fsl_fspi.c 39.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
/*
 * Copyright 2017-2018 NXP
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <dm.h>
#include <errno.h>
#include <watchdog.h>
#include <clk.h>
#include "fsl_fspi.h"

DECLARE_GLOBAL_DATA_PTR;

#define RX_BUFFER_SIZE		0x200
#define TX_BUFFER_SIZE		0x400
#define AHB_BUFFER_SIZE		0x800

#define OFFSET_BITS_MASK_4B	GENMASK(31, 0)
#define OFFSET_BITS_MASK	GENMASK(23, 0)

#define FLASH_STATUS_WEL	0x02

/* SEQID */
#define SEQID_READ		0
#define SEQID_WREN		1
#define SEQID_FAST_READ		2
#define SEQID_RDSR		3
#define SEQID_SE		4
#define SEQID_CHIP_ERASE	5
#define SEQID_PP		6
#define SEQID_RDID		7
#define SEQID_BE_4K		8
#ifdef CONFIG_SPI_FLASH_BAR
#define SEQID_BRRD		9
#define SEQID_BRWR		10
#define SEQID_RDEAR		11
#define SEQID_WREAR		12
#endif
#define SEQID_RDEVCR		13
#define SEQID_WREVCR		14
#define SEQID_QUAD_OUTPUT	15
#define SEQID_RDFSR		16
#define SEQID_EN4B		17


/* FSPI CMD */
#define FSPI_CMD_PP		0x02	/* Page program (up to 256 bytes) */
#define FSPI_CMD_RDSR		0x05	/* Read status register */
#define FSPI_CMD_WREN		0x06	/* Write enable */
#define FSPI_CMD_FAST_READ	0x0b	/* Read data bytes (high frequency) */
#define FSPI_CMD_READ		0x03	/* Read data bytes */
#define FSPI_CMD_BE_4K		0x20    /* 4K erase */
#define FSPI_CMD_CHIP_ERASE	0xc7	/* Erase whole flash chip */
#define FSPI_CMD_SE		0xd8	/* Sector erase (usually 64KiB) */
#define FSPI_CMD_RDID		0x9f	/* Read JEDEC ID */

/* Used for Micron, winbond and Macronix flashes */
#define	FSPI_CMD_WREAR		0xc5	/* EAR register write */
#define	FSPI_CMD_RDEAR		0xc8	/* EAR reigster read */

/* Used for Spansion flashes only. */
#define	FSPI_CMD_BRRD		0x16	/* Bank register read */
#define	FSPI_CMD_BRWR		0x17	/* Bank register write */

/* 4-byte address FSPI CMD - used on Spansion and some Macronix flashes */
#define FSPI_CMD_FAST_READ_4B	0x0c    /* Read data bytes (high frequency) */
#define FSPI_CMD_PP_4B		0x12    /* Page program (up to 256 bytes) */
#define FSPI_CMD_SE_4B		0xdc    /* Sector erase (usually 64KiB) */
#define FSPI_CMD_BE_4K_4B	0x21    /* 4K erase */

#define FSPI_CMD_RD_EVCR	0x65    /* Read EVCR register */
#define FSPI_CMD_WR_EVCR	0x61    /* Write EVCR register */

#define FSPI_CMD_EN4B		0xB7

/* 1-1-4 READ CMD */
#define FSPI_CMD_QUAD_OUTPUT		0x6b
#define FSPI_CMD_DDR_QUAD_OUTPUT	0x6d

/* read flag status register */
#define FSPI_CMD_RDFSR		0x70

/* fsl_fspi_platdata flags */
#define FSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)

/* default SCK frequency, unit: HZ */
#define FSL_FSPI_DEFAULT_SCK_FREQ	50000000

/* FSPI max chipselect signals number */
#define FSL_FSPI_MAX_CHIPSELECT_NUM     4

#ifdef CONFIG_DM_SPI
/**
 * struct fsl_fspi_platdata - platform data for NXP FSPI
 *
 * @flags: Flags for FSPI FSPI_FLAG_...
 * @speed_hz: Default SCK frequency
 * @reg_base: Base address of FSPI registers
 * @amba_base: Base address of FSPI memory mapping
 * @amba_total_size: size of FSPI memory mapping
 * @flash_num: Number of active slave devices
 * @num_chipselect: Number of FSPI chipselect signals
 */
struct fsl_fspi_platdata {
	u32 flags;
	u32 speed_hz;
	u32 reg_base;
	u32 amba_base;
	u32 amba_total_size;
	u32 flash_num;
	u32 num_chipselect;
};
#endif

