13 Feb, 2007

1 commit

  • Many struct inode_operations in the kernel can be "const". Marking them const
    moves these to the .rodata section, which avoids false sharing with potential
    dirty data. In addition it'll catch accidental writes at compile time to
    these shared resources.

    Signed-off-by: Arjan van de Ven
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Arjan van de Ven
     

22 Nov, 2006

2 commits

  • Pass the work_struct pointer to the work function rather than context data.
    The work function can use container_of() to work out the data.

    For the cases where the container of the work_struct may go away the moment the
    pending bit is cleared, it is made possible to defer the release of the
    structure by deferring the clearing of the pending bit.

    To make this work, an extra flag is introduced into the management side of the
    work_struct. This governs auto-release of the structure upon execution.

    Ordinarily, the work queue executor would release the work_struct for further
    scheduling or deallocation by clearing the pending bit prior to jumping to the
    work function. This means that, unless the driver makes some guarantee itself
    that the work_struct won't go away, the work function may not access anything
    else in the work_struct or its container lest they be deallocated.. This is a
    problem if the auxiliary data is taken away (as done by the last patch).

    However, if the pending bit is *not* cleared before jumping to the work
    function, then the work function *may* access the work_struct and its container
    with no problems. But then the work function must itself release the
    work_struct by calling work_release().

    In most cases, automatic release is fine, so this is the default. Special
    initiators exist for the non-auto-release case (ending in _NAR).

    Signed-Off-By: David Howells

    David Howells
     
  • Separate delayable work items from non-delayable work items be splitting them
    into a separate structure (delayed_work), which incorporates a work_struct and
    the timer_list removed from work_struct.

    The work_struct struct is huge, and this limits it's usefulness. On a 64-bit
    architecture it's nearly 100 bytes in size. This reduces that by half for the
    non-delayable type of event.

    Signed-Off-By: David Howells

    David Howells
     

04 Oct, 2006

1 commit


27 Sep, 2006

1 commit


23 Sep, 2006

3 commits

  • The attached patch makes NFS share superblocks between mounts from the same
    server and FSID over the same protocol.

    It does this by creating each superblock with a false root and returning the
    real root dentry in the vfsmount presented by get_sb(). The root dentry set
    starts off as an anonymous dentry if we don't already have the dentry for its
    inode, otherwise it simply returns the dentry we already have.

    We may thus end up with several trees of dentries in the superblock, and if at
    some later point one of anonymous tree roots is discovered by normal filesystem
    activity to be located in another tree within the superblock, the anonymous
    root is named and materialises attached to the second tree at the appropriate
    point.

    Why do it this way? Why not pass an extra argument to the mount() syscall to
    indicate the subpath and then pathwalk from the server root to the desired
    directory? You can't guarantee this will work for two reasons:

    (1) The root and intervening nodes may not be accessible to the client.

    With NFS2 and NFS3, for instance, mountd is called on the server to get
    the filehandle for the tip of a path. mountd won't give us handles for
    anything we don't have permission to access, and so we can't set up NFS
    inodes for such nodes, and so can't easily set up dentries (we'd have to
    have ghost inodes or something).

    With this patch we don't actually create dentries until we get handles
    from the server that we can use to set up their inodes, and we don't
    actually bind them into the tree until we know for sure where they go.

    (2) Inaccessible symbolic links.

    If we're asked to mount two exports from the server, eg:

    mount warthog:/warthog/aaa/xxx /mmm
    mount warthog:/warthog/bbb/yyy /nnn

    We may not be able to access anything nearer the root than xxx and yyy,
    but we may find out later that /mmm/www/yyy, say, is actually the same
    directory as the one mounted on /nnn. What we might then find out, for
    example, is that /warthog/bbb was actually a symbolic link to
    /warthog/aaa/xxx/www, but we can't actually determine that by talking to
    the server until /warthog is made available by NFS.

    This would lead to having constructed an errneous dentry tree which we
    can't easily fix. We can end up with a dentry marked as a directory when
    it should actually be a symlink, or we could end up with an apparently
    hardlinked directory.

    With this patch we need not make assumptions about the type of a dentry
    for which we can't retrieve information, nor need we assume we know its
    place in the grand scheme of things until we actually see that place.

    This patch reduces the possibility of aliasing in the inode and page caches for
    inodes that may be accessed by more than one NFS export. It also reduces the
    number of superblocks required for NFS where there are many NFS exports being
    used from a server (home directory server + autofs for example).

    This in turn makes it simpler to do local caching of network filesystems, as it
    can then be guaranteed that there won't be links from multiple inodes in
    separate superblocks to the same cache file.

    Obviously, cache aliasing between different levels of NFS protocol could still
    be a problem, but at least that gives us another key to use when indexing the
    cache.

