spi-sunxi.c 14.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
/*
 * (C) Copyright 2017 Whitebox Systems / Northend Systems B.V.
 * S.J.R. van Schaik <stephan@whiteboxsystems.nl>
 * M.B.W. Wajer <merlijn@whiteboxsystems.nl>
 *
 * (C) Copyright 2017 Olimex Ltd..
 * Stefan Mavrodiev <stefan@olimex.com>
 *
 * Based on linux spi driver. Original copyright follows:
 * linux/drivers/spi/spi-sun4i.c
 *
 * Copyright (C) 2012 - 2014 Allwinner Tech
 * Pan Nan <pannan@allwinnertech.com>
 *
 * Copyright (C) 2014 Maxime Ripard
 * Maxime Ripard <maxime.ripard@free-electrons.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <spi.h>
#include <errno.h>
#include <fdt_support.h>
#include <reset.h>
#include <wait_bit.h>

#include <asm/bitops.h>
#include <asm/gpio.h>
#include <asm/io.h>

#include <linux/iopoll.h>

DECLARE_GLOBAL_DATA_PTR;

/* sun4i spi registers */
#define SUN4I_RXDATA_REG		0x00
#define SUN4I_TXDATA_REG		0x04
#define SUN4I_CTL_REG			0x08
#define SUN4I_CLK_CTL_REG		0x1c
#define SUN4I_BURST_CNT_REG		0x20
#define SUN4I_XMIT_CNT_REG		0x24
#define SUN4I_FIFO_STA_REG		0x28

/* sun6i spi registers */
#define SUN6I_GBL_CTL_REG		0x04
#define SUN6I_TFR_CTL_REG		0x08
#define SUN6I_FIFO_CTL_REG		0x18
#define SUN6I_FIFO_STA_REG		0x1c
#define SUN6I_CLK_CTL_REG		0x24
#define SUN6I_BURST_CNT_REG		0x30
#define SUN6I_XMIT_CNT_REG		0x34
#define SUN6I_BURST_CTL_REG		0x38
#define SUN6I_TXDATA_REG		0x200
#define SUN6I_RXDATA_REG		0x300

/* sun spi bits */
#define SUN4I_CTL_ENABLE		BIT(0)
#define SUN4I_CTL_MASTER		BIT(1)
#define SUN4I_CLK_CTL_CDR2_MASK		0xff
#define SUN4I_CLK_CTL_CDR2(div)		((div) & SUN4I_CLK_CTL_CDR2_MASK)
#define SUN4I_CLK_CTL_CDR1_MASK		0xf
#define SUN4I_CLK_CTL_CDR1(div)		(((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
#define SUN4I_CLK_CTL_DRS		BIT(12)
#define SUN4I_MAX_XFER_SIZE		0xffffff
#define SUN4I_BURST_CNT(cnt)		((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_XMIT_CNT(cnt)		((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_FIFO_STA_RF_CNT_BITS	0

#define SUN4I_SPI_MAX_RATE		24000000
#define SUN4I_SPI_MIN_RATE		3000
#define SUN4I_SPI_DEFAULT_RATE		1000000
#define SUN4I_SPI_TIMEOUT_US		1000000

#define SPI_REG(priv, reg)		((priv)->base + \
					(priv)->variant->regs[reg])
#define SPI_BIT(priv, bit)		((priv)->variant->bits[bit])
#define SPI_CS(priv, cs)		(((cs) << SPI_BIT(priv, SPI_TCR_CS_SEL)) & \
					SPI_BIT(priv, SPI_TCR_CS_MASK))

/* sun spi register set */
enum sun4i_spi_regs {
	SPI_GCR,
	SPI_TCR,
	SPI_FCR,
	SPI_FSR,
	SPI_CCR,
	SPI_BC,
	SPI_TC,
	SPI_BCTL,
	SPI_TXD,
	SPI_RXD,
};

