03 Jun, 2016

1 commit

  • The values computed during Diffie-Hellman key exchange are often used
    in combination with key derivation functions to create cryptographic
    keys. Add a placeholder for a later implementation to configure a
    key derivation function that will transform the Diffie-Hellman
    result returned by the KEYCTL_DH_COMPUTE command.

    [This patch was stripped down from a patch produced by Mat Martineau that
    had a bug in the compat code - so for the moment Stephan's patch simply
    requires that the placeholder argument must be NULL]

    Original-signed-off-by: Mat Martineau
    Signed-off-by: Stephan Mueller
    Signed-off-by: David Howells
    Signed-off-by: James Morris

    Stephan Mueller
     

13 Apr, 2016

1 commit

  • This adds userspace access to Diffie-Hellman computations through a
    new keyctl() syscall command to calculate shared secrets or public
    keys using input parameters stored in the keyring.

    Input key ids are provided in a struct due to the current 5-arg limit
    for the keyctl syscall. Only user keys are supported in order to avoid
    exposing the content of logon or encrypted keys.

    The output is written to the provided buffer, based on the assumption
    that the values are only needed in userspace.

    Future support for other types of key derivation would involve a new
    command, like KEYCTL_ECDH_COMPUTE.

    Once Diffie-Hellman support is included in the crypto API, this code
    can be converted to use the crypto API to take advantage of possible
    hardware acceleration and reduce redundant code.

    Signed-off-by: Mat Martineau
    Signed-off-by: David Howells

    Mat Martineau
     

12 Apr, 2015

1 commit


06 Mar, 2014

1 commit

  • Convert all compat system call functions where all parameter types
    have a size of four or less than four bytes, or are pointer types
    to COMPAT_SYSCALL_DEFINE.
    The implicit casts within COMPAT_SYSCALL_DEFINE will perform proper
    zero and sign extension to 64 bit of all parameters if needed.

    Signed-off-by: Heiko Carstens

    Heiko Carstens
     

24 Sep, 2013

1 commit

  • Add support for per-user_namespace registers of persistent per-UID kerberos
    caches held within the kernel.

    This allows the kerberos cache to be retained beyond the life of all a user's
    processes so that the user's cron jobs can work.

    The kerberos cache is envisioned as a keyring/key tree looking something like:

    struct user_namespace
    \___ .krb_cache keyring - The register
    \___ _krb.0 keyring - Root's Kerberos cache
    \___ _krb.5000 keyring - User 5000's Kerberos cache
    \___ _krb.5001 keyring - User 5001's Kerberos cache
    \___ tkt785 big_key - A ccache blob
    \___ tkt12345 big_key - Another ccache blob

    Or possibly:

    struct user_namespace
    \___ .krb_cache keyring - The register
    \___ _krb.0 keyring - Root's Kerberos cache
    \___ _krb.5000 keyring - User 5000's Kerberos cache
    \___ _krb.5001 keyring - User 5001's Kerberos cache
    \___ tkt785 keyring - A ccache
    \___ krbtgt/REDHAT.COM@REDHAT.COM big_key
    \___ http/REDHAT.COM@REDHAT.COM user
    \___ afs/REDHAT.COM@REDHAT.COM user
    \___ nfs/REDHAT.COM@REDHAT.COM user
    \___ krbtgt/KERNEL.ORG@KERNEL.ORG big_key
    \___ http/KERNEL.ORG@KERNEL.ORG big_key

    What goes into a particular Kerberos cache is entirely up to userspace. Kernel
    support is limited to giving you the Kerberos cache keyring that you want.

    The user asks for their Kerberos cache by:

    krb_cache = keyctl_get_krbcache(uid, dest_keyring);

    The uid is -1 or the user's own UID for the user's own cache or the uid of some
    other user's cache (requires CAP_SETUID). This permits rpc.gssd or whatever to
    mess with the cache.

    The cache returned is a keyring named "_krb." that the possessor can read,
    search, clear, invalidate, unlink from and add links to. Active LSMs get a
    chance to rule on whether the caller is permitted to make a link.

