efi_memory.c 20.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
// SPDX-License-Identifier: GPL-2.0+
/*
 *  EFI application memory management
 *
 *  Copyright (c) 2016 Alexander Graf
 */

#include <common.h>
#include <efi_loader.h>
#include <init.h>
#include <malloc.h>
#include <mapmem.h>
#include <watchdog.h>
#include <linux/list_sort.h>
#include <linux/sizes.h>

DECLARE_GLOBAL_DATA_PTR;

/* Magic number identifying memory allocated from pool */
#define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2

efi_uintn_t efi_memory_map_key;

struct efi_mem_list {
	struct list_head link;
	struct efi_mem_desc desc;
};

#define EFI_CARVE_NO_OVERLAP		-1
#define EFI_CARVE_LOOP_AGAIN		-2
#define EFI_CARVE_OVERLAPS_NONRAM	-3

/* This list contains all memory map items */
LIST_HEAD(efi_mem);

#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
void *efi_bounce_buffer;
#endif

/**
 * struct efi_pool_allocation - memory block allocated from pool
 *
 * @num_pages:	number of pages allocated
 * @checksum:	checksum
 * @data:	allocated pool memory
 *
 * U-Boot services each UEFI AllocatePool() request as a separate
 * (multiple) page allocation. We have to track the number of pages
 * to be able to free the correct amount later.
 *
 * The checksum calculated in function checksum() is used in FreePool() to avoid
 * freeing memory not allocated by AllocatePool() and duplicate freeing.
 *
 * EFI requires 8 byte alignment for pool allocations, so we can
 * prepend each allocation with these header fields.
 */
struct efi_pool_allocation {
	u64 num_pages;
	u64 checksum;
	char data[] __aligned(ARCH_DMA_MINALIGN);
};

/**
 * checksum() - calculate checksum for memory allocated from pool
 *
 * @alloc:	allocation header
 * Return:	checksum, always non-zero
 */
static u64 checksum(struct efi_pool_allocation *alloc)
{
	u64 addr = (uintptr_t)alloc;
	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
		  EFI_ALLOC_POOL_MAGIC;
	if (!ret)
		++ret;
	return ret;
}

/*
 * Sorts the memory list from highest address to lowest address
 *
 * When allocating memory we should always start from the highest
 * address chunk, so sort the memory list such that the first list
 * iterator gets the highest address and goes lower from there.
 */
static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);

	if (mema->desc.physical_start == memb->desc.physical_start)
		return 0;
	else if (mema->desc.physical_start < memb->desc.physical_start)
		return 1;
	else
		return -1;
}

static uint64_t desc_get_end(struct efi_mem_desc *desc)
{
	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
}

static void efi_mem_sort(void)
{
	struct list_head *lhandle;
	struct efi_mem_list *prevmem = NULL;
	bool merge_again = true;

	list_sort(NULL, &efi_mem, efi_mem_cmp);

	/* Now merge entries that can be merged */
	while (merge_again) {
		merge_again = false;
		list_for_each(lhandle, &efi_mem) {
			struct efi_mem_list *lmem;
			struct efi_mem_desc *prev = &prevmem->desc;
			struct efi_mem_desc *cur;
			uint64_t pages;

			lmem = list_entry(lhandle, struct efi_mem_list, link);
			if (!prevmem) {
				prevmem = lmem;
				continue;
			}

			cur = &lmem->desc;

			if ((desc_get_end(cur) == prev->physical_start) &&
			    (prev->type == cur->type) &&
			    (prev->attribute == cur->attribute)) {
				/* There is an existing map before, reuse it */
				pages = cur->num_pages;
				prev->num_pages += pages;
				prev->physical_start -= pages << EFI_PAGE_SHIFT;
				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
				list_del(&lmem->link);
				free(lmem);