/* sun spi register bits */
enum sun4i_spi_bits {
	SPI_GCR_TP,
	SPI_GCR_SRST,
	SPI_TCR_CPHA,
	SPI_TCR_CPOL,
	SPI_TCR_CS_ACTIVE_LOW,
	SPI_TCR_CS_SEL,
	SPI_TCR_CS_MASK,
	SPI_TCR_XCH,
	SPI_TCR_CS_MANUAL,
	SPI_TCR_CS_LEVEL,
	SPI_FCR_TF_RST,
	SPI_FCR_RF_RST,
	SPI_FSR_RF_CNT_MASK,
};

struct sun4i_spi_variant {
	const unsigned long *regs;
	const u32 *bits;
	u32 fifo_depth;
	bool has_soft_reset;
	bool has_burst_ctl;
};

struct sun4i_spi_platdata {
	struct sun4i_spi_variant *variant;
	u32 base;
	u32 max_hz;
};

struct sun4i_spi_priv {
	struct sun4i_spi_variant *variant;
	struct clk clk_ahb, clk_mod;
	struct reset_ctl reset;
	u32 base;
	u32 freq;
	u32 mode;

	const u8 *tx_buf;
	u8 *rx_buf;
};

static inline void sun4i_spi_drain_fifo(struct sun4i_spi_priv *priv, int len)
{
	u8 byte;

	while (len--) {
		byte = readb(SPI_REG(priv, SPI_RXD));
		if (priv->rx_buf)
			*priv->rx_buf++ = byte;
	}
}

static inline void sun4i_spi_fill_fifo(struct sun4i_spi_priv *priv, int len)
{
	u8 byte;

	while (len--) {
		byte = priv->tx_buf ? *priv->tx_buf++ : 0;
		writeb(byte, SPI_REG(priv, SPI_TXD));
	}
}

static void sun4i_spi_set_cs(struct udevice *bus, u8 cs, bool enable)
{
	struct sun4i_spi_priv *priv = dev_get_priv(bus);
	u32 reg;

	reg = readl(SPI_REG(priv, SPI_TCR));

	reg &= ~SPI_BIT(priv, SPI_TCR_CS_MASK);
	reg |= SPI_CS(priv, cs);

	if (enable)
		reg &= ~SPI_BIT(priv, SPI_TCR_CS_LEVEL);
	else
		reg |= SPI_BIT(priv, SPI_TCR_CS_LEVEL);

	writel(reg, SPI_REG(priv, SPI_TCR));
}

static int sun4i_spi_parse_pins(struct udevice *dev)
{
	const void *fdt = gd->fdt_blob;
	const char *pin_name;
	const fdt32_t *list;
	u32 phandle;
	int drive, pull = 0, pin, i;
	int offset;
	int size;

	list = fdt_getprop(fdt, dev_of_offset(dev), "pinctrl-0", &size);
	if (!list) {
		printf("WARNING: sun4i_spi: cannot find pinctrl-0 node\n");
		return -EINVAL;
	}

	while (size) {
		phandle = fdt32_to_cpu(*list++);
		size -= sizeof(*list);

		offset = fdt_node_offset_by_phandle(fdt, phandle);
		if (offset < 0)
			return offset;

		drive = fdt_getprop_u32_default_node(fdt, offset, 0,
						     "drive-strength", 0);
		if (drive) {
			if (drive <= 10)
				drive = 0;
			else if (drive <= 20)
				drive = 1;
			else if (drive <= 30)
				drive = 2;
			else
				drive = 3;
		} else {
			drive = fdt_getprop_u32_default_node(fdt, offset, 0,
							     "allwinner,drive",
							      0);
			drive = min(drive, 3);
		}

