14 Jan, 2011

40 commits

  • Natively handle huge pmds when changing page tables on behalf of
    mprotect().

    I left out update_mmu_cache() because we do not need it on x86 anyway but
    more importantly the interface works on ptes, not pmds.

    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Johannes Weiner
     
  • Flushing the tlb for huge pmds requires the vma's anon_vma, so pass along
    the vma instead of the mm, we can always get the latter when we need it.

    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Johannes Weiner
     
  • Add pmd_modify() for use with mprotect() on huge pmds.

    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Johannes Weiner
     
  • Handle transparent huge page pmd entries natively instead of splitting
    them into subpages.

    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Johannes Weiner
     
  • Add support for transparent hugepages to x86 32bit.

    Share the same VM_ bitflag for VM_MAPPED_COPY. mm/nommu.c will never
    support transparent hugepages.

    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Johannes Weiner
     
  • PG_buddy can be converted to _mapcount == -2. So the PG_compound_lock can
    be added to page->flags without overflowing (because of the sparse section
    bits increasing) with CONFIG_X86_PAE=y and CONFIG_X86_PAT=y. This also
    has to move the memory hotplug code from _mapcount to lru.next to avoid
    any risk of clashes. We can't use lru.next for PG_buddy removal, but
    memory hotplug can use lru.next even more easily than the mapcount
    instead.

    Signed-off-by: Andrea Arcangeli
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Skip transhuge pages in ksm for now.

    Signed-off-by: Andrea Arcangeli
    Reviewed-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • register in khugepaged if the vma grows.

    Signed-off-by: Andrea Arcangeli
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add khugepaged to relocate fragmented pages into hugepages if new
    hugepages become available. (this is indipendent of the defrag logic that
    will have to make new hugepages available)

    The fundamental reason why khugepaged is unavoidable, is that some memory
    can be fragmented and not everything can be relocated. So when a virtual
    machine quits and releases gigabytes of hugepages, we want to use those
    freely available hugepages to create huge-pmd in the other virtual
    machines that may be running on fragmented memory, to maximize the CPU
    efficiency at all times. The scan is slow, it takes nearly zero cpu time,
    except when it copies data (in which case it means we definitely want to
    pay for that cpu time) so it seems a good tradeoff.

    In addition to the hugepages being released by other process releasing
    memory, we have the strong suspicion that the performance impact of
    potentially defragmenting hugepages during or before each page fault could
    lead to more performance inconsistency than allocating small pages at
    first and having them collapsed into large pages later... if they prove
    themselfs to be long lived mappings (khugepaged scan is slow so short
    lived mappings have low probability to run into khugepaged if compared to
    long lived mappings).

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add hugepage stat information to /proc/vmstat and /proc/meminfo.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add memcg charge/uncharge to hugepage faults in huge_memory.c.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • By this patch, when a transparent hugepage is charged, not only the head
    page but also all the tail pages are committed, IOW pc->mem_cgroup and
    pc->flags of tail pages are set.

    Without this patch:

    - Tail pages are not linked to any memcg's LRU at splitting. This causes many
    problems, for example, the charged memcg's directory can never be rmdir'ed
    because it doesn't have enough pages to scan to make the usage decrease to 0.
    - "rss" field in memory.stat would be incorrect. Moreover, usage_in_bytes in
    root cgroup is calculated by the stat not by res_counter(since 2.6.32),
    it would be incorrect too.

    Signed-off-by: Daisuke Nishimura
    Signed-off-by: Andrea Arcangeli
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Daisuke Nishimura
     
  • Teach memcg to charge/uncharge compound pages.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • No pmd_trans_huge should ever materialize in migration ptes areas, because
    we split the hugepage before migration ptes are instantiated.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add madvise MADV_HUGEPAGE to mark regions that are important to be
    hugepage backed. Return -EINVAL if the vma is not of an anonymous type,
    or the feature isn't built into the kernel. Never silently return
    success.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • pte_trans_huge must not leak in certain vmas like the mmio special pfn or
    filebacked mappings.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • This documents how split_huge_page is safe vs new vma inserctions into the
    anon_vma that may have already released the anon_vma->lock but not
    established pmds yet when split_huge_page starts.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • If you configure THP in addition to HUGETLB_PAGE on x86_32 without PAE,
    the p?d-folding works out that munlock_vma_pages_range() can crash to
    follow_page()'s pud_huge() BUG_ON(flags & FOLL_GET): it needs the same
    VM_HUGETLB check already there on the pmd_huge() line. Conveniently,
    openSUSE provides a "blogd" which tests this out at startup!

