20 Jul, 2007

3 commits

  • Change ->fault prototype. We now return an int, which contains
    VM_FAULT_xxx code in the low byte, and FAULT_RET_xxx code in the next byte.
    FAULT_RET_ code tells the VM whether a page was found, whether it has been
    locked, and potentially other things. This is not quite the way he wanted
    it yet, but that's changed in the next patch (which requires changes to
    arch code).

    This means we no longer set VM_CAN_INVALIDATE in the vma in order to say
    that a page is locked which requires filemap_nopage to go away (because we
    can no longer remain backward compatible without that flag), but we were
    going to do that anyway.

    struct fault_data is renamed to struct vm_fault as Linus asked. address
    is now a void __user * that we should firmly encourage drivers not to use
    without really good reason.

    The page is now returned via a page pointer in the vm_fault struct.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     
  • Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
    the virtual address -> file offset differently from linear mappings.

    ->populate is a layering violation because the filesystem/pagecache code
    should need to know anything about the virtual memory mapping. The hitch here
    is that the ->nopage handler didn't pass down enough information (ie. pgoff).
    But it is more logical to pass pgoff rather than have the ->nopage function
    calculate it itself anyway (because that's a similar layering violation).

    Having the populate handler install the pte itself is likewise a nasty thing
    to be doing.

    This patch introduces a new fault handler that replaces ->nopage and
    ->populate and (later) ->nopfn. Most of the old mechanism is still in place
    so there is a lot of duplication and nice cleanups that can be removed if
    everyone switches over.

    The rationale for doing this in the first place is that nonlinear mappings are
    subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
    to duplicate the synchronisation logic rather than just consolidate the two.

    After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
    pagecache. Seems like a fringe functionality anyway.

    NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no
    users have hit mainline yet.

    [akpm@linux-foundation.org: cleanup]
    [randy.dunlap@oracle.com: doc. fixes for readahead]
    [akpm@linux-foundation.org: build fix]
    Signed-off-by: Nick Piggin
    Signed-off-by: Randy Dunlap
    Cc: Mark Fasheh
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     
  • Fix the race between invalidate_inode_pages and do_no_page.

    Andrea Arcangeli identified a subtle race between invalidation of pages from
    pagecache with userspace mappings, and do_no_page.

    The issue is that invalidation has to shoot down all mappings to the page,
    before it can be discarded from the pagecache. Between shooting down ptes to
    a particular page, and actually dropping the struct page from the pagecache,
    do_no_page from any process might fault on that page and establish a new
    mapping to the page just before it gets discarded from the pagecache.

    The most common case where such invalidation is used is in file truncation.
    This case was catered for by doing a sort of open-coded seqlock between the
    file's i_size, and its truncate_count.

    Truncation will decrease i_size, then increment truncate_count before
    unmapping userspace pages; do_no_page will read truncate_count, then find the
    page if it is within i_size, and then check truncate_count under the page
    table lock and back out and retry if it had subsequently been changed (ptl
    will serialise against unmapping, and ensure a potentially updated
    truncate_count is actually visible).

    Complexity and documentation issues aside, the locking protocol fails in the
    case where we would like to invalidate pagecache inside i_size. do_no_page
    can come in anytime and filemap_nopage is not aware of the invalidation in
    progress (as it is when it is outside i_size). The end result is that
    dangling (->mapping == NULL) pages that appear to be from a particular file
    may be mapped into userspace with nonsense data. Valid mappings to the same
    place will see a different page.

    Andrea implemented two working fixes, one using a real seqlock, another using
    a page->flags bit. He also proposed using the page lock in do_no_page, but
    that was initially considered too heavyweight. However, it is not a global or
    per-file lock, and the page cacheline is modified in do_no_page to increment
    _count and _mapcount anyway, so a further modification should not be a large
    performance hit. Scalability is not an issue.

    This patch implements this latter approach. ->nopage implementations return
    with the page locked if it is possible for their underlying file to be
    invalidated (in that case, they must set a special vm_flags bit to indicate
    so). do_no_page only unlocks the page after setting up the mapping
    completely. invalidation is excluded because it holds the page lock during
    invalidation of each page (and ensures that the page is not mapped while
    holding the lock).

    This also allows significant simplifications in do_no_page, because we have
    the page locked in the right place in the pagecache from the start.

    Signed-off-by: Nick Piggin
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Nick Piggin
     

09 Dec, 2006

1 commit


01 Jul, 2006

1 commit

  • The remaining counters in page_state after the zoned VM counter patches
    have been applied are all just for show in /proc/vmstat. They have no
    essential function for the VM.

    We use a simple increment of per cpu variables. In order to avoid the most
    severe races we disable preempt. Preempt does not prevent the race between
    an increment and an interrupt handler incrementing the same statistics
    counter. However, that race is exceedingly rare, we may only loose one
    increment or so and there is no requirement (at least not in kernel) that
    the vm event counters have to be accurate.

    In the non preempt case this results in a simple increment for each
    counter. For many architectures this will be reduced by the compiler to a
    single instruction. This single instruction is atomic for i386 and x86_64.
    And therefore even the rare race condition in an interrupt is avoided for
    both architectures in most cases.

    The patchset also adds an off switch for embedded systems that allows a
    building of linux kernels without these counters.

    The implementation of these counters is through inline code that hopefully
    results in only a single instruction increment instruction being emitted
    (i386, x86_64) or in the increment being hidden though instruction
    concurrency (EPIC architectures such as ia64 can get that done).

    Benefits:
    - VM event counter operations usually reduce to a single inline instruction
    on i386 and x86_64.
    - No interrupt disable, only preempt disable for the preempt case.
    Preempt disable can also be avoided by moving the counter into a spinlock.
    - Handling is similar to zoned VM counters.
    - Simple and easily extendable.
    - Can be omitted to reduce memory use for embedded use.

    References:

    RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=113512330605497&w=2
    RFC http://marc.theaimsgroup.com/?l=linux-kernel&m=114988082814934&w=2
    local_t http://marc.theaimsgroup.com/?l=linux-kernel&m=114991748606690&w=2
    V2 http://marc.theaimsgroup.com/?t=115014808400007&r=1&w=2
    V3 http://marc.theaimsgroup.com/?l=linux-kernel&m=115024767022346&w=2
    V4 http://marc.theaimsgroup.com/?l=linux-kernel&m=115047968808926&w=2

    Signed-off-by: Christoph Lameter
    Signed-off-by: Andrew Morton
    Signed-off-by: Linus Torvalds

    Christoph Lameter
     

17 Apr, 2005

1 commit

  • Initial git repository build. I'm not bothering with the full history,
    even though we have it. We can create a separate "historical" git
    archive of that later if we want to, and in the meantime it's about
    3.2GB when imported into git - space that would just make the early
    git days unnecessarily complicated, when we don't have a lot of good
    infrastructure for it.

    Let it rip!

    Linus Torvalds