ddr3.c 12.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
/*
 * Keystone2: DDR3 initialization
 *
 * (C) Copyright 2012-2014
 *     Texas Instruments Incorporated, <www.ti.com>
 *
 * SPDX-License-Identifier:     GPL-2.0+
 */

#include <asm/io.h>
#include <common.h>
#include <asm/arch/msmc.h>
#include <asm/arch/ddr3.h>
#include <asm/arch/psc_defs.h>

#include <asm/ti-common/ti-edma3.h>

#define DDR3_EDMA_BLK_SIZE_SHIFT	10
#define DDR3_EDMA_BLK_SIZE		(1 << DDR3_EDMA_BLK_SIZE_SHIFT)
#define DDR3_EDMA_BCNT			0x8000
#define DDR3_EDMA_CCNT			1
#define DDR3_EDMA_XF_SIZE		(DDR3_EDMA_BLK_SIZE * DDR3_EDMA_BCNT)
#define DDR3_EDMA_SLOT_NUM		1

void ddr3_init_ddrphy(u32 base, struct ddr3_phy_config *phy_cfg)
{
	unsigned int tmp;

	while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET)
		 & 0x00000001) != 0x00000001)
		;

	__raw_writel(phy_cfg->pllcr, base + KS2_DDRPHY_PLLCR_OFFSET);

	tmp = __raw_readl(base + KS2_DDRPHY_PGCR1_OFFSET);
	tmp &= ~(phy_cfg->pgcr1_mask);
	tmp |= phy_cfg->pgcr1_val;
	__raw_writel(tmp, base + KS2_DDRPHY_PGCR1_OFFSET);

	__raw_writel(phy_cfg->ptr0,   base + KS2_DDRPHY_PTR0_OFFSET);
	__raw_writel(phy_cfg->ptr1,   base + KS2_DDRPHY_PTR1_OFFSET);
	__raw_writel(phy_cfg->ptr3,  base + KS2_DDRPHY_PTR3_OFFSET);
	__raw_writel(phy_cfg->ptr4,  base + KS2_DDRPHY_PTR4_OFFSET);

	tmp =  __raw_readl(base + KS2_DDRPHY_DCR_OFFSET);
	tmp &= ~(phy_cfg->dcr_mask);
	tmp |= phy_cfg->dcr_val;
	__raw_writel(tmp, base + KS2_DDRPHY_DCR_OFFSET);

	__raw_writel(phy_cfg->dtpr0, base + KS2_DDRPHY_DTPR0_OFFSET);
	__raw_writel(phy_cfg->dtpr1, base + KS2_DDRPHY_DTPR1_OFFSET);
	__raw_writel(phy_cfg->dtpr2, base + KS2_DDRPHY_DTPR2_OFFSET);
	__raw_writel(phy_cfg->mr0,   base + KS2_DDRPHY_MR0_OFFSET);
	__raw_writel(phy_cfg->mr1,   base + KS2_DDRPHY_MR1_OFFSET);
	__raw_writel(phy_cfg->mr2,   base + KS2_DDRPHY_MR2_OFFSET);
	__raw_writel(phy_cfg->dtcr,  base + KS2_DDRPHY_DTCR_OFFSET);
	__raw_writel(phy_cfg->pgcr2, base + KS2_DDRPHY_PGCR2_OFFSET);

	__raw_writel(phy_cfg->zq0cr1, base + KS2_DDRPHY_ZQ0CR1_OFFSET);
	__raw_writel(phy_cfg->zq1cr1, base + KS2_DDRPHY_ZQ1CR1_OFFSET);
	__raw_writel(phy_cfg->zq2cr1, base + KS2_DDRPHY_ZQ2CR1_OFFSET);