    Signed-off-by: Hugh Dickins
    Cc: Rik van Riel
    Cc: Johannes Weiner
    Cc: Andrea Arcangeli
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Hugh Dickins
     
  • Lately I've been working to make KVM use hugepages transparently without
    the usual restrictions of hugetlbfs. Some of the restrictions I'd like to
    see removed:

    1) hugepages have to be swappable or the guest physical memory remains
    locked in RAM and can't be paged out to swap

    2) if a hugepage allocation fails, regular pages should be allocated
    instead and mixed in the same vma without any failure and without
    userland noticing

    3) if some task quits and more hugepages become available in the
    buddy, guest physical memory backed by regular pages should be
    relocated on hugepages automatically in regions under
    madvise(MADV_HUGEPAGE) (ideally event driven by waking up the
    kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes
    not null)

    4) avoidance of reservation and maximization of use of hugepages whenever
    possible. Reservation (needed to avoid runtime fatal faliures) may be ok for
    1 machine with 1 database with 1 database cache with 1 database cache size
    known at boot time. It's definitely not feasible with a virtualization
    hypervisor usage like RHEV-H that runs an unknown number of virtual machines
    with an unknown size of each virtual machine with an unknown amount of
    pagecache that could be potentially useful in the host for guest not using
    O_DIRECT (aka cache=off).

    hugepages in the virtualization hypervisor (and also in the guest!) are
    much more important than in a regular host not using virtualization,
    becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24
    to 19 in case only the hypervisor uses transparent hugepages, and they
    decrease the tlb-miss cacheline accesses from 19 to 15 in case both the
    linux hypervisor and the linux guest both uses this patch (though the
    guest will limit the addition speedup to anonymous regions only for
    now...). Even more important is that the tlb miss handler is much slower
    on a NPT/EPT guest than for a regular shadow paging or no-virtualization
    scenario. So maximizing the amount of virtual memory cached by the TLB
    pays off significantly more with NPT/EPT than without (even if there would
    be no significant speedup in the tlb-miss runtime).

    The first (and more tedious) part of this work requires allowing the VM to
    handle anonymous hugepages mixed with regular pages transparently on
    regular anonymous vmas. This is what this patch tries to achieve in the
    least intrusive possible way. We want hugepages and hugetlb to be used in
    a way so that all applications can benefit without changes (as usual we
    leverage the KVM virtualization design: by improving the Linux VM at
    large, KVM gets the performance boost too).

    The most important design choice is: always fallback to 4k allocation if
    the hugepage allocation fails! This is the _very_ opposite of some large
    pagecache patches that failed with -EIO back then if a 64k (or similar)
    allocation failed...

    Second important decision (to reduce the impact of the feature on the
    existing pagetable handling code) is that at any time we can split an
    hugepage into 512 regular pages and it has to be done with an operation
    that can't fail. This way the reliability of the swapping isn't decreased
    (no need to allocate memory when we are short on memory to swap) and it's
    trivial to plug a split_huge_page* one-liner where needed without
    polluting the VM. Over time we can teach mprotect, mremap and friends to
    handle pmd_trans_huge natively without calling split_huge_page*. The fact
    it can't fail isn't just for swap: if split_huge_page would return -ENOMEM
    (instead of the current void) we'd need to rollback the mprotect from the
    middle of it (ideally including undoing the split_vma) which would be a
    big change and in the very wrong direction (it'd likely be simpler not to
    call split_huge_page at all and to teach mprotect and friends to handle
    hugepages instead of rolling them back from the middle). In short the
    very value of split_huge_page is that it can't fail.

    The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and
    incremental and it'll just be an "harmless" addition later if this initial
    part is agreed upon. It also should be noted that locking-wise replacing
    regular pages with hugepages is going to be very easy if compared to what
    I'm doing below in split_huge_page, as it will only happen when
    page_count(page) matches page_mapcount(page) if we can take the PG_lock
    and mmap_sem in write mode. collapse_huge_page will be a "best effort"
    that (unlike split_huge_page) can fail at the minimal sign of trouble and
    we can try again later. collapse_huge_page will be similar to how KSM
    works and the madvise(MADV_HUGEPAGE) will work similar to
    madvise(MADV_MERGEABLE).