/**
 * struct fsl_fspi_priv - private data for NXP FSPI
 *
 * @flags: Flags for FSPI FSPI_FLAG_...
 * @bus_clk: FSPI input clk frequency
 * @speed_hz: Default SCK frequency
 * @cur_seqid: current LUT table sequence id
 * @sf_addr: flash access offset
 * @amba_base: Base address of FSPI memory mapping of every CS
 * @amba_total_size: size of FSPI memory mapping
 * @cur_amba_base: Base address of FSPI memory mapping of current CS
 * @flash_num: Number of active slave devices
 * @num_chipselect: Number of FSPI chipselect signals
 * @regs: Point to FSPI register structure for I/O access
 */
struct fsl_fspi_priv {
	u32 flags;
	u32 bus_clk;
	u32 speed_hz;
	u32 cur_seqid;
	u32 sf_addr;
	u32 amba_base[FSL_FSPI_MAX_CHIPSELECT_NUM];
	u32 amba_total_size;
	u32 cur_amba_base;
	u32 flash_num;
	u32 num_chipselect;
	struct fsl_fspi_regs *regs;
};

#ifndef CONFIG_DM_SPI
struct fsl_fspi {
	struct spi_slave slave;
	struct fsl_fspi_priv priv;
};
#endif

static u32 fspi_read32(u32 flags, u32 *addr)
{
	return flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
		in_be32(addr) : in_le32(addr);
}

static void fspi_write32(u32 flags, u32 *addr, u32 val)
{
	flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
		out_be32(addr, val) : out_le32(addr, val);
}

/* FSPI support swapping the flash read/write data
 * in hardware
 */
static inline u32 fspi_endian_xchg(u32 data)
{
	return data;
}

static void fspi_set_lut(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 lut_base;

	/* Unlock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_UNLOCK);

	/* READ */
	lut_base = SEQID_READ * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(FSPI_CMD_READ) | PAD0(LUT_PAD1) |
		     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],
		     OPRND0(0) | PAD0(LUT_PAD1) |
		     INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Write Enable */
	lut_base = SEQID_WREN * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WREN) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Fast Read */
	lut_base = SEQID_FAST_READ * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_FSPI_FLASH_SIZE  <= SZ_16M)
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_FAST_READ) | PAD0(LUT_PAD1) |
			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_FAST_READ_4B) |
			     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) |
			     OPRND1(ADDR32BIT) | PAD1(LUT_PAD1) |
			     INSTR1(LUT_ADDR));
#endif
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],
		     OPRND0(8) | PAD0(LUT_PAD1) | INSTR0(LUT_DUMMY) |
		     OPRND1(0) | PAD1(LUT_PAD1) |
		     INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read Status */
	lut_base = SEQID_RDSR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDSR) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Erase a sector */
	lut_base = SEQID_SE * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_SE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_FSPI_FLASH_SIZE  <= SZ_16M)
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_SE) | PAD0(LUT_PAD1) |
			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_SE_4B) | PAD0(LUT_PAD1) |
			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Erase the whole chip */
	lut_base = SEQID_CHIP_ERASE * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(FSPI_CMD_CHIP_ERASE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Page Program */
	lut_base = SEQID_PP * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_PP) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_FSPI_FLASH_SIZE  <= SZ_16M)
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_PP) | PAD0(LUT_PAD1) |
			     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		fspi_write32(priv->flags, &regs->lut[lut_base],
			     OPRND0(FSPI_CMD_PP_4B) | PAD0(LUT_PAD1) |
			     INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
			     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],
		     OPRND0(0) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* READ ID */
	lut_base = SEQID_RDID * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDID) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(8) |
		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* SUB SECTOR 4K ERASE */
	lut_base = SEQID_BE_4K * 4;
#ifdef CONFIG_SPI_FLASH_BAR
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#else
	if (FSL_FSPI_FLASH_SIZE  <= SZ_16M)
		fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	else
		fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BE_4K_4B) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR32BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
#endif
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

#ifdef CONFIG_SPI_FLASH_BAR
	/*
	 * BRRD BRWR RDEAR WREAR are all supported, because it is hard to
	 * dynamically check whether to set BRRD BRWR or RDEAR WREAR during
	 * initialization.
	 */
	lut_base = SEQID_BRRD * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BRRD) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	lut_base = SEQID_BRWR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_BRWR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	lut_base = SEQID_RDEAR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDEAR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	lut_base = SEQID_WREAR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WREAR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#endif
	lut_base = SEQID_RDEVCR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RD_EVCR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	lut_base = SEQID_WREVCR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_WR_EVCR) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