				merge_again = true;
				break;
			}

			prevmem = lmem;
		}
	}
}

/** efi_mem_carve_out - unmap memory region
 *
 * @map:		memory map
 * @carve_desc:		memory region to unmap
 * @overlap_only_ram:	the carved out region may only overlap RAM
 * Return Value:	the number of overlapping pages which have been
 *			removed from the map,
 *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
 *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
 *			and the map contains anything but free ram
 *			(only when overlap_only_ram is true),
 *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
 *			traversed again, as it has been altered.
 *
 * Unmaps all memory occupied by the carve_desc region from the list entry
 * pointed to by map.
 *
 * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
 * to re-add the already carved out pages to the mapping.
 */
static s64 efi_mem_carve_out(struct efi_mem_list *map,
			     struct efi_mem_desc *carve_desc,
			     bool overlap_only_ram)
{
	struct efi_mem_list *newmap;
	struct efi_mem_desc *map_desc = &map->desc;
	uint64_t map_start = map_desc->physical_start;
	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
	uint64_t carve_start = carve_desc->physical_start;
	uint64_t carve_end = carve_start +
			     (carve_desc->num_pages << EFI_PAGE_SHIFT);

	/* check whether we're overlapping */
	if ((carve_end <= map_start) || (carve_start >= map_end))
		return EFI_CARVE_NO_OVERLAP;

	/* We're overlapping with non-RAM, warn the caller if desired */
	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
		return EFI_CARVE_OVERLAPS_NONRAM;

	/* Sanitize carve_start and carve_end to lie within our bounds */
	carve_start = max(carve_start, map_start);
	carve_end = min(carve_end, map_end);

	/* Carving at the beginning of our map? Just move it! */
	if (carve_start == map_start) {
		if (map_end == carve_end) {
			/* Full overlap, just remove map */
			list_del(&map->link);
			free(map);
		} else {
			map->desc.physical_start = carve_end;
			map->desc.virtual_start = carve_end;
			map->desc.num_pages = (map_end - carve_end)
					      >> EFI_PAGE_SHIFT;
		}

		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
	}

	/*
	 * Overlapping maps, just split the list map at carve_start,
	 * it will get moved or removed in the next iteration.
	 *
	 * [ map_desc |__carve_start__| newmap ]
	 */

	/* Create a new map from [ carve_start ... map_end ] */
	newmap = calloc(1, sizeof(*newmap));
	newmap->desc = map->desc;
	newmap->desc.physical_start = carve_start;
	newmap->desc.virtual_start = carve_start;
	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
	/* Insert before current entry (descending address order) */
	list_add_tail(&newmap->link, &map->link);

	/* Shrink the map to [ map_start ... carve_start ] */
	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;

	return EFI_CARVE_LOOP_AGAIN;
}

/**
 * efi_add_memory_map() - add memory area to the memory map
 *
 * @start:		start address, must be a multiple of EFI_PAGE_SIZE
 * @pages:		number of pages to add
 * @memory_type:	type of memory added
 * @overlap_only_ram:	the memory area must overlap existing
 * Return:		status code
 */
efi_status_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
				bool overlap_only_ram)
{
	struct list_head *lhandle;
	struct efi_mem_list *newlist;
	bool carve_again;
	uint64_t carved_pages = 0;
	struct efi_event *evt;

	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");

	if (memory_type >= EFI_MAX_MEMORY_TYPE)
		return EFI_INVALID_PARAMETER;

	if (!pages)
		return EFI_SUCCESS;

	++efi_memory_map_key;
	newlist = calloc(1, sizeof(*newlist));
	newlist->desc.type = memory_type;
	newlist->desc.physical_start = start;
	newlist->desc.virtual_start = start;
	newlist->desc.num_pages = pages;

	switch (memory_type) {
	case EFI_RUNTIME_SERVICES_CODE:
	case EFI_RUNTIME_SERVICES_DATA:
		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
		break;
	case EFI_MMAP_IO:
		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
		break;
	default:
		newlist->desc.attribute = EFI_MEMORY_WB;
		break;
	}

