spi-mem.c 13.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2018 Exceet Electronics GmbH
 * Copyright (C) 2018 Bootlin
 *
 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
 */

#ifndef __UBOOT__
#include <dm/devres.h>
#include <linux/dmaengine.h>
#include <linux/pm_runtime.h>
#include "internals.h"
#else
#include <dm/device_compat.h>
#include <spi.h>
#include <spi-mem.h>
#endif

#ifndef __UBOOT__
/**
 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
 *					  memory operation
 * @ctlr: the SPI controller requesting this dma_map()
 * @op: the memory operation containing the buffer to map
 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
 *	 function
 *
 * Some controllers might want to do DMA on the data buffer embedded in @op.
 * This helper prepares everything for you and provides a ready-to-use
 * sg_table. This function is not intended to be called from spi drivers.
 * Only SPI controller drivers should use it.
 * Note that the caller must ensure the memory region pointed by
 * op->data.buf.{in,out} is DMA-able before calling this function.
 *
 * Return: 0 in case of success, a negative error code otherwise.
 */
int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
				       const struct spi_mem_op *op,
				       struct sg_table *sgt)
{
	struct device *dmadev;

	if (!op->data.nbytes)
		return -EINVAL;

	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
		dmadev = ctlr->dma_tx->device->dev;
	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
		dmadev = ctlr->dma_rx->device->dev;
	else
		dmadev = ctlr->dev.parent;

	if (!dmadev)
		return -EINVAL;

	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
			   op->data.dir == SPI_MEM_DATA_IN ?
			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);

/**
 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
 *					    memory operation
 * @ctlr: the SPI controller requesting this dma_unmap()
 * @op: the memory operation containing the buffer to unmap
 * @sgt: a pointer to an sg_table previously initialized by
 *	 spi_controller_dma_map_mem_op_data()
 *
 * Some controllers might want to do DMA on the data buffer embedded in @op.
 * This helper prepares things so that the CPU can access the
 * op->data.buf.{in,out} buffer again.
 *
 * This function is not intended to be called from SPI drivers. Only SPI
 * controller drivers should use it.
 *
 * This function should be called after the DMA operation has finished and is
 * only valid if the previous spi_controller_dma_map_mem_op_data() call
 * returned 0.
 *
 * Return: 0 in case of success, a negative error code otherwise.
 */
void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
					  const struct spi_mem_op *op,
					  struct sg_table *sgt)
{
	struct device *dmadev;

	if (!op->data.nbytes)
		return;

	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
		dmadev = ctlr->dma_tx->device->dev;
	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
		dmadev = ctlr->dma_rx->device->dev;
	else
		dmadev = ctlr->dev.parent;

	spi_unmap_buf(ctlr, dmadev, sgt,
		      op->data.dir == SPI_MEM_DATA_IN ?
		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
#endif /* __UBOOT__ */

static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
{
	u32 mode = slave->mode;

	switch (buswidth) {
	case 1:
		return 0;

	case 2:
		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
			return 0;

		break;

	case 4:
		if ((tx && (mode & SPI_TX_QUAD)) ||
		    (!tx && (mode & SPI_RX_QUAD)))
			return 0;

		break;
	case 8:
		if ((tx && (mode & SPI_TX_OCTAL)) ||
		    (!tx && (mode & SPI_RX_OCTAL)))
			return 0;

		break;

	default:
		break;
	}

	return -ENOTSUPP;
}

bool spi_mem_default_supports_op(struct spi_slave *slave,
				 const struct spi_mem_op *op)
{
	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
		return false;

	if (op->addr.nbytes &&
	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
		return false;

	if (op->dummy.nbytes &&
	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
		return false;

	if (op->data.nbytes &&
	    spi_check_buswidth_req(slave, op->data.buswidth,
				   op->data.dir == SPI_MEM_DATA_OUT))
		return false;

	return true;
}
EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);

/**
 * spi_mem_supports_op() - Check if a memory device and the controller it is
 *			   connected to support a specific memory operation
 * @slave: the SPI device
 * @op: the memory operation to check
 *
 * Some controllers are only supporting Single or Dual IOs, others might only
 * support specific opcodes, or it can even be that the controller and device
 * both support Quad IOs but the hardware prevents you from using it because
 * only 2 IO lines are connected.
 *
 * This function checks whether a specific operation is supported.
 *
 * Return: true if @op is supported, false otherwise.
 */
bool spi_mem_supports_op(struct spi_slave *slave,
			 const struct spi_mem_op *op)
{
	struct udevice *bus = slave->dev->parent;
	struct dm_spi_ops *ops = spi_get_ops(bus);

	if (ops->mem_ops && ops->mem_ops->supports_op)
		return ops->mem_ops->supports_op(slave, op);

	return spi_mem_default_supports_op(slave, op);
}
EXPORT_SYMBOL_GPL(spi_mem_supports_op);