		if (fdt_get_property(fdt, offset, "bias-disable", NULL))
			pull = 0;
		else if (fdt_get_property(fdt, offset, "bias-pull-up", NULL))
			pull = 1;
		else if (fdt_get_property(fdt, offset, "bias-pull-down", NULL))
			pull = 2;
		else
			pull = fdt_getprop_u32_default_node(fdt, offset, 0,
							    "allwinner,pull",
							     0);
		pull = min(pull, 2);

		for (i = 0; ; i++) {
			pin_name = fdt_stringlist_get(fdt, offset,
						      "pins", i, NULL);
			if (!pin_name) {
				pin_name = fdt_stringlist_get(fdt, offset,
							      "allwinner,pins",
							       i, NULL);
				if (!pin_name)
					break;
			}

			pin = name_to_gpio(pin_name);
			if (pin < 0)
				break;

			if (IS_ENABLED(CONFIG_MACH_SUN50I))
				sunxi_gpio_set_cfgpin(pin, SUN50I_GPC_SPI0);
			else
				sunxi_gpio_set_cfgpin(pin, SUNXI_GPC_SPI0);
			sunxi_gpio_set_drv(pin, drive);
			sunxi_gpio_set_pull(pin, pull);
		}
	}
	return 0;
}

static inline int sun4i_spi_set_clock(struct udevice *dev, bool enable)
{
	struct sun4i_spi_priv *priv = dev_get_priv(dev);
	int ret;

	if (!enable) {
		clk_disable(&priv->clk_ahb);
		clk_disable(&priv->clk_mod);
		if (reset_valid(&priv->reset))
			reset_assert(&priv->reset);
		return 0;
	}

	ret = clk_enable(&priv->clk_ahb);
	if (ret) {
		dev_err(dev, "failed to enable ahb clock (ret=%d)\n", ret);
		return ret;
	}

	ret = clk_enable(&priv->clk_mod);
	if (ret) {
		dev_err(dev, "failed to enable mod clock (ret=%d)\n", ret);
		goto err_ahb;
	}

	if (reset_valid(&priv->reset)) {
		ret = reset_deassert(&priv->reset);
		if (ret) {
			dev_err(dev, "failed to deassert reset\n");
			goto err_mod;
		}
	}

	return 0;

err_mod:
	clk_disable(&priv->clk_mod);
err_ahb:
	clk_disable(&priv->clk_ahb);
	return ret;
}

static int sun4i_spi_claim_bus(struct udevice *dev)
{
	struct sun4i_spi_priv *priv = dev_get_priv(dev->parent);
	int ret;

	ret = sun4i_spi_set_clock(dev->parent, true);
	if (ret)
		return ret;

	setbits_le32(SPI_REG(priv, SPI_GCR), SUN4I_CTL_ENABLE |
		     SUN4I_CTL_MASTER | SPI_BIT(priv, SPI_GCR_TP));

	if (priv->variant->has_soft_reset)
		setbits_le32(SPI_REG(priv, SPI_GCR),
			     SPI_BIT(priv, SPI_GCR_SRST));

	setbits_le32(SPI_REG(priv, SPI_TCR), SPI_BIT(priv, SPI_TCR_CS_MANUAL) |
		     SPI_BIT(priv, SPI_TCR_CS_ACTIVE_LOW));

	return 0;
}

static int sun4i_spi_release_bus(struct udevice *dev)
{
	struct sun4i_spi_priv *priv = dev_get_priv(dev->parent);

	clrbits_le32(SPI_REG(priv, SPI_GCR), SUN4I_CTL_ENABLE);

	sun4i_spi_set_clock(dev->parent, false);

	return 0;
}

static int sun4i_spi_xfer(struct udevice *dev, unsigned int bitlen,
			  const void *dout, void *din, unsigned long flags)
{
	struct udevice *bus = dev->parent;
	struct sun4i_spi_priv *priv = dev_get_priv(bus);
	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);

	u32 len = bitlen / 8;
	u32 rx_fifocnt;
	u8 nbytes;
	int ret;

	priv->tx_buf = dout;
	priv->rx_buf = din;

	if (bitlen % 8) {
		debug("%s: non byte-aligned SPI transfer.\n", __func__);
		return -ENAVAIL;
	}

	if (flags & SPI_XFER_BEGIN)
		sun4i_spi_set_cs(bus, slave_plat->cs, true);

