phantom.c
7.23 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
/*
* board/eva/phantom.c
*
* Phantom RTC device driver for EVA
*
* Author: Sangmoon Kim
* dogoil@etinsys.com
*
* Copyright 2002 Etinsys Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*/
#include <common.h>
#include <command.h>
#include <rtc.h>
#if defined(CONFIG_CMD_DATE)
#define RTC_BASE (CFG_NVRAM_BASE_ADDR + 0x7fff8)
#define RTC_YEAR ( RTC_BASE + 7 )
#define RTC_MONTH ( RTC_BASE + 6 )
#define RTC_DAY_OF_MONTH ( RTC_BASE + 5 )
#define RTC_DAY_OF_WEEK ( RTC_BASE + 4 )
#define RTC_HOURS ( RTC_BASE + 3 )
#define RTC_MINUTES ( RTC_BASE + 2 )
#define RTC_SECONDS ( RTC_BASE + 1 )
#define RTC_CENTURY ( RTC_BASE + 0 )
#define RTC_CONTROLA RTC_CENTURY
#define RTC_CONTROLB RTC_SECONDS
#define RTC_CONTROLC RTC_DAY_OF_WEEK
#define RTC_CA_WRITE 0x80
#define RTC_CA_READ 0x40
#define RTC_CB_OSC_DISABLE 0x80
#define RTC_CC_BATTERY_FLAG 0x80
#define RTC_CC_FREQ_TEST 0x40
static int phantom_flag = -1;
static int century_flag = -1;
static uchar rtc_read(unsigned int addr)
{
return *(volatile unsigned char *)(addr);
}
static void rtc_write(unsigned int addr, uchar val)
{
*(volatile unsigned char *)(addr) = val;
}
static unsigned char phantom_rtc_sequence[] = {
0xc5, 0x3a, 0xa3, 0x5c, 0xc5, 0x3a, 0xa3, 0x5c
};
static unsigned char* phantom_rtc_read(int addr, unsigned char rtc[8])
{
int i, j;
unsigned char v;
unsigned char save = rtc_read(addr);
for (j = 0; j < 8; j++) {
v = phantom_rtc_sequence[j];
for (i = 0; i < 8; i++) {
rtc_write(addr, v & 1);
v >>= 1;
}
}
for (j = 0; j < 8; j++) {
v = 0;
for (i = 0; i < 8; i++) {
if(rtc_read(addr) & 1)
v |= 1 << i;
}
rtc[j] = v;
}
rtc_write(addr, save);
return rtc;
}
static void phantom_rtc_write(int addr, unsigned char rtc[8])
{
int i, j;
unsigned char v;
unsigned char save = rtc_read(addr);
for (j = 0; j < 8; j++) {
v = phantom_rtc_sequence[j];
for (i = 0; i < 8; i++) {
rtc_write(addr, v & 1);
v >>= 1;
}
}
for (j = 0; j < 8; j++) {
v = rtc[j];
for (i = 0; i < 8; i++) {
rtc_write(addr, v & 1);
v >>= 1;
}
}
rtc_write(addr, save);
}
static int get_phantom_flag(void)
{
int i;
unsigned char rtc[8];
phantom_rtc_read(RTC_BASE, rtc);
for(i = 1; i < 8; i++) {
if (rtc[i] != rtc[0])
return 1;
}
return 0;
}
void rtc_reset(void)
{
if (phantom_flag < 0)
phantom_flag = get_phantom_flag();
if (phantom_flag) {
unsigned char rtc[8];
phantom_rtc_read(RTC_BASE, rtc);
if(rtc[4] & 0x30) {
printf( "real-time-clock was stopped. Now starting...\n" );
rtc[4] &= 0x07;
phantom_rtc_write(RTC_BASE, rtc);
}
} else {
uchar reg_a, reg_b, reg_c;
reg_a = rtc_read( RTC_CONTROLA );
reg_b = rtc_read( RTC_CONTROLB );
if ( reg_b & RTC_CB_OSC_DISABLE )
{
printf( "real-time-clock was stopped. Now starting...\n" );
reg_a |= RTC_CA_WRITE;
reg_b &= ~RTC_CB_OSC_DISABLE;
rtc_write( RTC_CONTROLA, reg_a );
rtc_write( RTC_CONTROLB, reg_b );
}
/* make sure read/write clock register bits are cleared */
reg_a &= ~( RTC_CA_WRITE | RTC_CA_READ );
rtc_write( RTC_CONTROLA, reg_a );
reg_c = rtc_read( RTC_CONTROLC );
if (( reg_c & RTC_CC_BATTERY_FLAG ) == 0 )
printf( "RTC battery low. Clock setting may not be reliable.\n");
}
}
inline unsigned bcd2bin (uchar n)
{
return ((((n >> 4) & 0x0F) * 10) + (n & 0x0F));
}
inline unsigned char bin2bcd (unsigned int n)
{
return (((n / 10) << 4) | (n % 10));
}
static int get_century_flag(void)