	/* Add our new map */
	do {
		carve_again = false;
		list_for_each(lhandle, &efi_mem) {
			struct efi_mem_list *lmem;
			s64 r;

			lmem = list_entry(lhandle, struct efi_mem_list, link);
			r = efi_mem_carve_out(lmem, &newlist->desc,
					      overlap_only_ram);
			switch (r) {
			case EFI_CARVE_OVERLAPS_NONRAM:
				/*
				 * The user requested to only have RAM overlaps,
				 * but we hit a non-RAM region. Error out.
				 */
				return EFI_NO_MAPPING;
			case EFI_CARVE_NO_OVERLAP:
				/* Just ignore this list entry */
				break;
			case EFI_CARVE_LOOP_AGAIN:
				/*
				 * We split an entry, but need to loop through
				 * the list again to actually carve it.
				 */
				carve_again = true;
				break;
			default:
				/* We carved a number of pages */
				carved_pages += r;
				carve_again = true;
				break;
			}

			if (carve_again) {
				/* The list changed, we need to start over */
				break;
			}
		}
	} while (carve_again);

	if (overlap_only_ram && (carved_pages != pages)) {
		/*
		 * The payload wanted to have RAM overlaps, but we overlapped
		 * with an unallocated region. Error out.
		 */
		return EFI_NO_MAPPING;
	}

	/* Add our new map */
        list_add_tail(&newlist->link, &efi_mem);

	/* And make sure memory is listed in descending order */
	efi_mem_sort();

	/* Notify that the memory map was changed */
	list_for_each_entry(evt, &efi_events, link) {
		if (evt->group &&
		    !guidcmp(evt->group,
			     &efi_guid_event_group_memory_map_change)) {
			efi_signal_event(evt);
			break;
		}
	}

	return EFI_SUCCESS;
}

/**
 * efi_check_allocated() - validate address to be freed
 *
 * Check that the address is within allocated memory:
 *
 * * The address must be in a range of the memory map.
 * * The address may not point to EFI_CONVENTIONAL_MEMORY.
 *
 * Page alignment is not checked as this is not a requirement of
 * efi_free_pool().
 *
 * @addr:		address of page to be freed
 * @must_be_allocated:	return success if the page is allocated
 * Return:		status code
 */
static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
{
	struct efi_mem_list *item;

	list_for_each_entry(item, &efi_mem, link) {
		u64 start = item->desc.physical_start;
		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);

		if (addr >= start && addr < end) {
			if (must_be_allocated ^
			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
				return EFI_SUCCESS;
			else
				return EFI_NOT_FOUND;
		}
	}

	return EFI_NOT_FOUND;
}

static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
{
	struct list_head *lhandle;

	/*
	 * Prealign input max address, so we simplify our matching
	 * logic below and can just reuse it as return pointer.
	 */
	max_addr &= ~EFI_PAGE_MASK;

	list_for_each(lhandle, &efi_mem) {
		struct efi_mem_list *lmem = list_entry(lhandle,
			struct efi_mem_list, link);
		struct efi_mem_desc *desc = &lmem->desc;
		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
		uint64_t desc_end = desc->physical_start + desc_len;
		uint64_t curmax = min(max_addr, desc_end);
		uint64_t ret = curmax - len;

		/* We only take memory from free RAM */
		if (desc->type != EFI_CONVENTIONAL_MEMORY)
			continue;

		/* Out of bounds for max_addr */
		if ((ret + len) > max_addr)
			continue;

		/* Out of bounds for upper map limit */
		if ((ret + len) > desc_end)
			continue;

		/* Out of bounds for lower map limit */
		if (ret < desc->physical_start)
			continue;

		/* Return the highest address in this map within bounds */
		return ret;
	}

	return 0;
}

/*
 * Allocate memory pages.
 *
 * @type		type of allocation to be performed
 * @memory_type		usage type of the allocated memory
 * @pages		number of pages to be allocated
 * @memory		allocated memory
 * @return		status code
 */
efi_status_t efi_allocate_pages(int type, int memory_type,
				efi_uintn_t pages, uint64_t *memory)
{
	u64 len = pages << EFI_PAGE_SHIFT;
	efi_status_t ret;
	uint64_t addr;

	/* Check import parameters */
	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
	    memory_type <= 0x6FFFFFFF)
		return EFI_INVALID_PARAMETER;
	if (!memory)
		return EFI_INVALID_PARAMETER;

	switch (type) {
	case EFI_ALLOCATE_ANY_PAGES:
		/* Any page */
		addr = efi_find_free_memory(len, -1ULL);
		if (!addr)
			return EFI_OUT_OF_RESOURCES;
		break;
	case EFI_ALLOCATE_MAX_ADDRESS:
		/* Max address */
		addr = efi_find_free_memory(len, *memory);
		if (!addr)
			return EFI_OUT_OF_RESOURCES;
		break;
	case EFI_ALLOCATE_ADDRESS:
		/* Exact address, reserve it. The addr is already in *memory. */
		ret = efi_check_allocated(*memory, false);
		if (ret != EFI_SUCCESS)
			return EFI_NOT_FOUND;
		addr = *memory;
		break;
	default:
		/* UEFI doesn't specify other allocation types */
		return EFI_INVALID_PARAMETER;
	}