    Each uid's cache keyring is created when it first accessed and is given a
    timeout that is extended each time this function is called so that the keyring
    goes away after a while. The timeout is configurable by sysctl but defaults to
    three days.

    Each user_namespace struct gets a lazily-created keyring that serves as the
    register. The cache keyrings are added to it. This means that standard key
    search and garbage collection facilities are available.

    The user_namespace struct's register goes away when it does and anything left
    in it is then automatically gc'd.

    Signed-off-by: David Howells
    Tested-by: Simo Sorce
    cc: Serge E. Hallyn
    cc: Eric W. Biederman

    David Howells
     

13 Mar, 2013

1 commit

  • Looking at mm/process_vm_access.c:process_vm_rw() and comparing it to
    compat_process_vm_rw() shows that the compatibility code requires an
    explicit "access_ok()" check before calling
    compat_rw_copy_check_uvector(). The same difference seems to appear when
    we compare fs/read_write.c:do_readv_writev() to
    fs/compat.c:compat_do_readv_writev().

    This subtle difference between the compat and non-compat requirements
    should probably be debated, as it seems to be error-prone. In fact,
    there are two others sites that use this function in the Linux kernel,
    and they both seem to get it wrong:

    Now shifting our attention to fs/aio.c, we see that aio_setup_iocb()
    also ends up calling compat_rw_copy_check_uvector() through
    aio_setup_vectored_rw(). Unfortunately, the access_ok() check appears to
    be missing. Same situation for
    security/keys/compat.c:compat_keyctl_instantiate_key_iov().

    I propose that we add the access_ok() check directly into
    compat_rw_copy_check_uvector(), so callers don't have to worry about it,
    and it therefore makes the compat call code similar to its non-compat
    counterpart. Place the access_ok() check in the same location where
    copy_from_user() can trigger a -EFAULT error in the non-compat code, so
    the ABI behaviors are alike on both compat and non-compat.

    While we are here, fix compat_do_readv_writev() so it checks for
    compat_rw_copy_check_uvector() negative return values.

    And also, fix a memory leak in compat_keyctl_instantiate_key_iov() error
    handling.

    Acked-by: Linus Torvalds
    Acked-by: Al Viro
    Signed-off-by: Mathieu Desnoyers
    Signed-off-by: Linus Torvalds

    Mathieu Desnoyers
     

10 Jun, 2012

1 commit


01 Jun, 2012

1 commit

  • A cleanup of rw_copy_check_uvector and compat_rw_copy_check_uvector after
    changes made to support CMA in an earlier patch.

    Rather than having an additional check_access parameter to these
    functions, the first paramater type is overloaded to allow the caller to
    specify CHECK_IOVEC_ONLY which means check that the contents of the iovec
    are valid, but do not check the memory that they point to. This is used
    by process_vm_readv/writev where we need to validate that a iovec passed
    to the syscall is valid but do not want to check the memory that it points
    to at this point because it refers to an address space in another process.

    Signed-off-by: Chris Yeoh
    Reviewed-by: Oleg Nesterov
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Christopher Yeoh
     

25 May, 2012

1 commit

  • Fix some sparse warnings in the keyrings code:

    (1) compat_keyctl_instantiate_key_iov() should be static.

    (2) There were a couple of places where a pointer was being compared against
    integer 0 rather than NULL.

    (3) keyctl_instantiate_key_common() should not take a __user-labelled iovec
    pointer as the caller must have copied the iovec to kernel space.

    (4) __key_link_begin() takes and __key_link_end() releases
    keyring_serialise_link_sem under some circumstances and so this should be
    declared.

    Note that adding __acquires() and __releases() for this doesn't help cure
    the warnings messages - something only commenting out both helps.

    Signed-off-by: David Howells
    Signed-off-by: James Morris

    David Howells
     

11 May, 2012

1 commit

  • Add support for invalidating a key - which renders it immediately invisible to
    further searches and causes the garbage collector to immediately wake up,
    remove it from keyrings and then destroy it when it's no longer referenced.