#ifdef CONFIG_FSPI_QUAD_SUPPORT
	/* QUAD OUTPUT READ */
	lut_base = SEQID_QUAD_OUTPUT * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(FSPI_CMD_DDR_QUAD_OUTPUT) | PAD0(LUT_PAD1) |
		     INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR_DDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],
		     OPRND0(0xc) | PAD0(LUT_PAD4) |
		     INSTR0(LUT_DUMMY_DDR) | OPRND1(0) |
		     PAD1(LUT_PAD4) | INSTR1(LUT_READ_DDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);
#endif

	/* Read Flag Status */
	lut_base = SEQID_RDFSR * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_RDFSR) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(1) |
		PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Enter 4 bytes address mode */
	lut_base = SEQID_EN4B * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(FSPI_CMD_EN4B) |
		PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Lock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_LOCK);
}

#if defined(CONFIG_SYS_FSL_FSPI_AHB)
/*
 * If we have changed the content of the flash by writing or erasing,
 * we need to invalidate the AHB buffer. If we do not do so, we may read out
 * the wrong data. The spec tells us reset the AHB domain and Serial Flash
 * domain at the same time.
 */
static inline void fspi_ahb_invalid(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 reg;

	reg = fspi_read32(priv->flags, &regs->mcr0);
	reg |= FLEXSPI_MCR0_SWRST_MASK;
	fspi_write32(priv->flags, &regs->mcr0, reg);

	/*
	 * The minimum delay : 1 AHB + 2 SFCK clocks.
	 * Delay 1 us is enough.
	 */
	while ((fspi_read32(priv->flags, &regs->mcr0) & 1))
		;
}

#define FSPI_AHB_BASE_ADDR 0x08000000
/* Read out the data from the AHB buffer. */
static inline void fspi_ahb_read(struct fsl_fspi_priv *priv, u8 *rxbuf, int len)
{
	/* Read out the data directly from the AHB buffer. */
	memcpy(rxbuf, (u8 *)(0x08000000 + (uintptr_t)priv->sf_addr) , len);

}

/*
 * There are two different ways to read out the data from the flash:
 *  the "IP Command Read" and the "AHB Command Read".
 *
 * The IC guy suggests we use the "AHB Command Read" which is faster
 * then the "IP Command Read". (What's more is that there is a bug in
 * the "IP Command Read" in the Vybrid.)
 *
 * After we set up the registers for the "AHB Command Read", we can use
 * the memcpy to read the data directly. A "missed" access to the buffer
 * causes the controller to clear the buffer, and use the sequence pointed
 * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
 */
static void fspi_init_ahb_read(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;
	int i;

	/* AHB configuration for access buffer 0~7 .*/
	for (i = 0; i < 7; i++)
		fspi_write32(priv->flags, &regs->ahbrxbuf0cr0 + i, 0);

	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the read
	 * performance
	 */
	fspi_write32(priv->flags, &regs->ahbrxbuf7cr0, AHB_BUFFER_SIZE / 8 |
		     FLEXSPI_AHBRXBUF0CR7_PREF_MASK);

	fspi_write32(priv->flags, &regs->ahbcr, FLEXSPI_AHBCR_PREF_EN_MASK);
	/*
	 * Set the default lut sequence for AHB Read.
	 * Parallel mode is disabled.
	 */
#ifdef CONFIG_FSPI_QUAD_SUPPORT
	fspi_write32(priv->flags, &regs->flsha1cr2, SEQID_QUAD_OUTPUT);
#else
	fspi_write32(priv->flags, &regs->flsha1cr2, SEQID_FAST_READ);
#endif

}
#endif

#ifdef CONFIG_SPI_FLASH_BAR
/* Bank register read/write, EAR register read/write */
static void fspi_op_rdbank(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32  data, seqid;

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	if (priv->cur_seqid == FSPI_CMD_BRRD)
		seqid = SEQID_BRRD;
	else
		seqid = SEQID_RDEAR;

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	while (1) {
		data = fspi_read32(priv->flags, &regs->rfdr[0]);
		memcpy(rxbuf, &data, len);
			break;
	}

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

}
#endif

static void fspi_op_rdevcr(struct fsl_fspi_priv *priv, u8 *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32  data;

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_RDEVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	while (1) {
		data = fspi_read32(priv->flags, &regs->rfdr[0]);
		memcpy(rxbuf, &data, len);
			break;
	}

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

}

static void fspi_op_wrevcr(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	/* Wait for TXFIFO empty*/
	while (!(fspi_read32(priv->flags, &regs->intr) & FLEXSPI_INTR_IPTXWE_MASK))
		;

	/* write the data to TXFIFO */
	memcpy(&regs->tfdr, txbuf, len);

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPTXWE_MASK);
	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_WREVCR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr) & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

}

static void fspi_op_rdid(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 data, size;
	int i;