	/* Reset FIFOs */
	setbits_le32(SPI_REG(priv, SPI_FCR), SPI_BIT(priv, SPI_FCR_RF_RST) |
		     SPI_BIT(priv, SPI_FCR_TF_RST));

	while (len) {
		/* Setup the transfer now... */
		nbytes = min(len, (priv->variant->fifo_depth - 1));

		/* Setup the counters */
		writel(SUN4I_BURST_CNT(nbytes), SPI_REG(priv, SPI_BC));
		writel(SUN4I_XMIT_CNT(nbytes), SPI_REG(priv, SPI_TC));

		if (priv->variant->has_burst_ctl)
			writel(SUN4I_BURST_CNT(nbytes),
			       SPI_REG(priv, SPI_BCTL));

		/* Fill the TX FIFO */
		sun4i_spi_fill_fifo(priv, nbytes);

		/* Start the transfer */
		setbits_le32(SPI_REG(priv, SPI_TCR),
			     SPI_BIT(priv, SPI_TCR_XCH));

		/* Wait till RX FIFO to be empty */
		ret = readl_poll_timeout(SPI_REG(priv, SPI_FSR),
					 rx_fifocnt,
					 (((rx_fifocnt &
					 SPI_BIT(priv, SPI_FSR_RF_CNT_MASK)) >>
					 SUN4I_FIFO_STA_RF_CNT_BITS) >= nbytes),
					 SUN4I_SPI_TIMEOUT_US);
		if (ret < 0) {
			printf("ERROR: sun4i_spi: Timeout transferring data\n");
			sun4i_spi_set_cs(bus, slave_plat->cs, false);
			return ret;
		}

		/* Drain the RX FIFO */
		sun4i_spi_drain_fifo(priv, nbytes);

		len -= nbytes;
	}

	if (flags & SPI_XFER_END)
		sun4i_spi_set_cs(bus, slave_plat->cs, false);

	return 0;
}

static int sun4i_spi_set_speed(struct udevice *dev, uint speed)
{
	struct sun4i_spi_platdata *plat = dev_get_platdata(dev);
	struct sun4i_spi_priv *priv = dev_get_priv(dev);
	unsigned int div;
	u32 reg;

	if (speed > plat->max_hz)
		speed = plat->max_hz;

	if (speed < SUN4I_SPI_MIN_RATE)
		speed = SUN4I_SPI_MIN_RATE;
	/*
	 * Setup clock divider.
	 *
	 * We have two choices there. Either we can use the clock
	 * divide rate 1, which is calculated thanks to this formula:
	 * SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
	 * Or we can use CDR2, which is calculated with the formula:
	 * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
	 * Whether we use the former or the latter is set through the
	 * DRS bit.
	 *
	 * First try CDR2, and if we can't reach the expected
	 * frequency, fall back to CDR1.
	 */

	div = SUN4I_SPI_MAX_RATE / (2 * speed);
	reg = readl(SPI_REG(priv, SPI_CCR));

	if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
		if (div > 0)
			div--;

		reg &= ~(SUN4I_CLK_CTL_CDR2_MASK | SUN4I_CLK_CTL_DRS);
		reg |= SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
	} else {
		div = __ilog2(SUN4I_SPI_MAX_RATE) - __ilog2(speed);
		reg &= ~((SUN4I_CLK_CTL_CDR1_MASK << 8) | SUN4I_CLK_CTL_DRS);
		reg |= SUN4I_CLK_CTL_CDR1(div);
	}

	priv->freq = speed;
	writel(reg, SPI_REG(priv, SPI_CCR));