    It's better not to do this with keyctl_revoke() as that marks the key to start
    returning -EKEYREVOKED to searches when what is actually desired is to have the
    key refetched.

    To invalidate a key the caller must be granted SEARCH permission by the key.
    This may be too strict. It may be better to also permit invalidation if the
    caller has any of READ, WRITE or SETATTR permission.

    The primary use for this is to evict keys that are cached in special keyrings,
    such as the DNS resolver or an ID mapper.

    Signed-off-by: David Howells

    David Howells
     

01 Nov, 2011

1 commit

  • The basic idea behind cross memory attach is to allow MPI programs doing
    intra-node communication to do a single copy of the message rather than a
    double copy of the message via shared memory.

    The following patch attempts to achieve this by allowing a destination
    process, given an address and size from a source process, to copy memory
    directly from the source process into its own address space via a system
    call. There is also a symmetrical ability to copy from the current
    process's address space into a destination process's address space.

    - Use of /proc/pid/mem has been considered, but there are issues with
    using it:
    - Does not allow for specifying iovecs for both src and dest, assuming
    preadv or pwritev was implemented either the area read from or
    written to would need to be contiguous.
    - Currently mem_read allows only processes who are currently
    ptrace'ing the target and are still able to ptrace the target to read
    from the target. This check could possibly be moved to the open call,
    but its not clear exactly what race this restriction is stopping
    (reason appears to have been lost)
    - Having to send the fd of /proc/self/mem via SCM_RIGHTS on unix
    domain socket is a bit ugly from a userspace point of view,
    especially when you may have hundreds if not (eventually) thousands
    of processes that all need to do this with each other
    - Doesn't allow for some future use of the interface we would like to
    consider adding in the future (see below)
    - Interestingly reading from /proc/pid/mem currently actually
    involves two copies! (But this could be fixed pretty easily)

    As mentioned previously use of vmsplice instead was considered, but has
    problems. Since you need the reader and writer working co-operatively if
    the pipe is not drained then you block. Which requires some wrapping to
    do non blocking on the send side or polling on the receive. In all to all
    communication it requires ordering otherwise you can deadlock. And in the
    example of many MPI tasks writing to one MPI task vmsplice serialises the
    copying.

    There are some cases of MPI collectives where even a single copy interface
    does not get us the performance gain we could. For example in an
    MPI_Reduce rather than copy the data from the source we would like to
    instead use it directly in a mathops (say the reduce is doing a sum) as
    this would save us doing a copy. We don't need to keep a copy of the data
    from the source. I haven't implemented this, but I think this interface
    could in the future do all this through the use of the flags - eg could
    specify the math operation and type and the kernel rather than just
    copying the data would apply the specified operation between the source
    and destination and store it in the destination.

    Although we don't have a "second user" of the interface (though I've had
    some nibbles from people who may be interested in using it for intra
    process messaging which is not MPI). This interface is something which
    hardware vendors are already doing for their custom drivers to implement
    fast local communication. And so in addition to this being useful for
    OpenMPI it would mean the driver maintainers don't have to fix things up
    when the mm changes.

    There was some discussion about how much faster a true zero copy would
    go. Here's a link back to the email with some testing I did on that:

    http://marc.info/?l=linux-mm&m=130105930902915&w=2

    There is a basic man page for the proposed interface here:

    http://ozlabs.org/~cyeoh/cma/process_vm_readv.txt

    This has been implemented for x86 and powerpc, other architecture should
    mainly (I think) just need to add syscall numbers for the process_vm_readv
    and process_vm_writev. There are 32 bit compatibility versions for
    64-bit kernels.

    For arch maintainers there are some simple tests to be able to quickly
    verify that the syscalls are working correctly here:

    http://ozlabs.org/~cyeoh/cma/cma-test-20110718.tgz

    Signed-off-by: Chris Yeoh
    Cc: Ingo Molnar
    Cc: "H. Peter Anvin"
    Cc: Thomas Gleixner
    Cc: Arnd Bergmann
    Cc: Paul Mackerras
    Cc: Benjamin Herrenschmidt
    Cc: David Howells
    Cc: James Morris
    Cc:
    Cc:
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Christopher Yeoh
     

08 Mar, 2011

2 commits

  • Add a keyctl op (KEYCTL_INSTANTIATE_IOV) that is like KEYCTL_INSTANTIATE, but
    takes an iovec array and concatenates the data in-kernel into one buffer.
    Since the KEYCTL_INSTANTIATE copies the data anyway, this isn't too much of a
    problem.

