dram_sun4i.c 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * sunxi DRAM controller initialization
 * (C) Copyright 2012 Henrik Nordstrom <henrik@henriknordstrom.net>
 * (C) Copyright 2013 Luke Kenneth Casson Leighton <lkcl@lkcl.net>
 *
 * Based on sun4i Linux kernel sources mach-sunxi/pm/standby/dram*.c
 * and earlier U-Boot Allwiner A10 SPL work
 *
 * (C) Copyright 2007-2012
 * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
 * Berg Xing <bergxing@allwinnertech.com>
 * Tom Cubie <tangliang@allwinnertech.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

/*
 * Unfortunately the only documentation we have on the sun7i DRAM
 * controller is Allwinner boot0 + boot1 code, and that code uses
 * magic numbers & shifts with no explanations. Hence this code is
 * rather undocumented and full of magic.
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/dram.h>
#include <asm/arch/timer.h>
#include <asm/arch/sys_proto.h>

#define CPU_CFG_CHIP_VER(n) ((n) << 6)
#define CPU_CFG_CHIP_VER_MASK CPU_CFG_CHIP_VER(0x3)
#define CPU_CFG_CHIP_REV_A 0x0
#define CPU_CFG_CHIP_REV_C1 0x1
#define CPU_CFG_CHIP_REV_C2 0x2
#define CPU_CFG_CHIP_REV_B 0x3

/*
 * Wait up to 1s for mask to be clear in given reg.
 */
static inline void await_bits_clear(u32 *reg, u32 mask)
{
	mctl_await_completion(reg, mask, 0);
}

/*
 * Wait up to 1s for mask to be set in given reg.
 */
static inline void await_bits_set(u32 *reg, u32 mask)
{
	mctl_await_completion(reg, mask, mask);
}

/*
 * This performs the external DRAM reset by driving the RESET pin low and
 * then high again. According to the DDR3 spec, the RESET pin needs to be
 * kept low for at least 200 us.
 */
static void mctl_ddr3_reset(void)
{
	struct sunxi_dram_reg *dram =
			(struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

#ifdef CONFIG_MACH_SUN4I
	struct sunxi_timer_reg *timer =
			(struct sunxi_timer_reg *)SUNXI_TIMER_BASE;
	u32 reg_val;

	writel(0, &timer->cpu_cfg);
	reg_val = readl(&timer->cpu_cfg);

	if ((reg_val & CPU_CFG_CHIP_VER_MASK) !=
	    CPU_CFG_CHIP_VER(CPU_CFG_CHIP_REV_A)) {
		setbits_le32(&dram->mcr, DRAM_MCR_RESET);
		udelay(200);
		clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
	} else
#endif
	{
		clrbits_le32(&dram->mcr, DRAM_MCR_RESET);
		udelay(200);
		setbits_le32(&dram->mcr, DRAM_MCR_RESET);
	}
	/* After the RESET pin is de-asserted, the DDR3 spec requires to wait
	 * for additional 500 us before driving the CKE pin (Clock Enable)
	 * high. The duration of this delay can be configured in the SDR_IDCR
	 * (Initialization Delay Configuration Register) and applied
	 * automatically by the DRAM controller during the DDR3 initialization
	 * step. But SDR_IDCR has limited range on sun4i/sun5i hardware and
	 * can't provide sufficient delay at DRAM clock frequencies higher than
	 * 524 MHz (while Allwinner A13 supports DRAM clock frequency up to
	 * 533 MHz according to the datasheet). Additionally, there is no
	 * official documentation for the SDR_IDCR register anywhere, and
	 * there is always a chance that we are interpreting it wrong.
	 * Better be safe than sorry, so add an explicit delay here. */
	udelay(500);
}

static void mctl_set_drive(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

#ifdef CONFIG_MACH_SUN7I
	clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3) | (0x3 << 28),
#else
	clrsetbits_le32(&dram->mcr, DRAM_MCR_MODE_NORM(0x3),
#endif
			DRAM_MCR_MODE_EN(0x3) |
			0xffc);
}

static void mctl_itm_disable(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrsetbits_le32(&dram->ccr, DRAM_CCR_INIT, DRAM_CCR_ITM_OFF);
}

static void mctl_itm_enable(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrbits_le32(&dram->ccr, DRAM_CCR_ITM_OFF);
}