	return 0;
}

static int sun4i_spi_set_mode(struct udevice *dev, uint mode)
{
	struct sun4i_spi_priv *priv = dev_get_priv(dev);
	u32 reg;

	reg = readl(SPI_REG(priv, SPI_TCR));
	reg &= ~(SPI_BIT(priv, SPI_TCR_CPOL) | SPI_BIT(priv, SPI_TCR_CPHA));

	if (mode & SPI_CPOL)
		reg |= SPI_BIT(priv, SPI_TCR_CPOL);

	if (mode & SPI_CPHA)
		reg |= SPI_BIT(priv, SPI_TCR_CPHA);

	priv->mode = mode;
	writel(reg, SPI_REG(priv, SPI_TCR));

	return 0;
}

static const struct dm_spi_ops sun4i_spi_ops = {
	.claim_bus		= sun4i_spi_claim_bus,
	.release_bus		= sun4i_spi_release_bus,
	.xfer			= sun4i_spi_xfer,
	.set_speed		= sun4i_spi_set_speed,
	.set_mode		= sun4i_spi_set_mode,
};

static int sun4i_spi_probe(struct udevice *bus)
{
	struct sun4i_spi_platdata *plat = dev_get_platdata(bus);
	struct sun4i_spi_priv *priv = dev_get_priv(bus);
	int ret;

	ret = clk_get_by_name(bus, "ahb", &priv->clk_ahb);
	if (ret) {
		dev_err(dev, "failed to get ahb clock\n");
		return ret;
	}

	ret = clk_get_by_name(bus, "mod", &priv->clk_mod);
	if (ret) {
		dev_err(dev, "failed to get mod clock\n");
		return ret;
	}

	ret = reset_get_by_index(bus, 0, &priv->reset);
	if (ret && ret != -ENOENT) {
		dev_err(dev, "failed to get reset\n");
		return ret;
	}

	sun4i_spi_parse_pins(bus);

	priv->variant = plat->variant;
	priv->base = plat->base;
	priv->freq = plat->max_hz;

	return 0;
}

static int sun4i_spi_ofdata_to_platdata(struct udevice *bus)
{
	struct sun4i_spi_platdata *plat = dev_get_platdata(bus);
	int node = dev_of_offset(bus);

	plat->base = devfdt_get_addr(bus);
	plat->variant = (struct sun4i_spi_variant *)dev_get_driver_data(bus);
	plat->max_hz = fdtdec_get_int(gd->fdt_blob, node,
				      "spi-max-frequency",
				      SUN4I_SPI_DEFAULT_RATE);

	if (plat->max_hz > SUN4I_SPI_MAX_RATE)
		plat->max_hz = SUN4I_SPI_MAX_RATE;

	return 0;
}

static const unsigned long sun4i_spi_regs[] = {
	[SPI_GCR]		= SUN4I_CTL_REG,
	[SPI_TCR]		= SUN4I_CTL_REG,
	[SPI_FCR]		= SUN4I_CTL_REG,
	[SPI_FSR]		= SUN4I_FIFO_STA_REG,
	[SPI_CCR]		= SUN4I_CLK_CTL_REG,
	[SPI_BC]		= SUN4I_BURST_CNT_REG,
	[SPI_TC]		= SUN4I_XMIT_CNT_REG,
	[SPI_TXD]		= SUN4I_TXDATA_REG,
	[SPI_RXD]		= SUN4I_RXDATA_REG,
};

static const u32 sun4i_spi_bits[] = {
	[SPI_GCR_TP]		= BIT(18),
	[SPI_TCR_CPHA]		= BIT(2),
	[SPI_TCR_CPOL]		= BIT(3),
	[SPI_TCR_CS_ACTIVE_LOW] = BIT(4),
	[SPI_TCR_XCH]		= BIT(10),
	[SPI_TCR_CS_SEL]	= 12,
	[SPI_TCR_CS_MASK]	= 0x3000,
	[SPI_TCR_CS_MANUAL]	= BIT(16),
	[SPI_TCR_CS_LEVEL]	= BIT(17),
	[SPI_FCR_TF_RST]	= BIT(8),
	[SPI_FCR_RF_RST]	= BIT(9),
	[SPI_FSR_RF_CNT_MASK]	= GENMASK(6, 0),
};