    Signed-off-by: David Howells
    Signed-off-by: James Morris

    David Howells
     
  • Add a new keyctl op to reject a key with a specified error code. This works
    much the same as negating a key, and so keyctl_negate_key() is made a special
    case of keyctl_reject_key(). The difference is that keyctl_negate_key()
    selects ENOKEY as the error to be reported.

    Typically the key would be rejected with EKEYEXPIRED, EKEYREVOKED or
    EKEYREJECTED, but this is not mandatory.

    Signed-off-by: David Howells
    Signed-off-by: James Morris

    David Howells
     

22 Jan, 2011

2 commits

  • Fix up comments in the key management code. No functional changes.

    Signed-off-by: David Howells
    Signed-off-by: Linus Torvalds

    David Howells
     
  • Do a bit of a style clean up in the key management code. No functional
    changes.

    Done using:

    perl -p -i -e 's!^/[*]*/\n!!' security/keys/*.c
    perl -p -i -e 's!} /[*] end [a-z0-9_]*[(][)] [*]/\n!}\n!' security/keys/*.c
    sed -i -s -e ": next" -e N -e 's/^\n[}]$/}/' -e t -e P -e 's/^.*\n//' -e "b next" security/keys/*.c

    To remove /*****/ lines, remove comments on the closing brace of a
    function to name the function and remove blank lines before the closing
    brace of a function.

    Signed-off-by: David Howells
    Signed-off-by: Linus Torvalds

    David Howells
     

02 Sep, 2009

1 commit

  • Add a keyctl to install a process's session keyring onto its parent. This
    replaces the parent's session keyring. Because the COW credential code does
    not permit one process to change another process's credentials directly, the
    change is deferred until userspace next starts executing again. Normally this
    will be after a wait*() syscall.

    To support this, three new security hooks have been provided:
    cred_alloc_blank() to allocate unset security creds, cred_transfer() to fill in
    the blank security creds and key_session_to_parent() - which asks the LSM if
    the process may replace its parent's session keyring.

    The replacement may only happen if the process has the same ownership details
    as its parent, and the process has LINK permission on the session keyring, and
    the session keyring is owned by the process, and the LSM permits it.

    Note that this requires alteration to each architecture's notify_resume path.
    This has been done for all arches barring blackfin, m68k* and xtensa, all of
    which need assembly alteration to support TIF_NOTIFY_RESUME. This allows the
    replacement to be performed at the point the parent process resumes userspace
    execution.

    This allows the userspace AFS pioctl emulation to fully emulate newpag() and
    the VIOCSETTOK and VIOCSETTOK2 pioctls, all of which require the ability to
    alter the parent process's PAG membership. However, since kAFS doesn't use
    PAGs per se, but rather dumps the keys into the session keyring, the session
    keyring of the parent must be replaced if, for example, VIOCSETTOK is passed
    the newpag flag.

    This can be tested with the following program:

    #include
    #include
    #include

    #define KEYCTL_SESSION_TO_PARENT 18

    #define OSERROR(X, S) do { if ((long)(X) == -1) { perror(S); exit(1); } } while(0)

    int main(int argc, char **argv)
    {
    key_serial_t keyring, key;
    long ret;

    keyring = keyctl_join_session_keyring(argv[1]);
    OSERROR(keyring, "keyctl_join_session_keyring");

    key = add_key("user", "a", "b", 1, keyring);
    OSERROR(key, "add_key");

    ret = keyctl(KEYCTL_SESSION_TO_PARENT);
    OSERROR(ret, "KEYCTL_SESSION_TO_PARENT");

    return 0;
    }

    Compiled and linked with -lkeyutils, you should see something like:

    [dhowells@andromeda ~]$ keyctl show
    Session Keyring
    -3 --alswrv 4043 4043 keyring: _ses
    355907932 --alswrv 4043 -1 \_ keyring: _uid.4043
    [dhowells@andromeda ~]$ /tmp/newpag
    [dhowells@andromeda ~]$ keyctl show
    Session Keyring
    -3 --alswrv 4043 4043 keyring: _ses
    1055658746 --alswrv 4043 4043 \_ user: a
    [dhowells@andromeda ~]$ /tmp/newpag hello
    [dhowells@andromeda ~]$ keyctl show
    Session Keyring
    -3 --alswrv 4043 4043 keyring: hello
    340417692 --alswrv 4043 4043 \_ user: a

    Where the test program creates a new session keyring, sticks a user key named
    'a' into it and then installs it on its parent.

    Signed-off-by: David Howells
    Signed-off-by: James Morris

    David Howells
     

29 Apr, 2008

1 commit

  • Add a keyctl() function to get the security label of a key.

    The following is added to Documentation/keys.txt:

    (*) Get the LSM security context attached to a key.

    long keyctl(KEYCTL_GET_SECURITY, key_serial_t key, char *buffer,
    size_t buflen)

    This function returns a string that represents the LSM security context
    attached to a key in the buffer provided.

    Unless there's an error, it always returns the amount of data it could
    produce, even if that's too big for the buffer, but it won't copy more
    than requested to userspace. If the buffer pointer is NULL then no copy
    will take place.

    A NUL character is included at the end of the string if the buffer is
    sufficiently big. This is included in the returned count. If no LSM is
    in force then an empty string will be returned.

    A process must have view permission on the key for this function to be
    successful.

    [akpm@linux-foundation.org: declare keyctl_get_security()]
    Signed-off-by: David Howells
    Acked-by: Stephen Smalley
    Cc: Paul Moore
    Cc: Chris Wright
    Cc: James Morris
    Cc: Kevin Coffman
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    David Howells
     

15 Feb, 2007

1 commit

  • After Al Viro (finally) succeeded in removing the sched.h #include in module.h
    recently, it makes sense again to remove other superfluous sched.h includes.
    There are quite a lot of files which include it but don't actually need
    anything defined in there. Presumably these includes were once needed for
    macros that used to live in sched.h, but moved to other header files in the
    course of cleaning it up.

    To ease the pain, this time I did not fiddle with any header files and only
    removed #includes from .c-files, which tend to cause less trouble.

    Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
    arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
    allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
    configs in arch/arm/configs on arm. I also checked that no new warnings were
    introduced by the patch (actually, some warnings are removed that were emitted
    by unnecessarily included header files).

    Signed-off-by: Tim Schmielau
    Acked-by: Russell King
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Tim Schmielau
     

09 Jan, 2006

2 commits

  • Make it possible for a running process (such as gssapid) to be able to
    instantiate a key, as was requested by Trond Myklebust for NFS4.

    The patch makes the following changes:

    (1) A new, optional key type method has been added. This permits a key type
    to intercept requests at the point /sbin/request-key is about to be
    spawned and do something else with them - passing them over the
    rpc_pipefs files or netlink sockets for instance.

    The uninstantiated key, the authorisation key and the intended operation
    name are passed to the method.

    (2) The callout_info is no longer passed as an argument to /sbin/request-key
    to prevent unauthorised viewing of this data using ps or by looking in
    /proc/pid/cmdline.

    This means that the old /sbin/request-key program will not work with the
    patched kernel as it will expect to see an extra argument that is no
    longer there.

    A revised keyutils package will be made available tomorrow.

    (3) The callout_info is now attached to the authorisation key. Reading this
    key will retrieve the information.

    (4) A new field has been added to the task_struct. This holds the
    authorisation key currently active for a thread. Searches now look here
    for the caller's set of keys rather than looking for an auth key in the
    lowest level of the session keyring.

    This permits a thread to be servicing multiple requests at once and to
    switch between them. Note that this is per-thread, not per-process, and
    so is usable in multithreaded programs.

