08 Mar, 2017

2 commits

  • Currently we do not allow patch module to unload since there is no
    method to determine if a task is still running in the patched code.

    The consistency model gives us the way because when the unpatching
    finishes we know that all tasks were marked as safe to call an original
    function. Thus every new call to the function calls the original code
    and at the same time no task can be somewhere in the patched code,
    because it had to leave that code to be marked as safe.

    We can safely let the patch module go after that.

    Completion is used for synchronization between module removal and sysfs
    infrastructure in a similar way to commit 942e443127e9 ("module: Fix
    mod->mkobj.kobj potentially freed too early").

    Note that we still do not allow the removal for immediate model, that is
    no consistency model. The module refcount may increase in this case if
    somebody disables and enables the patch several times. This should not
    cause any harm.

    With this change a call to try_module_get() is moved to
    __klp_enable_patch from klp_register_patch to make module reference
    counting symmetric (module_put() is in a patch disable path) and to
    allow to take a new reference to a disabled module when being enabled.

    Finally, we need to be very careful about possible races between
    klp_unregister_patch(), kobject_put() functions and operations
    on the related sysfs files.

    kobject_put(&patch->kobj) must be called without klp_mutex. Otherwise,
    it might be blocked by enabled_store() that needs the mutex as well.
    In addition, enabled_store() must check if the patch was not
    unregisted in the meantime.

    There is no need to do the same for other kobject_put() callsites
    at the moment. Their sysfs operations neither take the lock nor
    they access any data that might be freed in the meantime.

    There was an attempt to use kobjects the right way and prevent these
    races by design. But it made the patch definition more complicated
    and opened another can of worms. See
    https://lkml.kernel.org/r/1464018848-4303-1-git-send-email-pmladek@suse.com

    [Thanks to Petr Mladek for improving the commit message.]

    Signed-off-by: Miroslav Benes
    Signed-off-by: Josh Poimboeuf
    Reviewed-by: Petr Mladek
    Acked-by: Miroslav Benes
    Signed-off-by: Jiri Kosina

    Josh Poimboeuf
     
  • Change livepatch to use a basic per-task consistency model. This is the
    foundation which will eventually enable us to patch those ~10% of
    security patches which change function or data semantics. This is the
    biggest remaining piece needed to make livepatch more generally useful.

    This code stems from the design proposal made by Vojtech [1] in November
    2014. It's a hybrid of kGraft and kpatch: it uses kGraft's per-task
    consistency and syscall barrier switching combined with kpatch's stack
    trace switching. There are also a number of fallback options which make
    it quite flexible.

    Patches are applied on a per-task basis, when the task is deemed safe to
    switch over. When a patch is enabled, livepatch enters into a
    transition state where tasks are converging to the patched state.
    Usually this transition state can complete in a few seconds. The same
    sequence occurs when a patch is disabled, except the tasks converge from
    the patched state to the unpatched state.

    An interrupt handler inherits the patched state of the task it
    interrupts. The same is true for forked tasks: the child inherits the
    patched state of the parent.

    Livepatch uses several complementary approaches to determine when it's
    safe to patch tasks:

    1. The first and most effective approach is stack checking of sleeping
    tasks. If no affected functions are on the stack of a given task,
    the task is patched. In most cases this will patch most or all of
    the tasks on the first try. Otherwise it'll keep trying
    periodically. This option is only available if the architecture has
    reliable stacks (HAVE_RELIABLE_STACKTRACE).

    2. The second approach, if needed, is kernel exit switching. A
    task is switched when it returns to user space from a system call, a
    user space IRQ, or a signal. It's useful in the following cases:

    a) Patching I/O-bound user tasks which are sleeping on an affected
    function. In this case you have to send SIGSTOP and SIGCONT to
    force it to exit the kernel and be patched.
    b) Patching CPU-bound user tasks. If the task is highly CPU-bound
    then it will get patched the next time it gets interrupted by an
    IRQ.
    c) In the future it could be useful for applying patches for
    architectures which don't yet have HAVE_RELIABLE_STACKTRACE. In
    this case you would have to signal most of the tasks on the
    system. However this isn't supported yet because there's
    currently no way to patch kthreads without
    HAVE_RELIABLE_STACKTRACE.

    3. For idle "swapper" tasks, since they don't ever exit the kernel, they
    instead have a klp_update_patch_state() call in the idle loop which
    allows them to be patched before the CPU enters the idle state.

    (Note there's not yet such an approach for kthreads.)

    All the above approaches may be skipped by setting the 'immediate' flag
    in the 'klp_patch' struct, which will disable per-task consistency and
    patch all tasks immediately. This can be useful if the patch doesn't
    change any function or data semantics. Note that, even with this flag
    set, it's possible that some tasks may still be running with an old
    version of the function, until that function returns.

    There's also an 'immediate' flag in the 'klp_func' struct which allows
    you to specify that certain functions in the patch can be applied
    without per-task consistency. This might be useful if you want to patch
    a common function like schedule(), and the function change doesn't need
    consistency but the rest of the patch does.

    For architectures which don't have HAVE_RELIABLE_STACKTRACE, the user
    must set patch->immediate which causes all tasks to be patched
    immediately. This option should be used with care, only when the patch
    doesn't change any function or data semantics.

    In the future, architectures which don't have HAVE_RELIABLE_STACKTRACE
    may be allowed to use per-task consistency if we can come up with
    another way to patch kthreads.

    The /sys/kernel/livepatch//transition file shows whether a patch
    is in transition. Only a single patch (the topmost patch on the stack)
    can be in transition at a given time. A patch can remain in transition
    indefinitely, if any of the tasks are stuck in the initial patch state.

    A transition can be reversed and effectively canceled by writing the
    opposite value to the /sys/kernel/livepatch//enabled file while
    the transition is in progress. Then all the tasks will attempt to
    converge back to the original patch state.

    [1] https://lkml.kernel.org/r/20141107140458.GA21774@suse.cz

    Signed-off-by: Josh Poimboeuf
    Acked-by: Miroslav Benes
    Acked-by: Ingo Molnar # for the scheduler changes
    Signed-off-by: Jiri Kosina

    Josh Poimboeuf
     

01 Apr, 2016

1 commit

  • Reuse module loader code to write relocations, thereby eliminating the need
    for architecture specific relocation code in livepatch. Specifically, reuse
    the apply_relocate_add() function in the module loader to write relocations
    instead of duplicating functionality in livepatch's arch-dependent
    klp_write_module_reloc() function.

    In order to accomplish this, livepatch modules manage their own relocation
    sections (marked with the SHF_RELA_LIVEPATCH section flag) and
    livepatch-specific symbols (marked with SHN_LIVEPATCH symbol section
    index). To apply livepatch relocation sections, livepatch symbols
    referenced by relocs are resolved and then apply_relocate_add() is called
    to apply those relocations.

    In addition, remove x86 livepatch relocation code and the s390
    klp_write_module_reloc() function stub. They are no longer needed since
    relocation work has been offloaded to module loader.

    Lastly, mark the module as a livepatch module so that the module loader
    canappropriately identify and initialize it.

    Signed-off-by: Jessica Yu
    Reviewed-by: Miroslav Benes
    Acked-by: Josh Poimboeuf
    Acked-by: Heiko Carstens # for s390 changes
    Signed-off-by: Jiri Kosina

    Jessica Yu
     

04 Feb, 2015

1 commit


24 Dec, 2014

1 commit


22 Dec, 2014

1 commit