	/* Reserve that map in our memory maps */
	if (efi_add_memory_map(addr, pages, memory_type, true) != EFI_SUCCESS)
		/* Map would overlap, bail out */
		return  EFI_OUT_OF_RESOURCES;

	*memory = addr;

	return EFI_SUCCESS;
}

void *efi_alloc(uint64_t len, int memory_type)
{
	uint64_t ret = 0;
	uint64_t pages = efi_size_in_pages(len);
	efi_status_t r;

	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
			       &ret);
	if (r == EFI_SUCCESS)
		return (void*)(uintptr_t)ret;

	return NULL;
}

/**
 * efi_free_pages() - free memory pages
 *
 * @memory:	start of the memory area to be freed
 * @pages:	number of pages to be freed
 * Return:	status code
 */
efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
{
	efi_status_t ret;

	ret = efi_check_allocated(memory, true);
	if (ret != EFI_SUCCESS)
		return ret;

	/* Sanity check */
	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
		       memory, pages);
		return EFI_INVALID_PARAMETER;
	}

	ret = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
	/* Merging of adjacent free regions is missing */

	if (ret != EFI_SUCCESS)
		return EFI_NOT_FOUND;

	return ret;
}

/**
 * efi_allocate_pool - allocate memory from pool
 *
 * @pool_type:	type of the pool from which memory is to be allocated
 * @size:	number of bytes to be allocated
 * @buffer:	allocated memory
 * Return:	status code
 */
efi_status_t efi_allocate_pool(int pool_type, efi_uintn_t size, void **buffer)
{
	efi_status_t r;
	u64 addr;
	struct efi_pool_allocation *alloc;
	u64 num_pages = efi_size_in_pages(size +
					  sizeof(struct efi_pool_allocation));

	if (!buffer)
		return EFI_INVALID_PARAMETER;

	if (size == 0) {
		*buffer = NULL;
		return EFI_SUCCESS;
	}

	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
			       &addr);
	if (r == EFI_SUCCESS) {
		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
		alloc->num_pages = num_pages;
		alloc->checksum = checksum(alloc);
		*buffer = alloc->data;
	}

	return r;
}

/**
 * efi_free_pool() - free memory from pool
 *
 * @buffer:	start of memory to be freed
 * Return:	status code
 */
efi_status_t efi_free_pool(void *buffer)
{
	efi_status_t ret;
	struct efi_pool_allocation *alloc;

	if (!buffer)
		return EFI_INVALID_PARAMETER;

	ret = efi_check_allocated((uintptr_t)buffer, true);
	if (ret != EFI_SUCCESS)
		return ret;

	alloc = container_of(buffer, struct efi_pool_allocation, data);

	/* Check that this memory was allocated by efi_allocate_pool() */
	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
	    alloc->checksum != checksum(alloc)) {
		printf("%s: illegal free 0x%p\n", __func__, buffer);
		return EFI_INVALID_PARAMETER;
	}
	/* Avoid double free */
	alloc->checksum = 0;

	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);

	return ret;
}

/*
 * Get map describing memory usage.
 *
 * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
 *			on exit the size of the copied memory map
 * @memory_map		buffer to which the memory map is written
 * @map_key		key for the memory map
 * @descriptor_size	size of an individual memory descriptor
 * @descriptor_version	version number of the memory descriptor structure
 * @return		status code
 */
efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
				struct efi_mem_desc *memory_map,
				efi_uintn_t *map_key,
				efi_uintn_t *descriptor_size,
				uint32_t *descriptor_version)
{
	efi_uintn_t map_size = 0;
	int map_entries = 0;
	struct list_head *lhandle;
	efi_uintn_t provided_map_size;

	if (!memory_map_size)
		return EFI_INVALID_PARAMETER;

	provided_map_size = *memory_map_size;

	list_for_each(lhandle, &efi_mem)
		map_entries++;

	map_size = map_entries * sizeof(struct efi_mem_desc);