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_RDID << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	i = 0;
	while ((RX_BUFFER_SIZE >= len) && (len > 0)) {
		data = fspi_read32(priv->flags, &regs->rfdr[i]);
		size = (len < 4) ? len : 4;
		memcpy(rxbuf, &data, size);
		len -= size;
		rxbuf++;
		i++;
	}
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);

	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}

#ifndef CONFIG_SYS_FSL_FSPI_AHB
/* If not use AHB read, read data from ip interface */
static void fspi_op_read(struct fsl_fspi_priv *priv, u32 *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	int i, size, rx_size;
	u32 to_or_from;

	to_or_from = priv->sf_addr + priv->cur_amba_base;

	/* invalid the RXFIFO */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	while (len > 0) {
		WATCHDOG_RESET();

		fspi_write32(priv->flags, &regs->ipcr0, to_or_from);

		rx_size = (len > RX_BUFFER_SIZE) ?
			RX_BUFFER_SIZE : len;

#ifdef CONFIG_FSPI_QUAD_SUPPORT
		fspi_write32(priv->flags, &regs->ipcr1,
			     (SEQID_QUAD_OUTPUT << FLEXSPI_IPCR1_SEQID_SHIFT) |
			     rx_size);
#else
		fspi_write32(priv->flags, &regs->ipcr1,
			     (SEQID_FAST_READ << FLEXSPI_IPCR1_SEQID_SHIFT) |
			     rx_size);
#endif

		to_or_from += rx_size;
		len -= rx_size;

		/* Trigger the command */
		fspi_write32(priv->flags, &regs->ipcmd, 1);

		size = rx_size / 8;
		for (i = 0; i < size; ++i) {
			/* Wait for RXFIFO available*/
			while (!(fspi_read32(priv->flags, &regs->intr)
				 & FLEXSPI_INTR_IPRXWA_MASK))
				;

			memcpy(rxbuf, &regs->rfdr, 8);
			rxbuf += 2;

			/* move the FIFO pointer */
			fspi_write32(priv->flags, &regs->intr,
				     FLEXSPI_INTR_IPRXWA_MASK);
		}

		size = rx_size % 8;

		if (size) {
			/* Wait for data filled*/
			while (!(fspi_read32(priv->flags, &regs->iprxfsts)
				& FLEXSPI_IPRXFSTS_FILL_MASK))
				;
			memcpy(rxbuf, &regs->rfdr, size);
		}

		/* invalid the RXFIFO */
		fspi_write32(priv->flags, &regs->iprxfcr,
			     FLEXSPI_IPRXFCR_CLR_MASK);
		fspi_write32(priv->flags, &regs->intr,
			     FLEXSPI_INTR_IPCMDDONE_MASK);
	}

}
#endif

static void fspi_op_write(struct fsl_fspi_priv *priv, u8 *txbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 seqid;
	int i, size, tx_size;
	u32 to_or_from = 0;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	to_or_from = priv->sf_addr + priv->cur_amba_base;

	while (len > 0) {

		/* Default is page programming */
		seqid = SEQID_PP;
#ifdef CONFIG_SPI_FLASH_BAR
		if (priv->cur_seqid == FSPI_CMD_BRWR)
			seqid = SEQID_BRWR;
		else if (priv->cur_seqid == FSPI_CMD_WREAR)
			seqid = SEQID_WREAR;
#endif


		fspi_write32(priv->flags, &regs->ipcr0, to_or_from);

		tx_size = (len > TX_BUFFER_SIZE) ?
			TX_BUFFER_SIZE : len;

		to_or_from += tx_size;
		len -= tx_size;

		size = tx_size / 8;
		for (i = 0; i < size; i++) {
			/* Wait for TXFIFO empty*/
			while (!(fspi_read32(priv->flags, &regs->intr)
				 & FLEXSPI_INTR_IPTXWE_MASK))
				;

			memcpy(&regs->tfdr, txbuf, 8);
			txbuf += 8;
			fspi_write32(priv->flags, &regs->intr,
				     FLEXSPI_INTR_IPTXWE_MASK);
		}

		size = tx_size % 8;
		if (size) {
			/* Wait for TXFIFO empty*/
			while (!(fspi_read32(priv->flags, &regs->intr)
				 & FLEXSPI_INTR_IPTXWE_MASK))
				;

			memcpy(&regs->tfdr, txbuf, size);
			fspi_write32(priv->flags, &regs->intr,
				     FLEXSPI_INTR_IPTXWE_MASK);
		}

		fspi_write32(priv->flags, &regs->ipcr1,
			     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | tx_size);


		/* Trigger the command */
		fspi_write32(priv->flags, &regs->ipcmd, 1);

		/* Wait for command done */
		while (!(fspi_read32(priv->flags, &regs->intr)
			& FLEXSPI_INTR_IPCMDDONE_MASK))
			;