static void mctl_itm_reset(void)
{
	mctl_itm_disable();
	udelay(1); /* ITM reset needs a bit of delay */
	mctl_itm_enable();
	udelay(1);
}

static void mctl_enable_dll0(u32 phase)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	clrsetbits_le32(&dram->dllcr[0], 0x3f << 6,
			((phase >> 16) & 0x3f) << 6);
	clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET, DRAM_DLLCR_DISABLE);
	udelay(2);

	clrbits_le32(&dram->dllcr[0], DRAM_DLLCR_NRESET | DRAM_DLLCR_DISABLE);
	udelay(22);

	clrsetbits_le32(&dram->dllcr[0], DRAM_DLLCR_DISABLE, DRAM_DLLCR_NRESET);
	udelay(22);
}

/* Get the number of DDR byte lanes */
static u32 mctl_get_number_of_lanes(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	if ((readl(&dram->dcr) & DRAM_DCR_BUS_WIDTH_MASK) ==
				DRAM_DCR_BUS_WIDTH(DRAM_DCR_BUS_WIDTH_32BIT))
		return 4;
	else
		return 2;
}

/*
 * Note: This differs from pm/standby in that it checks the bus width
 */
static void mctl_enable_dllx(u32 phase)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 i, number_of_lanes;

	number_of_lanes = mctl_get_number_of_lanes();

	for (i = 1; i <= number_of_lanes; i++) {
		clrsetbits_le32(&dram->dllcr[i], 0xf << 14,
				(phase & 0xf) << 14);
		clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET,
				DRAM_DLLCR_DISABLE);
		phase >>= 4;
	}
	udelay(2);

	for (i = 1; i <= number_of_lanes; i++)
		clrbits_le32(&dram->dllcr[i], DRAM_DLLCR_NRESET |
			     DRAM_DLLCR_DISABLE);
	udelay(22);

	for (i = 1; i <= number_of_lanes; i++)
		clrsetbits_le32(&dram->dllcr[i], DRAM_DLLCR_DISABLE,
				DRAM_DLLCR_NRESET);
	udelay(22);
}

static u32 hpcr_value[32] = {
#ifdef CONFIG_MACH_SUN5I
	0, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x1035,
	0x1035, 0x0731, 0x1031, 0,
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0x0301, 0
#endif
#ifdef CONFIG_MACH_SUN4I
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x5031,
	0x1035, 0x0731, 0x1031, 0x0735,
	0x1035, 0x1031, 0x0731, 0x1035,
	0x1031, 0x0301, 0x0301, 0x0731
#endif
#ifdef CONFIG_MACH_SUN7I
	0x0301, 0x0301, 0x0301, 0x0301,
	0x0301, 0x0301, 0x0301, 0x0301,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x1031, 0x1031, 0x0735, 0x1035,
	0x1035, 0x0731, 0x1031, 0x0735,
	0x1035, 0x1031, 0x0731, 0x1035,
	0x0001, 0x1031, 0, 0x1031
	/* last row differs from boot0 source table
	 * 0x1031, 0x0301, 0x0301, 0x0731
	 * but boot0 code skips #28 and #30, and sets #29 and #31 to the
	 * value from #28 entry (0x1031)
	 */
#endif
};

static void mctl_configure_hostport(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 i;

	for (i = 0; i < 32; i++)
		writel(hpcr_value[i], &dram->hpcr[i]);
}

static void mctl_setup_dram_clock(u32 clk, u32 mbus_clk)
{
	u32 reg_val;
	struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	u32 pll5p_clk, pll6x_clk;
	u32 pll5p_div, pll6x_div;
	u32 pll5p_rate, pll6x_rate;