    The default I like is that transparent hugepages are used at page fault
    time. This can be changed with
    /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set
    to three values "always", "madvise", "never" which mean respectively that
    hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions,
    or never used. /sys/kernel/mm/transparent_hugepage/defrag instead
    controls if the hugepage allocation should defrag memory aggressively
    "always", only inside "madvise" regions, or "never".

    The pmd_trans_splitting/pmd_trans_huge locking is very solid. The
    put_page (from get_user_page users that can't use mmu notifier like
    O_DIRECT) that runs against a __split_huge_page_refcount instead was a
    pain to serialize in a way that would result always in a coherent page
    count for both tail and head. I think my locking solution with a
    compound_lock taken only after the page_first is valid and is still a
    PageHead should be safe but it surely needs review from SMP race point of
    view. In short there is no current existing way to serialize the O_DIRECT
    final put_page against split_huge_page_refcount so I had to invent a new
    one (O_DIRECT loses knowledge on the mapping status by the time gup_fast
    returns so...). And I didn't want to impact all gup/gup_fast users for
    now, maybe if we change the gup interface substantially we can avoid this
    locking, I admit I didn't think too much about it because changing the gup
    unpinning interface would be invasive.

    If we ignored O_DIRECT we could stick to the existing compound refcounting
    code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM
    (and any other mmu notifier user) would call it without FOLL_GET (and if
    FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the
    current task mmu notifier list yet). But O_DIRECT is fundamental for
    decent performance of virtualized I/O on fast storage so we can't avoid it
    to solve the race of put_page against split_huge_page_refcount to achieve
    a complete hugepage feature for KVM.

    Swap and oom works fine (well just like with regular pages ;). MMU
    notifier is handled transparently too, with the exception of the young bit
    on the pmd, that didn't have a range check but I think KVM will be fine
    because the whole point of hugepages is that EPT/NPT will also use a huge
    pmd when they notice gup returns pages with PageCompound set, so they
    won't care of a range and there's just the pmd young bit to check in that
    case.

    NOTE: in some cases if the L2 cache is small, this may slowdown and waste
    memory during COWs because 4M of memory are accessed in a single fault
    instead of 8k (the payoff is that after COW the program can run faster).
    So we might want to switch the copy_huge_page (and clear_huge_page too) to
    not temporal stores. I also extensively researched ways to avoid this
    cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k
    up to 1M (I can send those patches that fully implemented prefault) but I
    concluded they're not worth it and they add an huge additional complexity
    and they remove all tlb benefits until the full hugepage has been faulted
    in, to save a little bit of memory and some cache during app startup, but
    they still don't improve substantially the cache-trashing during startup
    if the prefault happens in >4k chunks. One reason is that those 4k pte
    entries copied are still mapped on a perfectly cache-colored hugepage, so
    the trashing is the worst one can generate in those copies (cow of 4k page
    copies aren't so well colored so they trashes less, but again this results
    in software running faster after the page fault). Those prefault patches
    allowed things like a pte where post-cow pages were local 4k regular anon
    pages and the not-yet-cowed pte entries were pointing in the middle of
    some hugepage mapped read-only. If it doesn't payoff substantially with
    todays hardware it will payoff even less in the future with larger l2
    caches, and the prefault logic would blot the VM a lot. If one is
    emebdded transparent_hugepage can be disabled during boot with sysfs or
    with the boot commandline parameter transparent_hugepage=0 (or
    transparent_hugepage=2 to restrict hugepages inside madvise regions) that
    will ensure not a single hugepage is allocated at boot time. It is simple
    enough to just disable transparent hugepage globally and let transparent
    hugepages be allocated selectively by applications in the MADV_HUGEPAGE
    region (both at page fault time, and if enabled with the
    collapse_huge_page too through the kernel daemon).

    This patch supports only hugepages mapped in the pmd, archs that have
    smaller hugepages will not fit in this patch alone. Also some archs like
    power have certain tlb limits that prevents mixing different page size in
    the same regions so they will not fit in this framework that requires
    "graceful fallback" to basic PAGE_SIZE in case of physical memory
    fragmentation. hugetlbfs remains a perfect fit for those because its
    software limits happen to match the hardware limits. hugetlbfs also
    remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped
    to be found not fragmented after a certain system uptime and that would be
    very expensive to defragment with relocation, so requiring reservation.
    hugetlbfs is the "reservation way", the point of transparent hugepages is
    not to have any reservation at all and maximizing the use of cache and
    hugepages at all times automatically.