		/* invalid the TXFIFO first */
		fspi_write32(priv->flags, &regs->iptxfcr,
			     FLEXSPI_IPTXFCR_CLR_MASK);
		fspi_write32(priv->flags, &regs->intr,
			     FLEXSPI_INTR_IPCMDDONE_MASK);
	}
}

static void fspi_op_rdsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 data;

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_RDSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	data = fspi_read32(priv->flags, &regs->rfdr[0]);
	memcpy(rxbuf, &data, len);

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}

static void fspi_op_rdfsr(struct fsl_fspi_priv *priv, void *rxbuf, u32 len)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 data;

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_RDFSR << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	data = fspi_read32(priv->flags, &regs->rfdr[0]);
	memcpy(rxbuf, &data, len);

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}

static void fspi_op_erase(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 to_or_from = 0;

	to_or_from = priv->sf_addr + priv->cur_amba_base;

	fspi_write32(priv->flags, &regs->ipcr0, to_or_from);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_WREN << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

	if (priv->cur_seqid == FSPI_CMD_SE || priv->cur_seqid == FSPI_CMD_SE_4B) {
		fspi_write32(priv->flags, &regs->ipcr1,
			     (SEQID_SE << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
	} else if (priv->cur_seqid == FSPI_CMD_BE_4K || priv->cur_seqid == FSPI_CMD_BE_4K_4B) {
		fspi_write32(priv->flags, &regs->ipcr1,
			     (SEQID_BE_4K << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);
	}
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);
}

static void fspi_op_enter_4bytes(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (SEQID_EN4B << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);


}

int fspi_xfer(struct fsl_fspi_priv *priv, unsigned int bitlen,
		const void *dout, void *din, unsigned long flags)
{
	u32 bytes = DIV_ROUND_UP(bitlen, 8);
	static u32 wr_sfaddr;
	u32 txbuf = 0;

	if (dout) {
		if (flags & SPI_XFER_BEGIN) {
			priv->cur_seqid = *(u8 *)dout;
			if (bytes > 1) {
				int i, addr_bytes;

				if (FSL_FSPI_FLASH_SIZE  <= SZ_16M)
					addr_bytes = 3;
				else
#ifdef CONFIG_SPI_FLASH_BAR
					addr_bytes = 3;
#else
					addr_bytes = 4;
#endif

				dout = (u8 *)dout + 1;
				txbuf = *(u8 *)dout;
				for (i = 1; i < addr_bytes; i++) {
					txbuf <<= 8;
					txbuf |= *(((u8 *)dout) + i);
				}

				debug("seqid 0x%x addr 0x%x\n", priv->cur_seqid, txbuf);
			}
		}

		if (flags == SPI_XFER_END) {
			if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
				fspi_op_wrevcr(priv, (u8 *)dout, bytes);
				return 0;
			} else if ((priv->cur_seqid == FSPI_CMD_SE) ||
				(priv->cur_seqid == FSPI_CMD_BE_4K) ||
				(priv->cur_seqid == FSPI_CMD_SE_4B) ||
				(priv->cur_seqid == FSPI_CMD_BE_4K_4B)) {
				int i;
				txbuf = *(u8 *)dout;
				for (i = 1; i < bytes; i++) {
					txbuf <<= 8;
					txbuf |= *(((u8 *)dout) + i);
				}

				priv->sf_addr = txbuf;
				fspi_op_erase(priv);
#ifdef CONFIG_SYS_FSL_FSPI_AHB
				fspi_ahb_invalid(priv);
#endif
				return 0;
			}
			priv->sf_addr = wr_sfaddr;
			fspi_op_write(priv, (u8 *)dout, bytes);
			return 0;
		}

		if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
		    priv->cur_seqid == FSPI_CMD_FAST_READ ||
		    priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
			priv->sf_addr = txbuf;
		} else if (priv->cur_seqid == FSPI_CMD_PP ||
			priv->cur_seqid == FSPI_CMD_PP_4B) {
			wr_sfaddr = txbuf;
		} else if (priv->cur_seqid == FSPI_CMD_WR_EVCR) {
			wr_sfaddr = 0;
		} else if ((priv->cur_seqid == FSPI_CMD_BRWR) ||
			 (priv->cur_seqid == FSPI_CMD_WREAR)) {
#ifdef CONFIG_SPI_FLASH_BAR
			wr_sfaddr = 0;
#endif
		} else if (priv->cur_seqid == FSPI_CMD_EN4B) {
			fspi_op_enter_4bytes(priv);
		}
	}