    This patch makes the following changes:

    (1) The server record construction/destruction has been abstracted out into
    its own set of functions to make things easier to get right. These have
    been moved into fs/nfs/client.c.

    All the code in fs/nfs/client.c has to do with the management of
    connections to servers, and doesn't touch superblocks in any way; the
    remaining code in fs/nfs/super.c has to do with VFS superblock management.

    (2) The sequence of events undertaken by NFS mount is now reordered:

    (a) A volume representation (struct nfs_server) is allocated.

    (b) A server representation (struct nfs_client) is acquired. This may be
    allocated or shared, and is keyed on server address, port and NFS
    version.

    (c) If allocated, the client representation is initialised. The state
    member variable of nfs_client is used to prevent a race during
    initialisation from two mounts.

    (d) For NFS4 a simple pathwalk is performed, walking from FH to FH to find
    the root filehandle for the mount (fs/nfs/getroot.c). For NFS2/3 we
    are given the root FH in advance.

    (e) The volume FSID is probed for on the root FH.

    (f) The volume representation is initialised from the FSINFO record
    retrieved on the root FH.

    (g) sget() is called to acquire a superblock. This may be allocated or
    shared, keyed on client pointer and FSID.

    (h) If allocated, the superblock is initialised.

    (i) If the superblock is shared, then the new nfs_server record is
    discarded.

    (j) The root dentry for this mount is looked up from the root FH.

    (k) The root dentry for this mount is assigned to the vfsmount.

    (3) nfs_readdir_lookup() creates dentries for each of the entries readdir()
    returns; this function now attaches disconnected trees from alternate
    roots that happen to be discovered attached to a directory being read (in
    the same way nfs_lookup() is made to do for lookup ops).

    The new d_materialise_unique() function is now used to do this, thus
    permitting the whole thing to be done under one set of locks, and thus
    avoiding any race between mount and lookup operations on the same
    directory.

    (4) The client management code uses a new debug facility: NFSDBG_CLIENT which
    is set by echoing 1024 to /proc/net/sunrpc/nfs_debug.

    (5) Clone mounts are now called xdev mounts.

    (6) Use the dentry passed to the statfs() op as the handle for retrieving fs
    statistics rather than the root dentry of the superblock (which is now a
    dummy).

    Signed-Off-By: David Howells
    Signed-off-by: Trond Myklebust

    David Howells
     
  • Move the rpc_ops from the nfs_server struct to the nfs_client struct as they're
    common to all server records of a particular NFS protocol version.

    Signed-Off-By: David Howells
    Signed-off-by: Trond Myklebust

    David Howells
     
  • Add some extra const qualifiers into NFS.

    Signed-Off-By: David Howells
    Signed-off-by: Trond Myklebust

    David Howells
     

04 Aug, 2006

1 commit


09 Jun, 2006

4 commits

  • As fs/nfs/inode.c is rather large, heterogenous and unwieldy, the attached
    patch splits it up into a number of files:

    (*) fs/nfs/inode.c

    Strictly inode specific functions.

    (*) fs/nfs/super.c

    Superblock management functions for NFS and NFS4, normal access, clones
    and referrals. The NFS4 superblock functions _could_ move out into a
    separate conditionally compiled file, but it's probably not worth it as
    there're so many common bits.

    (*) fs/nfs/namespace.c

    Some namespace-specific functions have been moved here.

    (*) fs/nfs/nfs4namespace.c

    NFS4-specific namespace functions (this could be merged into the previous
    file). This file is conditionally compiled.

    (*) fs/nfs/internal.h

    Inter-file declarations, plus a few simple utility functions moved from
    fs/nfs/inode.c.

    Additionally, all the in-.c-file externs have been moved here, and those
    files they were moved from now includes this file.

    For the most part, the functions have not been changed, only some multiplexor
    functions have changed significantly.

    I've also:

    (*) Added some extra banner comments above some functions.

    (*) Rearranged the function order within the files to be more logical and
    better grouped (IMO), though someone may prefer a different order.

    (*) Reduced the number of #ifdefs in .c files.

    (*) Added missing __init and __exit directives.

    Signed-Off-By: David Howells

    David Howells
     
  • Respond to a moved error on NFS lookup by setting up the referral.
    Note: We don't actually follow the referral during lookup/getattr, but
    later when we detect fsid mismatch in inode revalidation (similar to the
    processing done for cloning submounts). Referrals will have fake attributes
    until they are actually followed or traversed.

    Signed-off-by: Manoj Naik
    Signed-off-by: Trond Myklebust

    Manoj Naik
     
  • Make automounted partitions expire using the mark_mounts_for_expiry()
    function. The timeout is controlled via a sysctl.

    Signed-off-by: Trond Myklebust

    Trond Myklebust
     
  • Signed-off-by: Trond Myklebust

    Trond Myklebust