	/* setup DRAM PLL */
	reg_val = readl(&ccm->pll5_cfg);
	reg_val &= ~CCM_PLL5_CTRL_M_MASK;		/* set M to 0 (x1) */
	reg_val &= ~CCM_PLL5_CTRL_K_MASK;		/* set K to 0 (x1) */
	reg_val &= ~CCM_PLL5_CTRL_N_MASK;		/* set N to 0 (x0) */
	reg_val &= ~CCM_PLL5_CTRL_P_MASK;		/* set P to 0 (x1) */
#ifdef CONFIG_OLD_SUNXI_KERNEL_COMPAT
	/* Old kernels are hardcoded to P=1 (divide by 2) */
	reg_val |= CCM_PLL5_CTRL_P(1);
#endif
	if (clk >= 540 && clk < 552) {
		/* dram = 540MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(15));
	} else if (clk >= 512 && clk < 528) {
		/* dram = 512MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(4));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(16));
	} else if (clk >= 496 && clk < 504) {
		/* dram = 496MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(3));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(31));
	} else if (clk >= 468 && clk < 480) {
		/* dram = 468MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(13));
	} else if (clk >= 396 && clk < 408) {
		/* dram = 396MHz */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(3));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(11));
	} else 	{
		/* any other frequency that is a multiple of 24 */
		reg_val |= CCM_PLL5_CTRL_M(CCM_PLL5_CTRL_M_X(2));
		reg_val |= CCM_PLL5_CTRL_K(CCM_PLL5_CTRL_K_X(2));
		reg_val |= CCM_PLL5_CTRL_N(CCM_PLL5_CTRL_N_X(clk / 24));
	}
	reg_val &= ~CCM_PLL5_CTRL_VCO_GAIN;		/* PLL VCO Gain off */
	reg_val |= CCM_PLL5_CTRL_EN;			/* PLL On */
	writel(reg_val, &ccm->pll5_cfg);
	udelay(5500);

	setbits_le32(&ccm->pll5_cfg, CCM_PLL5_CTRL_DDR_CLK);

#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN7I)
	/* reset GPS */
	clrbits_le32(&ccm->gps_clk_cfg, CCM_GPS_CTRL_RESET | CCM_GPS_CTRL_GATE);
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
	udelay(1);
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_GPS);
#endif

	/* setup MBUS clock */
	if (!mbus_clk)
		mbus_clk = 300;

	/* PLL5P and PLL6 are the potential clock sources for MBUS */
	pll6x_clk = clock_get_pll6() / 1000000;
#ifdef CONFIG_MACH_SUN7I
	pll6x_clk *= 2; /* sun7i uses PLL6*2, sun5i uses just PLL6 */
#endif
	pll5p_clk = clock_get_pll5p() / 1000000;
	pll6x_div = DIV_ROUND_UP(pll6x_clk, mbus_clk);
	pll5p_div = DIV_ROUND_UP(pll5p_clk, mbus_clk);
	pll6x_rate = pll6x_clk / pll6x_div;
	pll5p_rate = pll5p_clk / pll5p_div;

	if (pll6x_div <= 16 && pll6x_rate > pll5p_rate) {
		/* use PLL6 as the MBUS clock source */
		reg_val = CCM_MBUS_CTRL_GATE |
			  CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL6) |
			  CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
			  CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll6x_div));
	} else if (pll5p_div <= 16) {
		/* use PLL5P as the MBUS clock source */
		reg_val = CCM_MBUS_CTRL_GATE |
			  CCM_MBUS_CTRL_CLK_SRC(CCM_MBUS_CTRL_CLK_SRC_PLL5) |
			  CCM_MBUS_CTRL_N(CCM_MBUS_CTRL_N_X(1)) |
			  CCM_MBUS_CTRL_M(CCM_MBUS_CTRL_M_X(pll5p_div));
	} else {
		panic("Bad mbus_clk\n");
	}
	writel(reg_val, &ccm->mbus_clk_cfg);

	/*
	 * open DRAMC AHB & DLL register clock
	 * close it first
	 */
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
#else
	clrbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
#endif
	udelay(22);

	/* then open it */
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM | CCM_AHB_GATE_DLL);
#else
	setbits_le32(&ccm->ahb_gate0, CCM_AHB_GATE_SDRAM);
#endif
	udelay(22);
}