/**
 * spi_mem_exec_op() - Execute a memory operation
 * @slave: the SPI device
 * @op: the memory operation to execute
 *
 * Executes a memory operation.
 *
 * This function first checks that @op is supported and then tries to execute
 * it.
 *
 * Return: 0 in case of success, a negative error code otherwise.
 */
int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
{
	struct udevice *bus = slave->dev->parent;
	struct dm_spi_ops *ops = spi_get_ops(bus);
	unsigned int pos = 0;
	const u8 *tx_buf = NULL;
	u8 *rx_buf = NULL;
	int op_len;
	u32 flag;
	int ret;
	int i;

	if (!spi_mem_supports_op(slave, op))
		return -ENOTSUPP;

	ret = spi_claim_bus(slave);
	if (ret < 0)
		return ret;

	if (ops->mem_ops && ops->mem_ops->exec_op) {
#ifndef __UBOOT__
		/*
		 * Flush the message queue before executing our SPI memory
		 * operation to prevent preemption of regular SPI transfers.
		 */
		spi_flush_queue(ctlr);

		if (ctlr->auto_runtime_pm) {
			ret = pm_runtime_get_sync(ctlr->dev.parent);
			if (ret < 0) {
				dev_err(&ctlr->dev,
					"Failed to power device: %d\n",
					ret);
				return ret;
			}
		}

		mutex_lock(&ctlr->bus_lock_mutex);
		mutex_lock(&ctlr->io_mutex);
#endif
		ret = ops->mem_ops->exec_op(slave, op);

#ifndef __UBOOT__
		mutex_unlock(&ctlr->io_mutex);
		mutex_unlock(&ctlr->bus_lock_mutex);

		if (ctlr->auto_runtime_pm)
			pm_runtime_put(ctlr->dev.parent);
#endif

		/*
		 * Some controllers only optimize specific paths (typically the
		 * read path) and expect the core to use the regular SPI
		 * interface in other cases.
		 */
		if (!ret || ret != -ENOTSUPP) {
			spi_release_bus(slave);
			return ret;
		}
	}

#ifndef __UBOOT__
	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
		     op->dummy.nbytes;

	/*
	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
	 * we're guaranteed that this buffer is DMA-able, as required by the
	 * SPI layer.
	 */
	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
	if (!tmpbuf)
		return -ENOMEM;

	spi_message_init(&msg);

	tmpbuf[0] = op->cmd.opcode;
	xfers[xferpos].tx_buf = tmpbuf;
	xfers[xferpos].len = sizeof(op->cmd.opcode);
	xfers[xferpos].tx_nbits = op->cmd.buswidth;
	spi_message_add_tail(&xfers[xferpos], &msg);
	xferpos++;
	totalxferlen++;

	if (op->addr.nbytes) {
		int i;

		for (i = 0; i < op->addr.nbytes; i++)
			tmpbuf[i + 1] = op->addr.val >>
					(8 * (op->addr.nbytes - i - 1));

		xfers[xferpos].tx_buf = tmpbuf + 1;
		xfers[xferpos].len = op->addr.nbytes;
		xfers[xferpos].tx_nbits = op->addr.buswidth;
		spi_message_add_tail(&xfers[xferpos], &msg);
		xferpos++;
		totalxferlen += op->addr.nbytes;
	}

	if (op->dummy.nbytes) {
		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
		xfers[xferpos].len = op->dummy.nbytes;
		xfers[xferpos].tx_nbits = op->dummy.buswidth;
		spi_message_add_tail(&xfers[xferpos], &msg);
		xferpos++;
		totalxferlen += op->dummy.nbytes;
	}

	if (op->data.nbytes) {
		if (op->data.dir == SPI_MEM_DATA_IN) {
			xfers[xferpos].rx_buf = op->data.buf.in;
			xfers[xferpos].rx_nbits = op->data.buswidth;
		} else {
			xfers[xferpos].tx_buf = op->data.buf.out;
			xfers[xferpos].tx_nbits = op->data.buswidth;
		}

		xfers[xferpos].len = op->data.nbytes;
		spi_message_add_tail(&xfers[xferpos], &msg);
		xferpos++;
		totalxferlen += op->data.nbytes;
	}

	ret = spi_sync(slave, &msg);

	kfree(tmpbuf);

	if (ret)
		return ret;

	if (msg.actual_length != totalxferlen)
		return -EIO;
#else

	if (op->data.nbytes) {
		if (op->data.dir == SPI_MEM_DATA_IN)
			rx_buf = op->data.buf.in;
		else
			tx_buf = op->data.buf.out;
	}

	op_len = sizeof(op->cmd.opcode) + op->addr.nbytes + op->dummy.nbytes;

