uniphier_spi.c 10.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
// SPDX-License-Identifier: GPL-2.0+
/*
 * uniphier_spi.c - Socionext UniPhier SPI driver
 * Copyright 2019 Socionext, Inc.
 */

#include <clk.h>
#include <common.h>
#include <dm.h>
#include <time.h>
#include <dm/device_compat.h>
#include <linux/bitfield.h>
#include <linux/io.h>
#include <spi.h>
#include <wait_bit.h>

DECLARE_GLOBAL_DATA_PTR;

#define SSI_CTL			0x00
#define   SSI_CTL_EN		BIT(0)

#define SSI_CKS			0x04
#define   SSI_CKS_CKRAT_MASK	GENMASK(7, 0)
#define   SSI_CKS_CKPHS		BIT(14)
#define   SSI_CKS_CKINIT	BIT(13)
#define   SSI_CKS_CKDLY		BIT(12)

#define SSI_TXWDS		0x08
#define   SSI_TXWDS_WDLEN_MASK	GENMASK(13, 8)
#define   SSI_TXWDS_TDTF_MASK	GENMASK(7, 6)
#define   SSI_TXWDS_DTLEN_MASK	GENMASK(5, 0)

#define SSI_RXWDS		0x0c
#define   SSI_RXWDS_RDTF_MASK	GENMASK(7, 6)
#define   SSI_RXWDS_DTLEN_MASK	GENMASK(5, 0)

#define SSI_FPS			0x10
#define   SSI_FPS_FSPOL		BIT(15)
#define   SSI_FPS_FSTRT		BIT(14)

#define SSI_SR			0x14
#define   SSI_SR_BUSY		BIT(7)
#define   SSI_SR_TNF		BIT(5)
#define   SSI_SR_RNE		BIT(0)

#define SSI_IE			0x18

#define SSI_IC			0x1c
#define   SSI_IC_TCIC		BIT(4)
#define   SSI_IC_RCIC		BIT(3)
#define   SSI_IC_RORIC		BIT(0)

#define SSI_FC			0x20
#define   SSI_FC_TXFFL		BIT(12)
#define   SSI_FC_TXFTH_MASK	GENMASK(11, 8)
#define   SSI_FC_RXFFL		BIT(4)
#define   SSI_FC_RXFTH_MASK	GENMASK(3, 0)

#define SSI_XDR			0x24	/* TXDR for write, RXDR for read */

#define SSI_FIFO_DEPTH		8U

#define SSI_REG_TIMEOUT		(CONFIG_SYS_HZ / 100)	/* 10 ms */
#define SSI_XFER_TIMEOUT	(CONFIG_SYS_HZ)		/* 1 sec */

#define SSI_CLK			50000000	/* internal I/O clock: 50MHz */

struct uniphier_spi_platdata {
	void __iomem *base;
	u32 frequency;			/* input frequency */
	u32 speed_hz;
	uint deactivate_delay_us;	/* Delay to wait after deactivate */
	uint activate_delay_us;		/* Delay to wait after activate */
};

struct uniphier_spi_priv {
	void __iomem *base;
	u8 mode;
	u8 fifo_depth;
	u8 bits_per_word;
	ulong last_transaction_us;	/* Time of last transaction end */
};

static void uniphier_spi_enable(struct uniphier_spi_priv *priv, int enable)
{
	u32 val;

	val = readl(priv->base + SSI_CTL);
	if (enable)
		val |= SSI_CTL_EN;
	else
		val &= ~SSI_CTL_EN;
	writel(val, priv->base + SSI_CTL);
}

static void uniphier_spi_regdump(struct uniphier_spi_priv *priv)
{
	pr_debug("CTL   %08x\n", readl(priv->base + SSI_CTL));
	pr_debug("CKS   %08x\n", readl(priv->base + SSI_CKS));
	pr_debug("TXWDS %08x\n", readl(priv->base + SSI_TXWDS));
	pr_debug("RXWDS %08x\n", readl(priv->base + SSI_RXWDS));
	pr_debug("FPS   %08x\n", readl(priv->base + SSI_FPS));
	pr_debug("SR    %08x\n", readl(priv->base + SSI_SR));
	pr_debug("IE    %08x\n", readl(priv->base + SSI_IE));
	pr_debug("IC    %08x\n", readl(priv->base + SSI_IC));
	pr_debug("FC    %08x\n", readl(priv->base + SSI_FC));
	pr_debug("XDR   %08x\n", readl(priv->base + SSI_XDR));
}

static void spi_cs_activate(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct uniphier_spi_platdata *plat = bus->platdata;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	ulong delay_us;		/* The delay completed so far */
	u32 val;