/*
 * The data from rslrX and rdgrX registers (X=rank) is stored
 * in a single 32-bit value using the following format:
 *   bits [31:26] - DQS gating system latency for byte lane 3
 *   bits [25:24] - DQS gating phase select for byte lane 3
 *   bits [23:18] - DQS gating system latency for byte lane 2
 *   bits [17:16] - DQS gating phase select for byte lane 2
 *   bits [15:10] - DQS gating system latency for byte lane 1
 *   bits [ 9:8 ] - DQS gating phase select for byte lane 1
 *   bits [ 7:2 ] - DQS gating system latency for byte lane 0
 *   bits [ 1:0 ] - DQS gating phase select for byte lane 0
 */
static void mctl_set_dqs_gating_delay(int rank, u32 dqs_gating_delay)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 lane, number_of_lanes = mctl_get_number_of_lanes();
	/* rank0 gating system latency (3 bits per lane: cycles) */
	u32 slr = readl(rank == 0 ? &dram->rslr0 : &dram->rslr1);
	/* rank0 gating phase select (2 bits per lane: 90, 180, 270, 360) */
	u32 dgr = readl(rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
	for (lane = 0; lane < number_of_lanes; lane++) {
		u32 tmp = dqs_gating_delay >> (lane * 8);
		slr &= ~(7 << (lane * 3));
		slr |= ((tmp >> 2) & 7) << (lane * 3);
		dgr &= ~(3 << (lane * 2));
		dgr |= (tmp & 3) << (lane * 2);
	}
	writel(slr, rank == 0 ? &dram->rslr0 : &dram->rslr1);
	writel(dgr, rank == 0 ? &dram->rdgr0 : &dram->rdgr1);
}

static int dramc_scan_readpipe(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;

	/* data training trigger */
	clrbits_le32(&dram->csr, DRAM_CSR_FAILED);
	setbits_le32(&dram->ccr, DRAM_CCR_DATA_TRAINING);

	/* check whether data training process has completed */
	await_bits_clear(&dram->ccr, DRAM_CCR_DATA_TRAINING);

	/* check data training result */
	reg_val = readl(&dram->csr);
	if (reg_val & DRAM_CSR_FAILED)
		return -1;

	return 0;
}

static void dramc_clock_output_en(u32 on)
{
#if defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I)
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	if (on)
		setbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
	else
		clrbits_le32(&dram->mcr, DRAM_MCR_DCLK_OUT);
#endif
#ifdef CONFIG_MACH_SUN4I
	struct sunxi_ccm_reg *ccm = (struct sunxi_ccm_reg *)SUNXI_CCM_BASE;
	if (on)
		setbits_le32(&ccm->dram_clk_gate, CCM_DRAM_CTRL_DCLK_OUT);
	else
		clrbits_le32(&ccm->dram_clk_gate, CCM_DRAM_CTRL_DCLK_OUT);
#endif
}

/* tRFC in nanoseconds for different densities (from the DDR3 spec) */
static const u16 tRFC_DDR3_table[6] = {
	/* 256Mb    512Mb    1Gb      2Gb      4Gb      8Gb */
	   90,      90,      110,     160,     300,     350
};

static void dramc_set_autorefresh_cycle(u32 clk, u32 density)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 tRFC, tREFI;

	tRFC = (tRFC_DDR3_table[density] * clk + 999) / 1000;
	tREFI = (7987 * clk) >> 10;	/* <= 7.8us */

	writel(DRAM_DRR_TREFI(tREFI) | DRAM_DRR_TRFC(tRFC), &dram->drr);
}

/* Calculate the value for A11, A10, A9 bits in MR0 (write recovery) */
static u32 ddr3_write_recovery(u32 clk)
{
	u32 twr_ns = 15; /* DDR3 spec says that it is 15ns for all speed bins */
	u32 twr_ck = (twr_ns * clk + 999) / 1000;
	if (twr_ck < 5)
		return 1;
	else if (twr_ck <= 8)
		return twr_ck - 4;
	else if (twr_ck <= 10)
		return 5;
	else
		return 6;
}

/*
 * If the dram->ppwrsctl (SDR_DPCR) register has the lowest bit set to 1, this
 * means that DRAM is currently in self-refresh mode and retaining the old
 * data. Since we have no idea what to do in this situation yet, just set this
 * register to 0 and initialize DRAM in the same way as on any normal reboot
 * (discarding whatever was stored there).
 *
 * Note: on sun7i hardware, the highest 16 bits need to be set to 0x1651 magic
 * value for this write operation to have any effect. On sun5i hadware this
 * magic value is not necessary. And on sun4i hardware the writes to this
 * register seem to have no effect at all.
 */
static void mctl_disable_power_save(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	writel(0x16510000, &dram->ppwrsctl);
}

/*
 * After the DRAM is powered up or reset, the DDR3 spec requires to wait at
 * least 500 us before driving the CKE pin (Clock Enable) high. The dram->idct
 * (SDR_IDCR) register appears to configure this delay, which gets applied
 * right at the time when the DRAM initialization is activated in the
 * 'mctl_ddr3_initialize' function.
 */
static void mctl_set_cke_delay(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;