    Some performance result:

    vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep
    ages3
    memset page fault 1566023
    memset tlb miss 453854
    memset second tlb miss 453321
    random access tlb miss 41635
    random access second tlb miss 41658
    vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3
    memset page fault 1566471
    memset tlb miss 453375
    memset second tlb miss 453320
    random access tlb miss 41636
    random access second tlb miss 41637
    vmx andrea # ./largepages3
    memset page fault 1566642
    memset tlb miss 453417
    memset second tlb miss 453313
    random access tlb miss 41630
    random access second tlb miss 41647
    vmx andrea # ./largepages3
    memset page fault 1566872
    memset tlb miss 453418
    memset second tlb miss 453315
    random access tlb miss 41618
    random access second tlb miss 41659
    vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage
    vmx andrea # ./largepages3
    memset page fault 2182476
    memset tlb miss 460305
    memset second tlb miss 460179
    random access tlb miss 44483
    random access second tlb miss 44186
    vmx andrea # ./largepages3
    memset page fault 2182791
    memset tlb miss 460742
    memset second tlb miss 459962
    random access tlb miss 43981
    random access second tlb miss 43988

    ============
    #include
    #include
    #include
    #include

    #define SIZE (3UL*1024*1024*1024)

    int main()
    {
    char *p = malloc(SIZE), *p2;
    struct timeval before, after;

    gettimeofday(&before, NULL);
    memset(p, 0, SIZE);
    gettimeofday(&after, NULL);
    printf("memset page fault %Lu\n",
    (after.tv_sec-before.tv_sec)*1000000UL +
    after.tv_usec-before.tv_usec);

    gettimeofday(&before, NULL);
    memset(p, 0, SIZE);
    gettimeofday(&after, NULL);
    printf("memset tlb miss %Lu\n",
    (after.tv_sec-before.tv_sec)*1000000UL +
    after.tv_usec-before.tv_usec);

    gettimeofday(&before, NULL);
    memset(p, 0, SIZE);
    gettimeofday(&after, NULL);
    printf("memset second tlb miss %Lu\n",
    (after.tv_sec-before.tv_sec)*1000000UL +
    after.tv_usec-before.tv_usec);

    gettimeofday(&before, NULL);
    for (p2 = p; p2 < p+SIZE; p2 += 4096)
    *p2 = 0;
    gettimeofday(&after, NULL);
    printf("random access tlb miss %Lu\n",
    (after.tv_sec-before.tv_sec)*1000000UL +
    after.tv_usec-before.tv_usec);

    gettimeofday(&before, NULL);
    for (p2 = p; p2 < p+SIZE; p2 += 4096)
    *p2 = 0;
    gettimeofday(&after, NULL);
    printf("random access second tlb miss %Lu\n",
    (after.tv_sec-before.tv_sec)*1000000UL +
    after.tv_usec-before.tv_usec);

    return 0;
    }
    ============

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Not worth throwing away the precious reserved free memory pool for
    allocations that can fail gracefully (either through mempool or because
    they're transhuge allocations later falling back to 4k allocations).

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Reviewed-by: KOSAKI Motohiro
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Transparent hugepage allocations must be allowed not to invoke kswapd or
    any other kind of indirect reclaim (especially when the defrag sysfs is
    control disabled). It's unacceptable to swap out anonymous pages
    (potentially anonymous transparent hugepages) in order to create new
    transparent hugepages. This is true for the MADV_HUGEPAGE areas too
    (swapping out a kvm virtual machine and so having it suffer an unbearable
    slowdown, so another one with guest physical memory marked MADV_HUGEPAGE
    can run 30% faster if it is running memory intensive workloads, makes no
    sense). If a transparent hugepage allocation fails the slowdown is minor
    and there is total fallback, so kswapd should never be asked to swapout
    memory to allow the high order allocation to succeed.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • This should work for both hugetlbfs and transparent hugepages.

    [akpm@linux-foundation.org: bring forward PageTransCompound() addition for bisectability]
    Signed-off-by: Andrea Arcangeli
    Cc: Avi Kivity
    Cc: Marcelo Tosatti
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Move the copy/clear_huge_page functions to common code to share between
    hugetlb.c and huge_memory.c.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Paging logic that splits the page before it is unmapped and added to swap
    to ensure backwards compatibility with the legacy swap code. Eventually
    swap should natively pageout the hugepages to increase performance and
    decrease seeking and fragmentation of swap space. swapoff can just skip
    over huge pmd as they cannot be part of swap yet. In add_to_swap be
    careful to split the page only if we got a valid swap entry so we don't
    split hugepages with a full swap.