	if (din) {
		if (priv->cur_seqid == FSPI_CMD_QUAD_OUTPUT ||
		    priv->cur_seqid == FSPI_CMD_FAST_READ ||
		    priv->cur_seqid == FSPI_CMD_FAST_READ_4B) {
#ifdef CONFIG_SYS_FSL_FSPI_AHB
			fspi_ahb_read(priv, din, bytes);
#else
			fspi_op_read(priv, din, bytes);
#endif
		} else if (priv->cur_seqid == FSPI_CMD_RDID)
			fspi_op_rdid(priv, din, bytes);
		else if (priv->cur_seqid == FSPI_CMD_RDSR)
			fspi_op_rdsr(priv, din, bytes);
		else if (priv->cur_seqid == FSPI_CMD_RDFSR)
			fspi_op_rdfsr(priv, din, bytes);
		else if (priv->cur_seqid == FSPI_CMD_RD_EVCR)
			fspi_op_rdevcr(priv, din, bytes);
#ifdef CONFIG_SPI_FLASH_BAR
		else if ((priv->cur_seqid == FSPI_CMD_BRRD) ||
			 (priv->cur_seqid == FSPI_CMD_RDEAR)) {
			priv->sf_addr = 0;
			fspi_op_rdbank(priv, din, bytes);
		}
#endif
	}

#ifdef CONFIG_SYS_FSL_FSPI_AHB
	if ((priv->cur_seqid == FSPI_CMD_SE) ||
		(priv->cur_seqid == FSPI_CMD_SE_4B) ||
	    (priv->cur_seqid == FSPI_CMD_PP) ||
	    (priv->cur_seqid == FSPI_CMD_PP_4B) ||
	    (priv->cur_seqid == FSPI_CMD_BE_4K) ||
	    (priv->cur_seqid == FSPI_CMD_BE_4K_4B) ||
	    (priv->cur_seqid == FSPI_CMD_WREAR) ||
	    (priv->cur_seqid == FSPI_CMD_BRWR))
		fspi_ahb_invalid(priv);
#endif

	return 0;
}

void fspi_module_disable(struct fsl_fspi_priv *priv, u8 disable)
{
	u32 mcr_val;

	mcr_val = fspi_read32(priv->flags, &priv->regs->mcr0);
	if (disable)
		mcr_val |= FLEXSPI_MCR0_MDIS_MASK;
	else
		mcr_val &= ~FLEXSPI_MCR0_MDIS_MASK;
	fspi_write32(priv->flags, &priv->regs->mcr0, mcr_val);
}

void fspi_cfg_smpr(struct fsl_fspi_priv *priv, u32 clear_bits, u32 set_bits)
{
	return;
#if 0
	u32 smpr_val;

	smpr_val = fspi_read32(priv->flags, &priv->regs->smpr);
	smpr_val &= ~clear_bits;
	smpr_val |= set_bits;
	fspi_write32(priv->flags, &priv->regs->smpr, smpr_val);
#endif
}

__weak void init_clk_fspi(int index)
{
}

#ifndef CONFIG_DM_SPI
static unsigned long spi_bases[] = {
	FSPI0_BASE_ADDR,
};

static unsigned long amba_bases[] = {
	FSPI0_AMBA_BASE,
};

static inline struct fsl_fspi *to_fspi_spi(struct spi_slave *slave)
{
	return container_of(slave, struct fsl_fspi, slave);
}

struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
		unsigned int max_hz, unsigned int mode)
{
	struct fsl_fspi *fspi;
	struct fsl_fspi_regs *regs;
	u32 total_size;

	if (bus >= ARRAY_SIZE(spi_bases))
		return NULL;

	if (cs >= FSL_FSPI_FLASH_NUM)
		return NULL;

	fspi = spi_alloc_slave(struct fsl_fspi, bus, cs);
	if (!fspi)
		return NULL;

#ifdef CONFIG_SYS_FSL_FSPI_BE
	fspi->priv.flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;
#endif

	init_clk_fspi(bus);

	regs = (struct fsl_fspi_regs *)spi_bases[bus];
	fspi->priv.regs = regs;
	/*
	 * According cs, use different amba_base to choose the
	 * corresponding flash devices.
	 *
	 * If not, only one flash device is used even if passing
	 * different cs using `sf probe`
	 */
	fspi->priv.cur_amba_base = amba_bases[bus] + cs * FSL_FSPI_FLASH_SIZE;

	fspi->slave.max_write_size = TX_BUFFER_SIZE;

#ifdef CONFIG_FSPI_QUAD_SUPPORT
	fspi->slave.mode |= SPI_RX_QUAD;
#endif

	fspi_write32(fspi->priv.flags, &regs->mcr0,
		     FLEXSPI_MCR0_SWRST_MASK);
	do {
		udelay(1);
	} while (0x1 & fspi_read32(fspi->priv.flags, &regs->mcr0));