	/* The CKE delay is represented in DRAM clock cycles, multiplied by N
	 * (where N=2 for sun4i/sun5i and N=3 for sun7i). Here it is set to
	 * the maximum possible value 0x1ffff, just like in the Allwinner's
	 * boot0 bootloader. The resulting delay value is somewhere between
	 * ~0.4 ms (sun5i with 648 MHz DRAM clock speed) and ~1.1 ms (sun7i
	 * with 360 MHz DRAM clock speed). */
	setbits_le32(&dram->idcr, 0x1ffff);
}

/*
 * This triggers the DRAM initialization. It performs sending the mode registers
 * to the DRAM among other things. Very likely the ZQCL command is also getting
 * executed (to do the initial impedance calibration on the DRAM side of the
 * wire). The memory controller and the PHY must be already configured before
 * calling this function.
 */
static void mctl_ddr3_initialize(void)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	setbits_le32(&dram->ccr, DRAM_CCR_INIT);
	await_bits_clear(&dram->ccr, DRAM_CCR_INIT);
}

/*
 * Perform impedance calibration on the DRAM controller side of the wire.
 */
static void mctl_set_impedance(u32 zq, bool odt_en)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;
	u32 zprog = zq & 0xFF, zdata = (zq >> 8) & 0xFFFFF;

#ifndef CONFIG_MACH_SUN7I
	/* Appears that some kind of automatically initiated default
	 * ZQ calibration is already in progress at this point on sun4i/sun5i
	 * hardware, but not on sun7i. So it is reasonable to wait for its
	 * completion before doing anything else. */
	await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
#endif

	/* ZQ calibration is not really useful unless ODT is enabled */
	if (!odt_en)
		return;

#ifdef CONFIG_MACH_SUN7I
	/* Enabling ODT in SDR_IOCR on sun7i hardware results in a deadlock
	 * unless bit 24 is set in SDR_ZQCR1. Not much is known about the
	 * SDR_ZQCR1 register, but there are hints indicating that it might
	 * be related to periodic impedance re-calibration. This particular
	 * magic value is borrowed from the Allwinner boot0 bootloader, and
	 * using it helps to avoid troubles */
	writel((1 << 24) | (1 << 1), &dram->zqcr1);
#endif

	/* Needed at least for sun5i, because it does not self clear there */
	clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);

	if (zdata) {
		/* Set the user supplied impedance data */
		reg_val = DRAM_ZQCR0_ZDEN | zdata;
		writel(reg_val, &dram->zqcr0);
		/* no need to wait, this takes effect immediately */
	} else {
		/* Do the calibration using the external resistor */
		reg_val = DRAM_ZQCR0_ZCAL | DRAM_ZQCR0_IMP_DIV(zprog);
		writel(reg_val, &dram->zqcr0);
		/* Wait for the new impedance configuration to settle */
		await_bits_set(&dram->zqsr, DRAM_ZQSR_ZDONE);
	}

	/* Needed at least for sun5i, because it does not self clear there */
	clrbits_le32(&dram->zqcr0, DRAM_ZQCR0_ZCAL);

	/* Set I/O configure register */
	writel(DRAM_IOCR_ODT_EN, &dram->iocr);
}

static unsigned long dramc_init_helper(struct dram_para *para)
{
	struct sunxi_dram_reg *dram = (struct sunxi_dram_reg *)SUNXI_DRAMC_BASE;
	u32 reg_val;
	u32 density;
	int ret_val;

	/*
	 * only single rank DDR3 is supported by this code even though the
	 * hardware can theoretically support DDR2 and up to two ranks
	 */
	if (para->type != DRAM_MEMORY_TYPE_DDR3 || para->rank_num != 1)
		return 0;

	/* setup DRAM relative clock */
	mctl_setup_dram_clock(para->clock, para->mbus_clock);

	/* Disable any pad power save control */
	mctl_disable_power_save();

	mctl_set_drive();

	/* dram clock off */
	dramc_clock_output_en(0);

#ifdef CONFIG_MACH_SUN4I
	/* select dram controller 1 */
	writel(DRAM_CSEL_MAGIC, &dram->csel);
#endif

	mctl_itm_disable();
	mctl_enable_dll0(para->tpr3);