	/* If it's too soon to do another transaction, wait */
	if (plat->deactivate_delay_us && priv->last_transaction_us) {
		delay_us = timer_get_us() - priv->last_transaction_us;
		if (delay_us < plat->deactivate_delay_us)
			udelay(plat->deactivate_delay_us - delay_us);
	}

	val = readl(priv->base + SSI_FPS);
	if (priv->mode & SPI_CS_HIGH)
		val |= SSI_FPS_FSPOL;
	else
		val &= ~SSI_FPS_FSPOL;
	writel(val, priv->base + SSI_FPS);

	if (plat->activate_delay_us)
		udelay(plat->activate_delay_us);
}

static void spi_cs_deactivate(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct uniphier_spi_platdata *plat = bus->platdata;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	u32 val;

	val = readl(priv->base + SSI_FPS);
	if (priv->mode & SPI_CS_HIGH)
		val &= ~SSI_FPS_FSPOL;
	else
		val |= SSI_FPS_FSPOL;
	writel(val, priv->base + SSI_FPS);

	/* Remember time of this transaction so we can honour the bus delay */
	if (plat->deactivate_delay_us)
		priv->last_transaction_us = timer_get_us();
}

static int uniphier_spi_claim_bus(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	u32 val, size;

	uniphier_spi_enable(priv, false);

	/* disable interrupts */
	writel(0, priv->base + SSI_IE);

	/* bits_per_word */
	size = priv->bits_per_word;
	val = readl(priv->base + SSI_TXWDS);
	val &= ~(SSI_TXWDS_WDLEN_MASK | SSI_TXWDS_DTLEN_MASK);
	val |= FIELD_PREP(SSI_TXWDS_WDLEN_MASK, size);
	val |= FIELD_PREP(SSI_TXWDS_DTLEN_MASK, size);
	writel(val, priv->base + SSI_TXWDS);

	val = readl(priv->base + SSI_RXWDS);
	val &= ~SSI_RXWDS_DTLEN_MASK;
	val |= FIELD_PREP(SSI_RXWDS_DTLEN_MASK, size);
	writel(val, priv->base + SSI_RXWDS);

	/* reset FIFOs */
	val = SSI_FC_TXFFL | SSI_FC_RXFFL;
	writel(val, priv->base + SSI_FC);

	/* FIFO threthold */
	val = readl(priv->base + SSI_FC);
	val &= ~(SSI_FC_TXFTH_MASK | SSI_FC_RXFTH_MASK);
	val |= FIELD_PREP(SSI_FC_TXFTH_MASK, priv->fifo_depth);
	val |= FIELD_PREP(SSI_FC_RXFTH_MASK, priv->fifo_depth);
	writel(val, priv->base + SSI_FC);

	/* clear interrupts */
	writel(SSI_IC_TCIC | SSI_IC_RCIC | SSI_IC_RORIC,
	       priv->base + SSI_IC);

	uniphier_spi_enable(priv, true);

	return 0;
}

static int uniphier_spi_release_bus(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);

	uniphier_spi_enable(priv, false);

	return 0;
}

static int uniphier_spi_xfer(struct udevice *dev, unsigned int bitlen,
			     const void *dout, void *din, unsigned long flags)
{
	struct udevice *bus = dev->parent;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	const u8 *tx_buf = dout;
	u8 *rx_buf = din, buf;
	u32 len = bitlen / 8;
	u32 tx_len, rx_len;
	u32 ts, status;
	int ret = 0;

	if (bitlen % 8) {
		dev_err(dev, "Non byte aligned SPI transfer\n");
		return -EINVAL;
	}

	if (flags & SPI_XFER_BEGIN)
		spi_cs_activate(dev);

	uniphier_spi_enable(priv, true);

	ts = get_timer(0);
	tx_len = len;
	rx_len = len;

	uniphier_spi_regdump(priv);

	while (tx_len || rx_len) {
		ret = wait_for_bit_le32(priv->base + SSI_SR, SSI_SR_BUSY, false,
					SSI_REG_TIMEOUT * 1000, false);
		if (ret) {
			if (ret == -ETIMEDOUT)
				dev_err(dev, "access timeout\n");
			break;
		}

		status = readl(priv->base + SSI_SR);
		/* write the data into TX */
		if (tx_len && (status & SSI_SR_TNF)) {
			buf = tx_buf ? *tx_buf++ : 0;
			writel(buf, priv->base + SSI_XDR);
			tx_len--;
		}

		/* read the data from RX */
		if (rx_len && (status & SSI_SR_RNE)) {
			buf = readl(priv->base + SSI_XDR);
			if (rx_buf)
				*rx_buf++ = buf;
			rx_len--;
		}

		if (get_timer(ts) >= SSI_XFER_TIMEOUT) {
			dev_err(dev, "transfer timeout\n");
			ret = -ETIMEDOUT;
			break;
		}
	}

	if (flags & SPI_XFER_END)
		spi_cs_deactivate(dev);

	uniphier_spi_enable(priv, false);

	return ret;
}

static int uniphier_spi_set_speed(struct udevice *bus, uint speed)
{
	struct uniphier_spi_platdata *plat = bus->platdata;
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	u32 val, ckdiv;

	if (speed > plat->frequency)
		speed = plat->frequency;