static const unsigned long sun6i_spi_regs[] = {
	[SPI_GCR]		= SUN6I_GBL_CTL_REG,
	[SPI_TCR]		= SUN6I_TFR_CTL_REG,
	[SPI_FCR]		= SUN6I_FIFO_CTL_REG,
	[SPI_FSR]		= SUN6I_FIFO_STA_REG,
	[SPI_CCR]		= SUN6I_CLK_CTL_REG,
	[SPI_BC]		= SUN6I_BURST_CNT_REG,
	[SPI_TC]		= SUN6I_XMIT_CNT_REG,
	[SPI_BCTL]		= SUN6I_BURST_CTL_REG,
	[SPI_TXD]		= SUN6I_TXDATA_REG,
	[SPI_RXD]		= SUN6I_RXDATA_REG,
};

static const u32 sun6i_spi_bits[] = {
	[SPI_GCR_TP]		= BIT(7),
	[SPI_GCR_SRST]		= BIT(31),
	[SPI_TCR_CPHA]		= BIT(0),
	[SPI_TCR_CPOL]		= BIT(1),
	[SPI_TCR_CS_ACTIVE_LOW] = BIT(2),
	[SPI_TCR_CS_SEL]	= 4,
	[SPI_TCR_CS_MASK]	= 0x30,
	[SPI_TCR_CS_MANUAL]	= BIT(6),
	[SPI_TCR_CS_LEVEL]	= BIT(7),
	[SPI_TCR_XCH]		= BIT(31),
	[SPI_FCR_RF_RST]	= BIT(15),
	[SPI_FCR_TF_RST]	= BIT(31),
	[SPI_FSR_RF_CNT_MASK]	= GENMASK(7, 0),
};

static const struct sun4i_spi_variant sun4i_a10_spi_variant = {
	.regs			= sun4i_spi_regs,
	.bits			= sun4i_spi_bits,
	.fifo_depth		= 64,
};

static const struct sun4i_spi_variant sun6i_a31_spi_variant = {
	.regs			= sun6i_spi_regs,
	.bits			= sun6i_spi_bits,
	.fifo_depth		= 128,
	.has_soft_reset		= true,
	.has_burst_ctl		= true,
};

static const struct sun4i_spi_variant sun8i_h3_spi_variant = {
	.regs			= sun6i_spi_regs,
	.bits			= sun6i_spi_bits,
	.fifo_depth		= 64,
	.has_soft_reset		= true,
	.has_burst_ctl		= true,
};

static const struct udevice_id sun4i_spi_ids[] = {
	{
	  .compatible = "allwinner,sun4i-a10-spi",
	  .data = (ulong)&sun4i_a10_spi_variant,
	},
	{
	  .compatible = "allwinner,sun6i-a31-spi",
	  .data = (ulong)&sun6i_a31_spi_variant,
	},
	{
	  .compatible = "allwinner,sun8i-h3-spi",
	  .data = (ulong)&sun8i_h3_spi_variant,
	},
	{ /* sentinel */ }
};

U_BOOT_DRIVER(sun4i_spi) = {
	.name	= "sun4i_spi",
	.id	= UCLASS_SPI,
	.of_match	= sun4i_spi_ids,
	.ops	= &sun4i_spi_ops,
	.ofdata_to_platdata	= sun4i_spi_ofdata_to_platdata,
	.platdata_auto_alloc_size	= sizeof(struct sun4i_spi_platdata),
	.priv_auto_alloc_size	= sizeof(struct sun4i_spi_priv),
	.probe	= sun4i_spi_probe,
};