{
int flag = 0;
int bcd, century;
bcd = rtc_read( RTC_CENTURY );
century = bcd2bin( bcd & 0x3F );
rtc_write( RTC_CENTURY, bin2bcd(century+1));
if (bcd == rtc_read( RTC_CENTURY ))
flag = 1;
rtc_write( RTC_CENTURY, bcd);
return flag;
}
int rtc_get( struct rtc_time *tmp)
{
if (phantom_flag < 0)
phantom_flag = get_phantom_flag();
if (phantom_flag)
{
unsigned char rtc[8];
phantom_rtc_read(RTC_BASE, rtc);
tmp->tm_sec = bcd2bin(rtc[1] & 0x7f);
tmp->tm_min = bcd2bin(rtc[2] & 0x7f);
tmp->tm_hour = bcd2bin(rtc[3] & 0x1f);
tmp->tm_wday = bcd2bin(rtc[4] & 0x7);
tmp->tm_mday = bcd2bin(rtc[5] & 0x3f);
tmp->tm_mon = bcd2bin(rtc[6] & 0x1f);
tmp->tm_year = bcd2bin(rtc[7]) + 1900;
tmp->tm_yday = 0;
tmp->tm_isdst = 0;
if( (rtc[3] & 0x80) && (rtc[3] & 0x40) ) tmp->tm_hour += 12;
if (tmp->tm_year < 1970) tmp->tm_year += 100;
} else {
uchar sec, min, hour;
uchar mday, wday, mon, year;
int century;
uchar reg_a;
if (century_flag < 0)
century_flag = get_century_flag();
reg_a = rtc_read( RTC_CONTROLA );
/* lock clock registers for read */
rtc_write( RTC_CONTROLA, ( reg_a | RTC_CA_READ ));
sec = rtc_read( RTC_SECONDS );
min = rtc_read( RTC_MINUTES );
hour = rtc_read( RTC_HOURS );
mday = rtc_read( RTC_DAY_OF_MONTH );
wday = rtc_read( RTC_DAY_OF_WEEK );
mon = rtc_read( RTC_MONTH );
year = rtc_read( RTC_YEAR );
century = rtc_read( RTC_CENTURY );
/* unlock clock registers after read */
rtc_write( RTC_CONTROLA, ( reg_a & ~RTC_CA_READ ));
tmp->tm_sec = bcd2bin( sec & 0x7F );
tmp->tm_min = bcd2bin( min & 0x7F );
tmp->tm_hour = bcd2bin( hour & 0x3F );
tmp->tm_mday = bcd2bin( mday & 0x3F );
tmp->tm_mon = bcd2bin( mon & 0x1F );
tmp->tm_wday = bcd2bin( wday & 0x07 );
if (century_flag) {
tmp->tm_year = bcd2bin( year ) +
( bcd2bin( century & 0x3F ) * 100 );
} else {
tmp->tm_year = bcd2bin( year ) + 1900;
if (tmp->tm_year < 1970) tmp->tm_year += 100;
}
tmp->tm_yday = 0;
tmp->tm_isdst= 0;
}
return 0;
}
void rtc_set( struct rtc_time *tmp )
{
if (phantom_flag < 0)
phantom_flag = get_phantom_flag();
if (phantom_flag) {
uint year;
unsigned char rtc[8];
year = tmp->tm_year;
year -= (year < 2000) ? 1900 : 2000;
rtc[0] = bin2bcd(0);
rtc[1] = bin2bcd(tmp->tm_sec);
rtc[2] = bin2bcd(tmp->tm_min);
rtc[3] = bin2bcd(tmp->tm_hour);
rtc[4] = bin2bcd(tmp->tm_wday);
rtc[5] = bin2bcd(tmp->tm_mday);
rtc[6] = bin2bcd(tmp->tm_mon);
rtc[7] = bin2bcd(year);
phantom_rtc_write(RTC_BASE, rtc);
} else {
uchar reg_a;
if (century_flag < 0)
century_flag = get_century_flag();
/* lock clock registers for write */
reg_a = rtc_read( RTC_CONTROLA );
rtc_write( RTC_CONTROLA, ( reg_a | RTC_CA_WRITE ));
rtc_write( RTC_MONTH, bin2bcd( tmp->tm_mon ));
rtc_write( RTC_DAY_OF_WEEK, bin2bcd( tmp->tm_wday ));
rtc_write( RTC_DAY_OF_MONTH, bin2bcd( tmp->tm_mday ));
rtc_write( RTC_HOURS, bin2bcd( tmp->tm_hour ));
rtc_write( RTC_MINUTES, bin2bcd( tmp->tm_min ));
rtc_write( RTC_SECONDS, bin2bcd( tmp->tm_sec ));
/* break year up into century and year in century */
if (century_flag) {
rtc_write( RTC_YEAR, bin2bcd( tmp->tm_year % 100 ));
rtc_write( RTC_CENTURY, bin2bcd( tmp->tm_year / 100 ));
reg_a &= 0xc0;
reg_a |= bin2bcd( tmp->tm_year / 100 );
} else {
rtc_write(RTC_YEAR, bin2bcd(tmp->tm_year -
((tmp->tm_year < 2000) ? 1900 : 2000)));
}
/* unlock clock registers after read */
rtc_write( RTC_CONTROLA, ( reg_a & ~RTC_CA_WRITE ));
}
}
#endif