	__raw_writel(phy_cfg->pir_v1, base + KS2_DDRPHY_PIR_OFFSET);
	while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
		;

	if (cpu_is_k2g()) {
		clrsetbits_le32(base + KS2_DDRPHY_DATX8_2_OFFSET,
				phy_cfg->datx8_2_mask,
				phy_cfg->datx8_2_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_3_OFFSET,
				phy_cfg->datx8_3_mask,
				phy_cfg->datx8_3_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_4_OFFSET,
				phy_cfg->datx8_4_mask,
				phy_cfg->datx8_4_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_5_OFFSET,
				phy_cfg->datx8_5_mask,
				phy_cfg->datx8_5_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_6_OFFSET,
				phy_cfg->datx8_6_mask,
				phy_cfg->datx8_6_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_7_OFFSET,
				phy_cfg->datx8_7_mask,
				phy_cfg->datx8_7_val);

		clrsetbits_le32(base + KS2_DDRPHY_DATX8_8_OFFSET,
				phy_cfg->datx8_8_mask,
				phy_cfg->datx8_8_val);
	}

	__raw_writel(phy_cfg->pir_v2, base + KS2_DDRPHY_PIR_OFFSET);
	while ((__raw_readl(base + KS2_DDRPHY_PGSR0_OFFSET) & 0x1) != 0x1)
		;
}

void ddr3_init_ddremif(u32 base, struct ddr3_emif_config *emif_cfg)
{
	__raw_writel(emif_cfg->sdcfg,  base + KS2_DDR3_SDCFG_OFFSET);
	__raw_writel(emif_cfg->sdtim1, base + KS2_DDR3_SDTIM1_OFFSET);
	__raw_writel(emif_cfg->sdtim2, base + KS2_DDR3_SDTIM2_OFFSET);
	__raw_writel(emif_cfg->sdtim3, base + KS2_DDR3_SDTIM3_OFFSET);
	__raw_writel(emif_cfg->sdtim4, base + KS2_DDR3_SDTIM4_OFFSET);
	__raw_writel(emif_cfg->zqcfg,  base + KS2_DDR3_ZQCFG_OFFSET);
	__raw_writel(emif_cfg->sdrfc,  base + KS2_DDR3_SDRFC_OFFSET);
}

int ddr3_ecc_support_rmw(u32 base)
{
	u32 value = __raw_readl(base + KS2_DDR3_MIDR_OFFSET);

	/* Check the DDR3 controller ID reg if the controllers
	   supports ECC RMW or not */
	if (value == 0x40461C02)
		return 1;

	return 0;
}

static void ddr3_ecc_config(u32 base, u32 value)
{
	u32 data;

	__raw_writel(value,  base + KS2_DDR3_ECC_CTRL_OFFSET);
	udelay(100000); /* delay required to synchronize across clock domains */

	if (value & KS2_DDR3_ECC_EN) {
		/* Clear the 1-bit error count */
		data = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
		__raw_writel(data, base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);

		/* enable the ECC interrupt */
		__raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
			     KS2_DDR3_WR_ECC_ERR_SYS,
			     base + KS2_DDR3_ECC_INT_ENABLE_SET_SYS_OFFSET);

		/* Clear the ECC error interrupt status */
		__raw_writel(KS2_DDR3_1B_ECC_ERR_SYS | KS2_DDR3_2B_ECC_ERR_SYS |
			     KS2_DDR3_WR_ECC_ERR_SYS,
			     base + KS2_DDR3_ECC_INT_STATUS_OFFSET);
	}
}

static void ddr3_reset_data(u32 base, u32 ddr3_size)
{
	u32 mpax[2];
	u32 seg_num;
	u32 seg, blks, dst, edma_blks;
	struct edma3_slot_config slot;
	struct edma3_channel_config edma_channel;
	u32 edma_src[DDR3_EDMA_BLK_SIZE/4] __aligned(16) = {0, };

	/* Setup an edma to copy the 1k block to the entire DDR */
	puts("\nClear entire DDR3 memory to enable ECC\n");

	/* save the SES MPAX regs */
	if (cpu_is_k2g())
		msmc_get_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax);
	else
		msmc_get_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax);

