ftssp010_spi.c 12.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
/*
 * (C) Copyright 2013
 * Faraday Technology Corporation. <http://www.faraday-tech.com/tw/>
 * Kuo-Jung Su <dantesu@gmail.com>
 *
 * SPDX-License-Identifier:     GPL-2.0+
 */

#include <common.h>
#include <linux/compat.h>
#include <asm/io.h>
#include <malloc.h>
#include <spi.h>

#ifndef CONFIG_FTSSP010_BASE_LIST
#define CONFIG_FTSSP010_BASE_LIST   { CONFIG_FTSSP010_BASE }
#endif

#ifndef CONFIG_FTSSP010_GPIO_BASE
#define CONFIG_FTSSP010_GPIO_BASE   0
#endif

#ifndef CONFIG_FTSSP010_GPIO_LIST
#define CONFIG_FTSSP010_GPIO_LIST   { CONFIG_FTSSP010_GPIO_BASE }
#endif

#ifndef CONFIG_FTSSP010_CLOCK
#define CONFIG_FTSSP010_CLOCK       clk_get_rate("SSP");
#endif

#ifndef CONFIG_FTSSP010_TIMEOUT
#define CONFIG_FTSSP010_TIMEOUT     100
#endif

/* FTSSP010 chip registers */
struct ftssp010_regs {
	uint32_t cr[3];/* control register */
	uint32_t sr;   /* status register */
	uint32_t icr;  /* interrupt control register */
	uint32_t isr;  /* interrupt status register */
	uint32_t dr;   /* data register */
	uint32_t rsvd[17];
	uint32_t revr; /* revision register */
	uint32_t fear; /* feature register */
};

/* Control Register 0  */
#define CR0_FFMT_MASK       (7 << 12)
#define CR0_FFMT_SSP        (0 << 12)
#define CR0_FFMT_SPI        (1 << 12)
#define CR0_FFMT_MICROWIRE  (2 << 12)
#define CR0_FFMT_I2S        (3 << 12)
#define CR0_FFMT_AC97       (4 << 12)
#define CR0_FLASH           (1 << 11)
#define CR0_FSDIST(x)       (((x) & 0x03) << 8)
#define CR0_LOOP            (1 << 7)  /* loopback mode */
#define CR0_LSB             (1 << 6)  /* LSB */
#define CR0_FSPO            (1 << 5)  /* fs atcive low (I2S only) */
#define CR0_FSJUSTIFY       (1 << 4)
#define CR0_OPM_SLAVE       (0 << 2)
#define CR0_OPM_MASTER      (3 << 2)
#define CR0_OPM_I2S_MSST    (3 << 2)  /* master stereo mode */
#define CR0_OPM_I2S_MSMO    (2 << 2)  /* master mono mode */
#define CR0_OPM_I2S_SLST    (1 << 2)  /* slave stereo mode */
#define CR0_OPM_I2S_SLMO    (0 << 2)  /* slave mono mode */
#define CR0_SCLKPO          (1 << 1)  /* clock polarity */
#define CR0_SCLKPH          (1 << 0)  /* clock phase */

/* Control Register 1 */
#define CR1_PDL(x)   (((x) & 0xff) << 24) /* padding length */
#define CR1_SDL(x)   ((((x) - 1) & 0x1f) << 16) /* data length */
#define CR1_DIV(x)   (((x) - 1) & 0xffff) /* clock divider */

/* Control Register 2 */
#define CR2_CS(x)    (((x) & 3) << 10) /* CS/FS select */
#define CR2_FS       (1 << 9) /* CS/FS signal level */
#define CR2_TXEN     (1 << 8) /* tx enable */
#define CR2_RXEN     (1 << 7) /* rx enable */
#define CR2_RESET    (1 << 6) /* chip reset */
#define CR2_TXFC     (1 << 3) /* tx fifo Clear */
#define CR2_RXFC     (1 << 2) /* rx fifo Clear */
#define CR2_TXDOE    (1 << 1) /* tx data output enable */
#define CR2_EN       (1 << 0) /* chip enable */

/* Status Register */
#define SR_RFF       (1 << 0) /* rx fifo full */
#define SR_TFNF      (1 << 1) /* tx fifo not full */
#define SR_BUSY      (1 << 2) /* chip busy */
#define SR_RFVE(reg) (((reg) >> 4) & 0x1f)  /* rx fifo valid entries */
#define SR_TFVE(reg) (((reg) >> 12) & 0x1f) /* tx fifo valid entries */

