd prefer to feed that separately from the assorted fixes (those are
    in #for-linus and with somewhat trickier topology)"

    * 'work.const-qstr' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
    qstr: constify instances in adfs
    qstr: constify instances in lustre
    qstr: constify instances in f2fs
    qstr: constify instances in ext2
    qstr: constify instances in vfat
    qstr: constify instances in procfs
    qstr: constify instances in fuse
    qstr constify instances in fs/dcache.c
    qstr: constify instances in nfs
    qstr: constify instances in ocfs2
    qstr: constify instances in autofs4
    qstr: constify instances in hfs
    qstr: constify instances in hfsplus
    qstr: constify instances in logfs
    qstr: constify dentry_init_security

    Linus Torvalds
     

01 Aug, 2016

1 commit