	/* setup edma slot 1 configuration */
	slot.opt = EDMA3_SLOPT_TRANS_COMP_INT_ENB |
		   EDMA3_SLOPT_COMP_CODE(0) |
		   EDMA3_SLOPT_STATIC | EDMA3_SLOPT_AB_SYNC;
	slot.bcnt = DDR3_EDMA_BCNT;
	slot.acnt = DDR3_EDMA_BLK_SIZE;
	slot.ccnt = DDR3_EDMA_CCNT;
	slot.src_bidx = 0;
	slot.dst_bidx = DDR3_EDMA_BLK_SIZE;
	slot.src_cidx = 0;
	slot.dst_cidx = 0;
	slot.link = EDMA3_PARSET_NULL_LINK;
	slot.bcntrld = 0;
	edma3_slot_configure(KS2_EDMA0_BASE, DDR3_EDMA_SLOT_NUM, &slot);

	/* configure quik edma channel */
	edma_channel.slot = DDR3_EDMA_SLOT_NUM;
	edma_channel.chnum = 0;
	edma_channel.complete_code = 0;
	/* event trigger after dst update */
	edma_channel.trigger_slot_word = EDMA3_TWORD(dst);
	qedma3_start(KS2_EDMA0_BASE, &edma_channel);

	/* DDR3 size in segments (4KB seg size) */
	seg_num = ddr3_size << (30 - KS2_MSMC_SEG_SIZE_SHIFT);

	for (seg = 0; seg < seg_num; seg += KS2_MSMC_MAP_SEG_NUM) {
		/* map 2GB 36-bit DDR address to 32-bit DDR address in EMIF
		   access slave interface so that edma driver can access */
		if (cpu_is_k2g()) {
			msmc_map_ses_segment(K2G_MSMC_SEGMENT_ARM, 0,
					     base >> KS2_MSMC_SEG_SIZE_SHIFT,
					     KS2_MSMC_DST_SEG_BASE + seg,
					     MPAX_SEG_2G);
		} else {
			msmc_map_ses_segment(K2HKLE_MSMC_SEGMENT_ARM, 0,
					     base >> KS2_MSMC_SEG_SIZE_SHIFT,
					     KS2_MSMC_DST_SEG_BASE + seg,
					     MPAX_SEG_2G);
		}

		if ((seg_num - seg) > KS2_MSMC_MAP_SEG_NUM)
			edma_blks = KS2_MSMC_MAP_SEG_NUM <<
					(KS2_MSMC_SEG_SIZE_SHIFT
					- DDR3_EDMA_BLK_SIZE_SHIFT);
		else
			edma_blks = (seg_num - seg) << (KS2_MSMC_SEG_SIZE_SHIFT
					- DDR3_EDMA_BLK_SIZE_SHIFT);

		/* Use edma driver to scrub 2GB DDR memory */
		for (dst = base, blks = 0; blks < edma_blks;
		     blks += DDR3_EDMA_BCNT, dst += DDR3_EDMA_XF_SIZE) {
			edma3_set_src_addr(KS2_EDMA0_BASE,
					   edma_channel.slot, (u32)edma_src);
			edma3_set_dest_addr(KS2_EDMA0_BASE,
					    edma_channel.slot, (u32)dst);

			while (edma3_check_for_transfer(KS2_EDMA0_BASE,
							&edma_channel))
				udelay(10);
		}
	}

	qedma3_stop(KS2_EDMA0_BASE, &edma_channel);

	/* restore the SES MPAX regs */
	if (cpu_is_k2g())
		msmc_set_ses_mpax(K2G_MSMC_SEGMENT_ARM, 0, mpax);
	else
		msmc_set_ses_mpax(K2HKLE_MSMC_SEGMENT_ARM, 0, mpax);
}

static void ddr3_ecc_init_range(u32 base)
{
	u32 ecc_val = KS2_DDR3_ECC_EN;
	u32 rmw = ddr3_ecc_support_rmw(base);

	if (rmw)
		ecc_val |= KS2_DDR3_ECC_RMW_EN;