/* Feature Register */
#define FEAR_BITS(reg)   ((((reg) >>  0) & 0xff) + 1) /* data width */
#define FEAR_RFSZ(reg)   ((((reg) >>  8) & 0xff) + 1) /* rx fifo size */
#define FEAR_TFSZ(reg)   ((((reg) >> 16) & 0xff) + 1) /* tx fifo size */
#define FEAR_AC97        (1 << 24)
#define FEAR_I2S         (1 << 25)
#define FEAR_SPI_MWR     (1 << 26)
#define FEAR_SSP         (1 << 27)
#define FEAR_SPDIF       (1 << 28)

/* FTGPIO010 chip registers */
struct ftgpio010_regs {
	uint32_t out;     /* 0x00: Data Output */
	uint32_t in;      /* 0x04: Data Input */
	uint32_t dir;     /* 0x08: Direction */
	uint32_t bypass;  /* 0x0c: Bypass */
	uint32_t set;     /* 0x10: Data Set */
	uint32_t clr;     /* 0x14: Data Clear */
	uint32_t pull_up; /* 0x18: Pull-Up Enabled */
	uint32_t pull_st; /* 0x1c: Pull State (0=pull-down, 1=pull-up) */
};

struct ftssp010_gpio {
	struct ftgpio010_regs *regs;
	uint32_t pin;
};

struct ftssp010_spi {
	struct spi_slave slave;
	struct ftssp010_gpio gpio;
	struct ftssp010_regs *regs;
	uint32_t fifo;
	uint32_t mode;
	uint32_t div;
	uint32_t clk;
	uint32_t speed;
	uint32_t revision;
};

static inline struct ftssp010_spi *to_ftssp010_spi(struct spi_slave *slave)
{
	return container_of(slave, struct ftssp010_spi, slave);
}

static int get_spi_chip(int bus, struct ftssp010_spi *chip)
{
	uint32_t fear, base[] = CONFIG_FTSSP010_BASE_LIST;

	if (bus >= ARRAY_SIZE(base) || !base[bus])
		return -1;

	chip->regs = (struct ftssp010_regs *)base[bus];

	chip->revision = readl(&chip->regs->revr);

	fear = readl(&chip->regs->fear);
	chip->fifo = min_t(uint32_t, FEAR_TFSZ(fear), FEAR_RFSZ(fear));

	return 0;
}

static int get_spi_gpio(int bus, struct ftssp010_gpio *chip)
{
	uint32_t base[] = CONFIG_FTSSP010_GPIO_LIST;

	if (bus >= ARRAY_SIZE(base) || !base[bus])
		return -1;

	chip->regs = (struct ftgpio010_regs *)(base[bus] & 0xfff00000);
	chip->pin = base[bus] & 0x1f;

	/* make it an output pin */
	setbits_le32(&chip->regs->dir, 1 << chip->pin);

	return 0;
}

static int ftssp010_wait(struct ftssp010_spi *chip)
{
	struct ftssp010_regs *regs = chip->regs;
	int ret = -1;
	ulong t;

	/* wait until device idle */
	for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
		if (readl(&regs->sr) & SR_BUSY)
			continue;
		ret = 0;
		break;
	}

	if (ret)
		puts("ftspi010: busy timeout\n");

	return ret;
}

static int ftssp010_wait_tx(struct ftssp010_spi *chip)
{
	struct ftssp010_regs *regs = chip->regs;
	int ret = -1;
	ulong t;

	/* wait until tx fifo not full */
	for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
		if (!(readl(&regs->sr) & SR_TFNF))
			continue;
		ret = 0;
		break;
	}

	if (ret)
		puts("ftssp010: tx timeout\n");

	return ret;
}

static int ftssp010_wait_rx(struct ftssp010_spi *chip)
{
	struct ftssp010_regs *regs = chip->regs;
	int ret = -1;
	ulong t;