	/* baudrate */
	ckdiv = DIV_ROUND_UP(SSI_CLK, speed);
	ckdiv = round_up(ckdiv, 2);

	val = readl(priv->base + SSI_CKS);
	val &= ~SSI_CKS_CKRAT_MASK;
	val |= ckdiv & SSI_CKS_CKRAT_MASK;
	writel(val, priv->base + SSI_CKS);

	return 0;
}

static int uniphier_spi_set_mode(struct udevice *bus, uint mode)
{
	struct uniphier_spi_priv *priv = dev_get_priv(bus);
	u32 val1, val2;

	/*
	 * clock setting
	 * CKPHS    capture timing. 0:rising edge, 1:falling edge
	 * CKINIT   clock initial level. 0:low, 1:high
	 * CKDLY    clock delay. 0:no delay, 1:delay depending on FSTRT
	 *          (FSTRT=0: 1 clock, FSTRT=1: 0.5 clock)
	 *
	 * frame setting
	 * FSPOL    frame signal porarity. 0: low, 1: high
	 * FSTRT    start frame timing
	 *          0: rising edge of clock, 1: falling edge of clock
	 */
	val1 = readl(priv->base + SSI_CKS);
	val2 = readl(priv->base + SSI_FPS);

	switch (mode & (SPI_CPOL | SPI_CPHA)) {
	case SPI_MODE_0:
		/* CKPHS=1, CKINIT=0, CKDLY=1, FSTRT=0 */
		val1 |= SSI_CKS_CKPHS | SSI_CKS_CKDLY;
		val1 &= ~SSI_CKS_CKINIT;
		val2 &= ~SSI_FPS_FSTRT;
		break;
	case SPI_MODE_1:
		/* CKPHS=0, CKINIT=0, CKDLY=0, FSTRT=1 */
		val1 &= ~(SSI_CKS_CKPHS | SSI_CKS_CKINIT | SSI_CKS_CKDLY);
		val2 |= SSI_FPS_FSTRT;
		break;
	case SPI_MODE_2:
		/* CKPHS=0, CKINIT=1, CKDLY=1, FSTRT=1 */
		val1 |= SSI_CKS_CKINIT | SSI_CKS_CKDLY;
		val1 &= ~SSI_CKS_CKPHS;
		val2 |= SSI_FPS_FSTRT;
		break;
	case SPI_MODE_3:
		/* CKPHS=1, CKINIT=1, CKDLY=0, FSTRT=0 */
		val1 |= SSI_CKS_CKPHS | SSI_CKS_CKINIT;
		val1 &= ~SSI_CKS_CKDLY;
		val2 &= ~SSI_FPS_FSTRT;
		break;
	}

	writel(val1, priv->base + SSI_CKS);
	writel(val2, priv->base + SSI_FPS);

	/* format */
	val1 = readl(priv->base + SSI_TXWDS);
	val2 = readl(priv->base + SSI_RXWDS);
	if (mode & SPI_LSB_FIRST) {
		val1 |= FIELD_PREP(SSI_TXWDS_TDTF_MASK, 1);
		val2 |= FIELD_PREP(SSI_RXWDS_RDTF_MASK, 1);
	}
	writel(val1, priv->base + SSI_TXWDS);
	writel(val2, priv->base + SSI_RXWDS);

	priv->mode = mode;

	return 0;
}

static int uniphier_spi_ofdata_to_platdata(struct udevice *bus)
{
	struct uniphier_spi_platdata *plat = bus->platdata;
	const void *blob = gd->fdt_blob;
	int node = dev_of_offset(bus);

	plat->base = devfdt_get_addr_ptr(bus);

	plat->frequency =
		fdtdec_get_int(blob, node, "spi-max-frequency", 12500000);
	plat->deactivate_delay_us =
		fdtdec_get_int(blob, node, "spi-deactivate-delay", 0);
	plat->activate_delay_us =
		fdtdec_get_int(blob, node, "spi-activate-delay", 0);
	plat->speed_hz = plat->frequency / 2;

	return 0;
}

static int uniphier_spi_probe(struct udevice *bus)
{
	struct uniphier_spi_platdata *plat = dev_get_platdata(bus);
	struct uniphier_spi_priv *priv = dev_get_priv(bus);

	priv->base = plat->base;
	priv->fifo_depth = SSI_FIFO_DEPTH;
	priv->bits_per_word = 8;

	return 0;
}

static const struct dm_spi_ops uniphier_spi_ops = {
	.claim_bus	= uniphier_spi_claim_bus,
	.release_bus	= uniphier_spi_release_bus,
	.xfer		= uniphier_spi_xfer,
	.set_speed	= uniphier_spi_set_speed,
	.set_mode	= uniphier_spi_set_mode,
};

static const struct udevice_id uniphier_spi_ids[] = {
	{ .compatible = "socionext,uniphier-scssi" },
	{ /* Sentinel */ }
};

U_BOOT_DRIVER(uniphier_spi) = {
	.name	= "uniphier_spi",
	.id	= UCLASS_SPI,
	.of_match = uniphier_spi_ids,
	.ops	= &uniphier_spi_ops,
	.ofdata_to_platdata = uniphier_spi_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct uniphier_spi_platdata),
	.priv_auto_alloc_size = sizeof(struct uniphier_spi_priv),
	.probe	= uniphier_spi_probe,
};