	__raw_writel(0, base + KS2_DDR3_ECC_ADDR_RANGE1_OFFSET);

	ddr3_ecc_config(base, ecc_val);
}

void ddr3_enable_ecc(u32 base, int test)
{
	u32 ecc_val = KS2_DDR3_ECC_ENABLE;
	u32 rmw = ddr3_ecc_support_rmw(base);

	if (test)
		ecc_val |= KS2_DDR3_ECC_ADDR_RNG_1_EN;

	if (!rmw) {
		if (!test)
			/* by default, disable ecc when rmw = 0 and no
			   ecc test */
			ecc_val = 0;
	} else {
		ecc_val |= KS2_DDR3_ECC_RMW_EN;
	}

	ddr3_ecc_config(base, ecc_val);
}

void ddr3_disable_ecc(u32 base)
{
	ddr3_ecc_config(base, 0);
}

#if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
static void cic_init(u32 base)
{
	/* Disable CIC global interrupts */
	__raw_writel(0, base + KS2_CIC_GLOBAL_ENABLE);

	/* Set to normal mode, no nesting, no priority hold */
	__raw_writel(0, base + KS2_CIC_CTRL);
	__raw_writel(0, base + KS2_CIC_HOST_CTRL);

	/* Enable CIC global interrupts */
	__raw_writel(1, base + KS2_CIC_GLOBAL_ENABLE);
}

static void cic_map_cic_to_gic(u32 base, u32 chan_num, u32 irq_num)
{
	/* Map the system interrupt to a CIC channel */
	__raw_writeb(chan_num, base + KS2_CIC_CHAN_MAP(0) + irq_num);

	/* Enable CIC system interrupt */
	__raw_writel(irq_num, base + KS2_CIC_SYS_ENABLE_IDX_SET);

	/* Enable CIC Host interrupt */
	__raw_writel(chan_num, base + KS2_CIC_HOST_ENABLE_IDX_SET);
}

static void ddr3_map_ecc_cic2_irq(u32 base)
{
	cic_init(base);
	cic_map_cic_to_gic(base, KS2_CIC2_DDR3_ECC_CHAN_NUM,
			   KS2_CIC2_DDR3_ECC_IRQ_NUM);
}
#endif

void ddr3_init_ecc(u32 base, u32 ddr3_size)
{
	if (!ddr3_ecc_support_rmw(base)) {
		ddr3_disable_ecc(base);
		return;
	}

	ddr3_ecc_init_range(base);
	ddr3_reset_data(CONFIG_SYS_SDRAM_BASE, ddr3_size);

	/* mapping DDR3 ECC system interrupt from CIC2 to GIC */
#if defined(CONFIG_SOC_K2HK) || defined(CONFIG_SOC_K2L)
	ddr3_map_ecc_cic2_irq(KS2_CIC2_BASE);
#endif
	ddr3_enable_ecc(base, 0);
}

void ddr3_check_ecc_int(u32 base)
{
	char *env;
	int ecc_test = 0;
	u32 value = __raw_readl(base + KS2_DDR3_ECC_INT_STATUS_OFFSET);

	env = env_get("ecc_test");
	if (env)
		ecc_test = simple_strtol(env, NULL, 0);

	if (value & KS2_DDR3_WR_ECC_ERR_SYS)
		puts("DDR3 ECC write error interrupted\n");

	if (value & KS2_DDR3_2B_ECC_ERR_SYS) {
		puts("DDR3 ECC 2-bit error interrupted\n");

		if (!ecc_test) {
			puts("Reseting the device ...\n");
			reset_cpu(0);
		}
	}

	value = __raw_readl(base + KS2_DDR3_ONE_BIT_ECC_ERR_CNT_OFFSET);
	if (value) {
		printf("1-bit ECC err count: 0x%x\n", value);
		value = __raw_readl(base +
				    KS2_DDR3_ONE_BIT_ECC_ERR_ADDR_LOG_OFFSET);
		printf("1-bit ECC err address log: 0x%x\n", value);
	}
}

void ddr3_reset_ddrphy(void)
{
	u32 tmp;