    In theory we could split pages before isolating them during the lru scan,
    but for khugepaged to be safe, I'm relying on either mmap_sem write mode,
    or PG_lock taken, so split_huge_page has to run either with mmap_sem
    read/write mode or PG_lock taken. Calling it from isolate_lru_page would
    make locking more complicated, in addition to that split_huge_page would
    deadlock if called by __isolate_lru_page because it has to take the lru
    lock to add the tail pages.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Mel Gorman
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • split_huge_page_pmd compat code. Each one of those would need to be
    expanded to hundred of lines of complex code without a fully reliable
    split_huge_page_pmd design.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Johannes Weiner
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • This increase the size of the mm struct a bit but it is needed to
    preallocate one pte for each hugepage so that split_huge_page will not
    require a fail path. Guarantee of success is a fundamental property of
    split_huge_page to avoid decrasing swapping reliability and to avoid
    adding -ENOMEM fail paths that would otherwise force the hugepage-unaware
    VM code to learn rolling back in the middle of its pte mangling operations
    (if something we need it to learn handling pmd_trans_huge natively rather
    being capable of rollback). When split_huge_page runs a pte is needed to
    succeed the split, to map the newly splitted regular pages with a regular
    pte. This way all existing VM code remains backwards compatible by just
    adding a split_huge_page* one liner. The memory waste of those
    preallocated ptes is negligible and so it is worth it.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • split_huge_page must transform a compound page to a regular page and needs
    ClearPageCompound.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Reviewed-by: Christoph Lameter
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add mmu notifier helpers to handle pmd huge operations.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • pte alloc routines must wait for split_huge_page if the pmd is not present
    and not null (i.e. pmd_trans_splitting). The additional branches are
    optimized away at compile time by pmd_trans_splitting if the config option
    is off. However we must pass the vma down in order to know the anon_vma
    lock to wait for.

    [akpm@linux-foundation.org: coding-style fixes]
    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Force gup_fast to take the slow path and block if the pmd is splitting,
    not only if it's none.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add needed pmd mangling functions with symmetry with their pte
    counterparts. pmdp_splitting_flush() is the only new addition on the pmd_
    methods and it's needed to serialize the VM against split_huge_page. It
    simply atomically sets the splitting bit in a similar way
    pmdp_clear_flush_young atomically clears the accessed bit.
    pmdp_splitting_flush() also has to flush the tlb to make it effective
    against gup_fast, but it wouldn't really require to flush the tlb too.
    Just the tlb flush is the simplest operation we can invoke to serialize
    pmdp_splitting_flush() against gup_fast.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Some are needed to build but not actually used on archs not supporting
    transparent hugepages. Others like pmdp_clear_flush are used by x86 too.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • These returns 0 at compile time when the config option is disabled, to
    allow gcc to eliminate the transparent hugepage function calls at compile
    time without additional #ifdefs (only the export of those functions have
    to be visible to gcc but they won't be required at link time and
    huge_memory.o can be not built at all).

    _PAGE_BIT_UNUSED1 is never used for pmd, only on pte.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Add config option.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Warn destroy_compound_page that __split_huge_page_refcount is heavily
    dependent on its internal behavior.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • huge_memory.c needs it too when it fallbacks in copying hugepages into
    regular fragmented pages if hugepage allocation fails during COW.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • No paravirt version of set_pmd_at/pmd_update/pmd_update_defer.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Paravirt ops pmd_update/pmd_update_defer/pmd_set_at. Not all might be
    necessary (vmware needs pmd_update, Xen needs set_pmd_at, nobody needs
    pmd_update_defer), but this is to keep full simmetry with pte paravirt
    ops, which looks cleaner and simpler from a common code POV.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Used by paravirt and not paravirt set_pmd_at.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli
     
  • Clear compound mapping for anonymous compound pages like it already
    happens for regular anonymous pages. But crash if mapping is set for any
    tail page, also the PageAnon check is meaningless for tail pages. This
    check only makes sense for the head page, for tail page it can only hide
    bugs and we definitely don't want to hide bugs.

    Signed-off-by: Andrea Arcangeli
    Acked-by: Rik van Riel
    Acked-by: Mel Gorman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Andrea Arcangeli