	*memory_map_size = map_size;

	if (descriptor_size)
		*descriptor_size = sizeof(struct efi_mem_desc);

	if (descriptor_version)
		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;

	if (provided_map_size < map_size)
		return EFI_BUFFER_TOO_SMALL;

	if (!memory_map)
		return EFI_INVALID_PARAMETER;

	/* Copy list into array */
	/* Return the list in ascending order */
	memory_map = &memory_map[map_entries - 1];
	list_for_each(lhandle, &efi_mem) {
		struct efi_mem_list *lmem;

		lmem = list_entry(lhandle, struct efi_mem_list, link);
		*memory_map = lmem->desc;
		memory_map--;
	}

	if (map_key)
		*map_key = efi_memory_map_key;

	return EFI_SUCCESS;
}

/**
 * efi_add_conventional_memory_map() - add a RAM memory area to the map
 *
 * @ram_start:		start address of a RAM memory area
 * @ram_end:		end address of a RAM memory area
 * @ram_top:		max address to be used as conventional memory
 * Return:		status code
 */
efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
					     u64 ram_top)
{
	u64 pages;

	/* Remove partial pages */
	ram_end &= ~EFI_PAGE_MASK;
	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;

	if (ram_end <= ram_start) {
		/* Invalid mapping */
		return EFI_INVALID_PARAMETER;
	}

	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;

	efi_add_memory_map(ram_start, pages,
			   EFI_CONVENTIONAL_MEMORY, false);

	/*
	 * Boards may indicate to the U-Boot memory core that they
	 * can not support memory above ram_top. Let's honor this
	 * in the efi_loader subsystem too by declaring any memory
	 * above ram_top as "already occupied by firmware".
	 */
	if (ram_top < ram_start) {
		/* ram_top is before this region, reserve all */
		efi_add_memory_map(ram_start, pages,
				   EFI_BOOT_SERVICES_DATA, true);
	} else if ((ram_top >= ram_start) && (ram_top < ram_end)) {
		/* ram_top is inside this region, reserve parts */
		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;

		efi_add_memory_map(ram_top, pages,
				   EFI_BOOT_SERVICES_DATA, true);
	}

	return EFI_SUCCESS;
}

__weak void efi_add_known_memory(void)
{
	u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
	int i;

	/*
	 * ram_top is just outside mapped memory. So use an offset of one for
	 * mapping the sandbox address.
	 */
	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;

	/* Fix for 32bit targets with ram_top at 4G */
	if (!ram_top)
		ram_top = 0x100000000ULL;

	/* Add RAM */
	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
		u64 ram_end, ram_start;

		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
		ram_end = ram_start + gd->bd->bi_dram[i].size;

		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
	}
}

/* Add memory regions for U-Boot's memory and for the runtime services code */
static void add_u_boot_and_runtime(void)
{
	unsigned long runtime_start, runtime_end, runtime_pages;
	unsigned long runtime_mask = EFI_PAGE_MASK;
	unsigned long uboot_start, uboot_pages;
	unsigned long uboot_stack_size = 16 * 1024 * 1024;

	/* Add U-Boot */
	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
		       uboot_stack_size) & ~EFI_PAGE_MASK;
	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);

#if defined(__aarch64__)
	/*
	 * Runtime Services must be 64KiB aligned according to the
	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
	 */

	runtime_mask = SZ_64K - 1;
#endif

	/*
	 * Add Runtime Services. We mark surrounding boottime code as runtime as
	 * well to fulfill the runtime alignment constraints but avoid padding.
	 */
	runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
	runtime_end = (ulong)&__efi_runtime_stop;
	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
	efi_add_memory_map(runtime_start, runtime_pages,
			   EFI_RUNTIME_SERVICES_CODE, false);
}

int efi_memory_init(void)
{
	efi_add_known_memory();

	add_u_boot_and_runtime();

#ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
	/* Request a 32bit 64MB bounce buffer region */
	uint64_t efi_bounce_buffer_addr = 0xffffffff;

	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
		return -1;

	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
#endif

	return 0;
}