	/* Assert DDR3A  PHY reset */
	tmp = readl(KS2_DDR3APLLCTL1);
	tmp |= KS2_DDR3_PLLCTRL_PHY_RESET;
	writel(tmp, KS2_DDR3APLLCTL1);

	/* wait 10us to catch the reset */
	udelay(10);

	/* Release DDR3A PHY reset */
	tmp = readl(KS2_DDR3APLLCTL1);
	tmp &= ~KS2_DDR3_PLLCTRL_PHY_RESET;
	__raw_writel(tmp, KS2_DDR3APLLCTL1);
}

#ifdef CONFIG_SOC_K2HK
/**
 * ddr3_reset_workaround - reset workaround in case if leveling error
 * detected for PG 1.0 and 1.1 k2hk SoCs
 */
void ddr3_err_reset_workaround(void)
{
	unsigned int tmp;
	unsigned int tmp_a;
	unsigned int tmp_b;

	/*
	 * Check for PGSR0 error bits of DDR3 PHY.
	 * Check for WLERR, QSGERR, WLAERR,
	 * RDERR, WDERR, REERR, WEERR error to see if they are set or not
	 */
	tmp_a = __raw_readl(KS2_DDR3A_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);
	tmp_b = __raw_readl(KS2_DDR3B_DDRPHYC + KS2_DDRPHY_PGSR0_OFFSET);

	if (((tmp_a & 0x0FE00000) != 0) || ((tmp_b & 0x0FE00000) != 0)) {
		printf("DDR Leveling Error Detected!\n");
		printf("DDR3A PGSR0 = 0x%x\n", tmp_a);
		printf("DDR3B PGSR0 = 0x%x\n", tmp_b);

		/*
		 * Write Keys to KICK registers to enable writes to registers
		 * in boot config space
		 */
		__raw_writel(KS2_KICK0_MAGIC, KS2_KICK0);
		__raw_writel(KS2_KICK1_MAGIC, KS2_KICK1);

		/*
		 * Move DDR3A Module out of reset isolation by setting
		 * MDCTL23[12] = 0
		 */
		tmp_a = __raw_readl(KS2_PSC_BASE +
				    PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));

		tmp_a = PSC_REG_MDCTL_SET_RESET_ISO(tmp_a, 0);
		__raw_writel(tmp_a, KS2_PSC_BASE +
			     PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3A));

		/*
		 * Move DDR3B Module out of reset isolation by setting
		 * MDCTL24[12] = 0
		 */
		tmp_b = __raw_readl(KS2_PSC_BASE +
				    PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));
		tmp_b = PSC_REG_MDCTL_SET_RESET_ISO(tmp_b, 0);
		__raw_writel(tmp_b, KS2_PSC_BASE +
			     PSC_REG_MDCTL(KS2_LPSC_EMIF4F_DDR3B));

		/*
		 * Write 0x5A69 Key to RSTCTRL[15:0] to unlock writes
		 * to RSTCTRL and RSTCFG
		 */
		tmp = __raw_readl(KS2_RSTCTRL);
		tmp &= KS2_RSTCTRL_MASK;
		tmp |= KS2_RSTCTRL_KEY;
		__raw_writel(tmp, KS2_RSTCTRL);

		/*
		 * Set PLL Controller to drive hard reset on SW trigger by
		 * setting RSTCFG[13] = 0
		 */
		tmp = __raw_readl(KS2_RSTCTRL_RSCFG);
		tmp &= ~KS2_RSTYPE_PLL_SOFT;
		__raw_writel(tmp, KS2_RSTCTRL_RSCFG);

		reset_cpu(0);
	}
}
#endif