	/* Disable the module */
	fspi_module_disable(&fspi->priv, 1);

	/* Enable the module and set to proper value*/
#ifdef CONFIG_FSPI_DQS_LOOPBACK
	fspi_write32(fspi->priv.flags, &regs->mcr0,
		     0xFFFF0010);
#else
	fspi_write32(fspi->priv.flags, &regs->mcr0,
		     0xFFFF0000);
#endif

	total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;
	/*
	 * Any read access to non-implemented addresses will provide
	 * undefined results.
	 *
	 * In case single die flash devices, TOP_ADDR_MEMA2 and
	 * TOP_ADDR_MEMB2 should be initialized/programmed to
	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
	 * setting the size of these devices to 0.  This would ensure
	 * that the complete memory map is assigned to only one flash device.
	 */
	fspi_write32(fspi->priv.flags, &regs->flsha1cr0,
		     total_size);
	fspi_write32(fspi->priv.flags, &regs->flsha2cr0,
		     0);
	fspi_write32(fspi->priv.flags, &regs->flshb1cr0,
		     0);
	fspi_write32(fspi->priv.flags, &regs->flshb2cr0,
		     0);

	fspi_set_lut(&fspi->priv);

#ifdef CONFIG_SYS_FSL_FSPI_AHB
	fspi_init_ahb_read(&fspi->priv);
#endif

	fspi_module_disable(&fspi->priv, 0);

	return &fspi->slave;
}

void spi_free_slave(struct spi_slave *slave)
{
	struct fsl_fspi *fspi = to_fspi_spi(slave);

	free(fspi);
}

int spi_claim_bus(struct spi_slave *slave)
{
	return 0;
}

void spi_release_bus(struct spi_slave *slave)
{
	/* Nothing to do */
}

int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
		const void *dout, void *din, unsigned long flags)
{
	struct fsl_fspi *fspi = to_fspi_spi(slave);

	return fspi_xfer(&fspi->priv, bitlen, dout, din, flags);
}

void spi_init(void)
{
	/* Nothing to do */
}
#else
static int fsl_fspi_child_pre_probe(struct udevice *dev)
{
	struct spi_slave *slave = dev_get_parent_priv(dev);

	slave->max_write_size = TX_BUFFER_SIZE;

#ifdef CONFIG_FSPI_QUAD_SUPPORT
	slave->mode |= SPI_RX_QUAD;
#endif

	return 0;
}

static int fsl_fspi_probe(struct udevice *bus)
{
	u32 total_size;
	struct fsl_fspi_platdata *plat = dev_get_platdata(bus);
	struct fsl_fspi_priv *priv = dev_get_priv(bus);
	struct dm_spi_bus *dm_spi_bus;

	if (CONFIG_IS_ENABLED(CLK)) {
		/* Assigned clock already set clock */
		struct clk fspi_clk;
		int ret;

		ret = clk_get_by_name(bus, "fspi", &fspi_clk);
		if (ret < 0) {
			printf("Can't get fspi clk: %d\n", ret);
			return ret;
		}

		ret = clk_enable(&fspi_clk);
		if (ret < 0) {
			printf("Can't enable fspi clk: %d\n", ret);
			return ret;
		}
	} else {
		init_clk_fspi(bus->seq);
	}
	dm_spi_bus = bus->uclass_priv;

	dm_spi_bus->max_hz = plat->speed_hz;

	priv->regs = (struct fsl_fspi_regs *)(uintptr_t)plat->reg_base;
	priv->flags = plat->flags;

	priv->speed_hz = plat->speed_hz;
	priv->amba_base[0] = plat->amba_base;
	priv->amba_total_size = plat->amba_total_size;
	priv->flash_num = plat->flash_num;
	priv->num_chipselect = plat->num_chipselect;

	fspi_write32(priv->flags, &priv->regs->mcr0,
		     FLEXSPI_MCR0_SWRST_MASK);
	do {
		udelay(1);
	} while (0x1 & fspi_read32(priv->flags, &priv->regs->mcr0));

	/* Disable the module */
	fspi_module_disable(priv, 1);

	/* Enable the module and set to proper value*/
#ifdef CONFIG_FSPI_DQS_LOOPBACK
	fspi_write32(priv->flags, &priv->regs->mcr0,
		     0xFFFF0010);
#else
	fspi_write32(priv->flags, &priv->regs->mcr0,
		     0xFFFF0000);
#endif

	/* Reset the DLL register to default value */
	fspi_write32(priv->flags, &priv->regs->dllacr, 0x0100);
	fspi_write32(priv->flags, &priv->regs->dllbcr, 0x0100);

	/* Flash Size in KByte */
	total_size = FSL_FSPI_FLASH_SIZE * FSL_FSPI_FLASH_NUM >> 10;