	/* wait until rx fifo not empty */
	for (t = get_timer(0); get_timer(t) < CONFIG_FTSSP010_TIMEOUT; ) {
		if (!SR_RFVE(readl(&regs->sr)))
			continue;
		ret = 0;
		break;
	}

	if (ret)
		puts("ftssp010: rx timeout\n");

	return ret;
}

static int ftssp010_spi_work_transfer_v2(struct ftssp010_spi *chip,
	const void *tx_buf, void *rx_buf, int len, uint flags)
{
	struct ftssp010_regs *regs = chip->regs;
	const uint8_t *txb = tx_buf;
	uint8_t       *rxb = rx_buf;

	while (len > 0) {
		int i, depth = min(chip->fifo >> 2, len);
		uint32_t xmsk = 0;

		if (tx_buf) {
			for (i = 0; i < depth; ++i) {
				ftssp010_wait_tx(chip);
				writel(*txb++, &regs->dr);
			}
			xmsk |= CR2_TXEN | CR2_TXDOE;
			if ((readl(&regs->cr[2]) & xmsk) != xmsk)
				setbits_le32(&regs->cr[2], xmsk);
		}
		if (rx_buf) {
			xmsk |= CR2_RXEN;
			if ((readl(&regs->cr[2]) & xmsk) != xmsk)
				setbits_le32(&regs->cr[2], xmsk);
			for (i = 0; i < depth; ++i) {
				ftssp010_wait_rx(chip);
				*rxb++ = (uint8_t)readl(&regs->dr);
			}
		}

		len -= depth;
	}

	return 0;
}

static int ftssp010_spi_work_transfer_v1(struct ftssp010_spi *chip,
	const void *tx_buf, void *rx_buf, int len, uint flags)
{
	struct ftssp010_regs *regs = chip->regs;
	const uint8_t *txb = tx_buf;
	uint8_t       *rxb = rx_buf;

	while (len > 0) {
		int i, depth = min(chip->fifo >> 2, len);
		uint32_t tmp;

		for (i = 0; i < depth; ++i) {
			ftssp010_wait_tx(chip);
			writel(txb ? (*txb++) : 0, &regs->dr);
		}
		for (i = 0; i < depth; ++i) {
			ftssp010_wait_rx(chip);
			tmp = readl(&regs->dr);
			if (rxb)
				*rxb++ = (uint8_t)tmp;
		}

		len -= depth;
	}

	return 0;
}

static void ftssp010_cs_set(struct ftssp010_spi *chip, int high)
{
	struct ftssp010_regs *regs = chip->regs;
	struct ftssp010_gpio *gpio = &chip->gpio;
	uint32_t mask;

	/* cs pull high/low */
	if (chip->revision >= 0x11900) {
		mask = CR2_CS(chip->slave.cs) | (high ? CR2_FS : 0);
		writel(mask, &regs->cr[2]);
	} else if (gpio->regs) {
		mask = 1 << gpio->pin;
		if (high)
			writel(mask, &gpio->regs->set);
		else
			writel(mask, &gpio->regs->clr);
	}

	/* extra delay for signal propagation */
	udelay_masked(1);
}

/*
 * Determine if a SPI chipselect is valid.
 * This function is provided by the board if the low-level SPI driver
 * needs it to determine if a given chipselect is actually valid.
 *
 * Returns: 1 if bus:cs identifies a valid chip on this board, 0
 * otherwise.
 */
int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
	struct ftssp010_spi chip;

	if (get_spi_chip(bus, &chip))
		return 0;

	if (!cs)
		return 1;
	else if ((cs < 4) && (chip.revision >= 0x11900))
		return 1;

	return 0;
}

/*
 * Activate a SPI chipselect.
 * This function is provided by the board code when using a driver
 * that can't control its chipselects automatically (e.g.
 * common/soft_spi.c). When called, it should activate the chip select
 * to the device identified by "slave".
 */
void spi_cs_activate(struct spi_slave *slave)
{
	struct ftssp010_spi *chip = to_ftssp010_spi(slave);
	struct ftssp010_regs *regs = chip->regs;

	/* cs pull */
	if (chip->mode & SPI_CS_HIGH)
		ftssp010_cs_set(chip, 1);
	else
		ftssp010_cs_set(chip, 0);

	/* chip enable + fifo clear */
	setbits_le32(&regs->cr[2], CR2_EN | CR2_TXFC | CR2_RXFC);
}

/*
 * Deactivate a SPI chipselect.
 * This function is provided by the board code when using a driver
 * that can't control its chipselects automatically (e.g.
 * common/soft_spi.c). When called, it should deactivate the chip
 * select to the device identified by "slave".
 */
void spi_cs_deactivate(struct spi_slave *slave)
{
	struct ftssp010_spi *chip = to_ftssp010_spi(slave);