    The setting of this field is inherited across fork and exec.

    (5) A new keyctl function (KEYCTL_ASSUME_AUTHORITY) has been added that
    permits a thread to assume the authority to deal with an uninstantiated
    key. Assumption is only permitted if the authorisation key associated
    with the uninstantiated key is somewhere in the thread's keyrings.

    This function can also clear the assumption.

    (6) A new magic key specifier has been added to refer to the currently
    assumed authorisation key (KEY_SPEC_REQKEY_AUTH_KEY).

    (7) Instantiation will only proceed if the appropriate authorisation key is
    assumed first. The assumed authorisation key is discarded if
    instantiation is successful.

    (8) key_validate() is moved from the file of request_key functions to the
    file of permissions functions.

    (9) The documentation is updated.

    From:

    Build fix.

    Signed-off-by: David Howells
    Cc: Trond Myklebust
    Cc: Alexander Zangerl
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    David Howells
     
  • Add a new keyctl function that allows the expiry time to be set on a key or
    removed from a key, provided the caller has attribute modification access.

    Signed-off-by: David Howells
    Cc: Trond Myklebust
    Cc: Alexander Zangerl
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    David Howells
     

24 Jun, 2005

1 commit

  • The attached patch makes the following changes:

    (1) There's a new special key type called ".request_key_auth".

    This is an authorisation key for when one process requests a key and
    another process is started to construct it. This type of key cannot be
    created by the user; nor can it be requested by kernel services.

    Authorisation keys hold two references:

    (a) Each refers to a key being constructed. When the key being
    constructed is instantiated the authorisation key is revoked,
    rendering it of no further use.

    (b) The "authorising process". This is either:

    (i) the process that called request_key(), or:

    (ii) if the process that called request_key() itself had an
    authorisation key in its session keyring, then the authorising
    process referred to by that authorisation key will also be
    referred to by the new authorisation key.

    This means that the process that initiated a chain of key requests
    will authorise the lot of them, and will, by default, wind up with
    the keys obtained from them in its keyrings.

    (2) request_key() creates an authorisation key which is then passed to
    /sbin/request-key in as part of a new session keyring.

    (3) When request_key() is searching for a key to hand back to the caller, if
    it comes across an authorisation key in the session keyring of the
    calling process, it will also search the keyrings of the process
    specified therein and it will use the specified process's credentials
    (fsuid, fsgid, groups) to do that rather than the calling process's
    credentials.

    This allows a process started by /sbin/request-key to find keys belonging
    to the authorising process.

    (4) A key can be read, even if the process executing KEYCTL_READ doesn't have
    direct read or search permission if that key is contained within the
    keyrings of a process specified by an authorisation key found within the
    calling process's session keyring, and is searchable using the
    credentials of the authorising process.

    This allows a process started by /sbin/request-key to read keys belonging
    to the authorising process.

    (5) The magic KEY_SPEC_*_KEYRING key IDs when passed to KEYCTL_INSTANTIATE or
    KEYCTL_NEGATE will specify a keyring of the authorising process, rather
    than the process doing the instantiation.

    (6) One of the process keyrings can be nominated as the default to which
    request_key() should attach new keys if not otherwise specified. This is
    done with KEYCTL_SET_REQKEY_KEYRING and one of the KEY_REQKEY_DEFL_*
    constants. The current setting can also be read using this call.

    (7) request_key() is partially interruptible. If it is waiting for another
    process to finish constructing a key, it can be interrupted. This permits
    a request-key cycle to be broken without recourse to rebooting.

    Signed-Off-By: David Howells
    Signed-Off-By: Benoit Boissinot
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    David Howells
     

17 Apr, 2005

1 commit

  • Initial git repository build. I'm not bothering with the full history,
    even though we have it. We can create a separate "historical" git
    archive of that later if we want to, and in the meantime it's about
    3.2GB when imported into git - space that would just make the early
    git days unnecessarily complicated, when we don't have a lot of good
    infrastructure for it.

    Let it rip!

    Linus Torvalds