	/*
	 * Avoid using malloc() here so that we can use this code in SPL where
	 * simple malloc may be used. That implementation does not allow free()
	 * so repeated calls to this code can exhaust the space.
	 *
	 * The value of op_len is small, since it does not include the actual
	 * data being sent, only the op-code and address. In fact, it should be
	 * possible to just use a small fixed value here instead of op_len.
	 */
	u8 op_buf[op_len];

	op_buf[pos++] = op->cmd.opcode;

	if (op->addr.nbytes) {
		for (i = 0; i < op->addr.nbytes; i++)
			op_buf[pos + i] = op->addr.val >>
				(8 * (op->addr.nbytes - i - 1));

		pos += op->addr.nbytes;
	}

	if (op->dummy.nbytes)
		memset(op_buf + pos, 0xff, op->dummy.nbytes);

	/* 1st transfer: opcode + address + dummy cycles */
	flag = SPI_XFER_BEGIN;
	/* Make sure to set END bit if no tx or rx data messages follow */
	if (!tx_buf && !rx_buf)
		flag |= SPI_XFER_END;

	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
	if (ret)
		return ret;

	/* 2nd transfer: rx or tx data path */
	if (tx_buf || rx_buf) {
		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
			       rx_buf, SPI_XFER_END);
		if (ret)
			return ret;
	}

	spi_release_bus(slave);

	for (i = 0; i < pos; i++)
		debug("%02x ", op_buf[i]);
	debug("| [%dB %s] ",
	      tx_buf || rx_buf ? op->data.nbytes : 0,
	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
	for (i = 0; i < op->data.nbytes; i++)
		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
	debug("[ret %d]\n", ret);

	if (ret < 0)
		return ret;
#endif /* __UBOOT__ */

	return 0;
}
EXPORT_SYMBOL_GPL(spi_mem_exec_op);

/**
 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
 *				 match controller limitations
 * @slave: the SPI device
 * @op: the operation to adjust
 *
 * Some controllers have FIFO limitations and must split a data transfer
 * operation into multiple ones, others require a specific alignment for
 * optimized accesses. This function allows SPI mem drivers to split a single
 * operation into multiple sub-operations when required.
 *
 * Return: a negative error code if the controller can't properly adjust @op,
 *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
 *	   can't be handled in a single step.
 */
int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
{
	struct udevice *bus = slave->dev->parent;
	struct dm_spi_ops *ops = spi_get_ops(bus);

	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
		return ops->mem_ops->adjust_op_size(slave, op);

	if (!ops->mem_ops || !ops->mem_ops->exec_op) {
		unsigned int len;

		len = sizeof(op->cmd.opcode) + op->addr.nbytes +
			op->dummy.nbytes;
		if (slave->max_write_size && len > slave->max_write_size)
			return -EINVAL;

		if (op->data.dir == SPI_MEM_DATA_IN) {
			if (slave->max_read_size)
				op->data.nbytes = min(op->data.nbytes,
					      slave->max_read_size);
		} else if (slave->max_write_size) {
			op->data.nbytes = min(op->data.nbytes,
					      slave->max_write_size - len);
		}

		if (!op->data.nbytes)
			return -EINVAL;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);

#ifndef __UBOOT__
static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
{
	return container_of(drv, struct spi_mem_driver, spidrv.driver);
}

static int spi_mem_probe(struct spi_device *spi)
{
	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
	struct spi_mem *mem;

	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	mem->spi = spi;
	spi_set_drvdata(spi, mem);

	return memdrv->probe(mem);
}

static int spi_mem_remove(struct spi_device *spi)
{
	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
	struct spi_mem *mem = spi_get_drvdata(spi);

	if (memdrv->remove)
		return memdrv->remove(mem);

	return 0;
}

static void spi_mem_shutdown(struct spi_device *spi)
{
	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
	struct spi_mem *mem = spi_get_drvdata(spi);

	if (memdrv->shutdown)
		memdrv->shutdown(mem);
}

/**
 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
 * @memdrv: the SPI memory driver to register
 * @owner: the owner of this driver
 *
 * Registers a SPI memory driver.
 *
 * Return: 0 in case of success, a negative error core otherwise.
 */

int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
				       struct module *owner)
{
	memdrv->spidrv.probe = spi_mem_probe;
	memdrv->spidrv.remove = spi_mem_remove;
	memdrv->spidrv.shutdown = spi_mem_shutdown;

	return __spi_register_driver(owner, &memdrv->spidrv);
}
EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);

/**
 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
 * @memdrv: the SPI memory driver to unregister
 *
 * Unregisters a SPI memory driver.
 */
void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
{
	spi_unregister_driver(&memdrv->spidrv);
}
EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
#endif /* __UBOOT__ */