	/* wait until chip idle */
	ftssp010_wait(chip);

	/* cs pull */
	if (chip->mode & SPI_CS_HIGH)
		ftssp010_cs_set(chip, 0);
	else
		ftssp010_cs_set(chip, 1);
}

void spi_init(void)
{
	/* nothing to do */
}

struct spi_slave *spi_setup_slave(uint bus, uint cs, uint max_hz, uint mode)
{
	struct ftssp010_spi *chip;

	if (mode & SPI_3WIRE) {
		puts("ftssp010: can't do 3-wire\n");
		return NULL;
	}

	if (mode & SPI_SLAVE) {
		puts("ftssp010: can't do slave mode\n");
		return NULL;
	}

	if (mode & SPI_PREAMBLE) {
		puts("ftssp010: can't skip preamble bytes\n");
		return NULL;
	}

	if (!spi_cs_is_valid(bus, cs)) {
		puts("ftssp010: invalid (bus, cs)\n");
		return NULL;
	}

	chip = spi_alloc_slave(struct ftssp010_spi, bus, cs);
	if (!chip)
		return NULL;

	if (get_spi_chip(bus, chip))
		goto free_out;

	if (chip->revision < 0x11900 && get_spi_gpio(bus, &chip->gpio)) {
		puts("ftssp010: Before revision 1.19.0, its clock & cs are\n"
		"controlled by tx engine which is not synced with rx engine,\n"
		"so the clock & cs might be shutdown before rx engine\n"
		"finishs its jobs.\n"
		"If possible, please add a dedicated gpio for it.\n");
	}

	chip->mode = mode;
	chip->clk = CONFIG_FTSSP010_CLOCK;
	chip->div = 2;
	if (max_hz) {
		while (chip->div < 0xffff) {
			if ((chip->clk / (2 * chip->div)) <= max_hz)
				break;
			chip->div += 1;
		}
	}
	chip->speed = chip->clk / (2 * chip->div);

	return &chip->slave;

free_out:
	free(chip);
	return NULL;
}

void spi_free_slave(struct spi_slave *slave)
{
	free(slave);
}

int spi_claim_bus(struct spi_slave *slave)
{
	struct ftssp010_spi *chip = to_ftssp010_spi(slave);
	struct ftssp010_regs *regs = chip->regs;

	writel(CR1_SDL(8) | CR1_DIV(chip->div), &regs->cr[1]);

	if (chip->revision >= 0x11900) {
		writel(CR0_OPM_MASTER | CR0_FFMT_SPI | CR0_FSPO | CR0_FLASH,
		       &regs->cr[0]);
		writel(CR2_TXFC | CR2_RXFC,
		       &regs->cr[2]);
	} else {
		writel(CR0_OPM_MASTER | CR0_FFMT_SPI | CR0_FSPO,
		       &regs->cr[0]);
		writel(CR2_TXFC | CR2_RXFC | CR2_EN | CR2_TXDOE,
		       &regs->cr[2]);
	}

	if (chip->mode & SPI_LOOP)
		setbits_le32(&regs->cr[0], CR0_LOOP);

	if (chip->mode & SPI_CPOL)
		setbits_le32(&regs->cr[0], CR0_SCLKPO);

	if (chip->mode & SPI_CPHA)
		setbits_le32(&regs->cr[0], CR0_SCLKPH);

	spi_cs_deactivate(slave);

	return 0;
}

void spi_release_bus(struct spi_slave *slave)
{
	struct ftssp010_spi *chip = to_ftssp010_spi(slave);
	struct ftssp010_regs *regs = chip->regs;

	writel(0, &regs->cr[2]);
}

int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
			 const void *dout, void *din, unsigned long flags)
{
	struct ftssp010_spi *chip = to_ftssp010_spi(slave);
	uint32_t len = bitlen >> 3;

	if (flags & SPI_XFER_BEGIN)
		spi_cs_activate(slave);

	if (chip->revision >= 0x11900)
		ftssp010_spi_work_transfer_v2(chip, dout, din, len, flags);
	else
		ftssp010_spi_work_transfer_v1(chip, dout, din, len, flags);

	if (flags & SPI_XFER_END)
		spi_cs_deactivate(slave);

	return 0;
}