	/*
	 * Any read access to non-implemented addresses will provide
	 * undefined results.
	 *
	 * In case single die flash devices, TOP_ADDR_MEMA2 and
	 * TOP_ADDR_MEMB2 should be initialized/programmed to
	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
	 * setting the size of these devices to 0.  This would ensure
	 * that the complete memory map is assigned to only one flash device.
	 */

	fspi_write32(priv->flags, &priv->regs->flsha1cr0,
		     total_size);
	fspi_write32(priv->flags, &priv->regs->flsha2cr0,
		     0);
	fspi_write32(priv->flags, &priv->regs->flshb1cr0,
		     0);
	fspi_write32(priv->flags, &priv->regs->flshb2cr0,
		     0);

	fspi_set_lut(priv);

#ifdef CONFIG_SYS_FSL_FSPI_AHB
	fspi_init_ahb_read(priv);
#endif

	fspi_module_disable(priv, 0);

	return 0;
}

static int fsl_fspi_ofdata_to_platdata(struct udevice *bus)
{
	struct fdt_resource res_regs, res_mem;
	struct fsl_fspi_platdata *plat = bus->platdata;
	const void *blob = gd->fdt_blob;
	int node = ofnode_to_offset(bus->node);
	int ret, flash_num = 0, subnode;

	if (fdtdec_get_bool(blob, node, "big-endian"))
		plat->flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;

	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
				     "FlexSPI", &res_regs);
	if (ret) {
		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
		return -ENOMEM;
	}
	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
				     "FlexSPI-memory", &res_mem);
	if (ret) {
		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
		return -ENOMEM;
	}

	/* Count flash numbers */
	fdt_for_each_subnode(subnode, blob, node)
		++flash_num;

	if (flash_num == 0) {
		debug("Error: Missing flashes!\n");
		return -ENODEV;
	}

	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
					FSL_FSPI_DEFAULT_SCK_FREQ);
	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
					      FSL_FSPI_MAX_CHIPSELECT_NUM);

	plat->reg_base = res_regs.start;
	plat->amba_base = 0;
	plat->amba_total_size = res_mem.end - res_mem.start + 1;
	plat->flash_num = flash_num;

	debug("%s: regs=<0x%x> <0x%x, 0x%x>, max-frequency=%d, endianess=%s\n",
	      __func__,
	      plat->reg_base,
	      plat->amba_base,
	      plat->amba_total_size,
	      plat->speed_hz,
	      plat->flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
	      );

	return 0;
}

static int fsl_fspi_xfer(struct udevice *dev, unsigned int bitlen,
		const void *dout, void *din, unsigned long flags)
{
	struct fsl_fspi_priv *priv;
	struct udevice *bus;

	bus = dev->parent;
	priv = dev_get_priv(bus);

	return fspi_xfer(priv, bitlen, dout, din, flags);
}

static int fsl_fspi_claim_bus(struct udevice *dev)
{
	struct fsl_fspi_priv *priv;
	struct udevice *bus;
	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);

	bus = dev->parent;
	priv = dev_get_priv(bus);

	priv->cur_amba_base =
		priv->amba_base[0] + FSL_FSPI_FLASH_SIZE * slave_plat->cs;

	return 0;
}

static int fsl_fspi_release_bus(struct udevice *dev)
{
	return 0;
}

static int fsl_fspi_set_speed(struct udevice *bus, uint speed)
{
	/* Nothing to do */
	return 0;
}

static int fsl_fspi_set_mode(struct udevice *bus, uint mode)
{
	/* Nothing to do */
	return 0;
}

static const struct dm_spi_ops fsl_fspi_ops = {
	.claim_bus	= fsl_fspi_claim_bus,
	.release_bus	= fsl_fspi_release_bus,
	.xfer		= fsl_fspi_xfer,
	.set_speed	= fsl_fspi_set_speed,
	.set_mode	= fsl_fspi_set_mode,
};

static const struct udevice_id fsl_fspi_ids[] = {
	{ .compatible = "fsl,imx8qm-flexspi" },
	{ .compatible = "fsl,imx8qxp-flexspi" },
	{ .compatible = "fsl,imx8mm-flexspi" },
	{ }
};

U_BOOT_DRIVER(fsl_fspi) = {
	.name	= "fsl_fspi",
	.id	= UCLASS_SPI,
	.of_match = fsl_fspi_ids,
	.ops	= &fsl_fspi_ops,
	.ofdata_to_platdata = fsl_fspi_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct fsl_fspi_platdata),
	.priv_auto_alloc_size = sizeof(struct fsl_fspi_priv),
	.probe	= fsl_fspi_probe,
	.child_pre_probe = fsl_fspi_child_pre_probe,
};
#endif