	/* configure external DRAM */
	reg_val = DRAM_DCR_TYPE_DDR3;
	reg_val |= DRAM_DCR_IO_WIDTH(para->io_width >> 3);

	if (para->density == 256)
		density = DRAM_DCR_CHIP_DENSITY_256M;
	else if (para->density == 512)
		density = DRAM_DCR_CHIP_DENSITY_512M;
	else if (para->density == 1024)
		density = DRAM_DCR_CHIP_DENSITY_1024M;
	else if (para->density == 2048)
		density = DRAM_DCR_CHIP_DENSITY_2048M;
	else if (para->density == 4096)
		density = DRAM_DCR_CHIP_DENSITY_4096M;
	else if (para->density == 8192)
		density = DRAM_DCR_CHIP_DENSITY_8192M;
	else
		density = DRAM_DCR_CHIP_DENSITY_256M;

	reg_val |= DRAM_DCR_CHIP_DENSITY(density);
	reg_val |= DRAM_DCR_BUS_WIDTH((para->bus_width >> 3) - 1);
	reg_val |= DRAM_DCR_RANK_SEL(para->rank_num - 1);
	reg_val |= DRAM_DCR_CMD_RANK_ALL;
	reg_val |= DRAM_DCR_MODE(DRAM_DCR_MODE_INTERLEAVE);
	writel(reg_val, &dram->dcr);

	dramc_clock_output_en(1);

	mctl_set_impedance(para->zq, para->odt_en);

	mctl_set_cke_delay();

	mctl_ddr3_reset();

	udelay(1);

	await_bits_clear(&dram->ccr, DRAM_CCR_INIT);

	mctl_enable_dllx(para->tpr3);

	/* set refresh period */
	dramc_set_autorefresh_cycle(para->clock, density);

	/* set timing parameters */
	writel(para->tpr0, &dram->tpr0);
	writel(para->tpr1, &dram->tpr1);
	writel(para->tpr2, &dram->tpr2);

	reg_val = DRAM_MR_BURST_LENGTH(0x0);
#if (defined(CONFIG_MACH_SUN5I) || defined(CONFIG_MACH_SUN7I))
	reg_val |= DRAM_MR_POWER_DOWN;
#endif
	reg_val |= DRAM_MR_CAS_LAT(para->cas - 4);
	reg_val |= DRAM_MR_WRITE_RECOVERY(ddr3_write_recovery(para->clock));
	writel(reg_val, &dram->mr);

	writel(para->emr1, &dram->emr);
	writel(para->emr2, &dram->emr2);
	writel(para->emr3, &dram->emr3);

	/* disable drift compensation and set passive DQS window mode */
	clrsetbits_le32(&dram->ccr, DRAM_CCR_DQS_DRIFT_COMP, DRAM_CCR_DQS_GATE);

#ifdef CONFIG_MACH_SUN7I
	/* Command rate timing mode 2T & 1T */
	if (para->tpr4 & 0x1)
		setbits_le32(&dram->ccr, DRAM_CCR_COMMAND_RATE_1T);
#endif
	/* initialize external DRAM */
	mctl_ddr3_initialize();

	/* scan read pipe value */
	mctl_itm_enable();

	/* Hardware DQS gate training */
	ret_val = dramc_scan_readpipe();

	if (ret_val < 0)
		return 0;

	/* allow to override the DQS training results with a custom delay */
	if (para->dqs_gating_delay)
		mctl_set_dqs_gating_delay(0, para->dqs_gating_delay);

	/* set the DQS gating window type */
	if (para->active_windowing)
		clrbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);
	else
		setbits_le32(&dram->ccr, DRAM_CCR_DQS_GATE);

	mctl_itm_reset();

	/* configure all host port */
	mctl_configure_hostport();

	return get_ram_size((long *)PHYS_SDRAM_0, PHYS_SDRAM_0_SIZE);
}

unsigned long dramc_init(struct dram_para *para)
{
	unsigned long dram_size, actual_density;

	/* If the dram configuration is not provided, use a default */
	if (!para)
		return 0;

	/* if everything is known, then autodetection is not necessary */
	if (para->io_width && para->bus_width && para->density)
		return dramc_init_helper(para);

	/* try to autodetect the DRAM bus width and density */
	para->io_width  = 16;
	para->bus_width = 32;
#if defined(CONFIG_MACH_SUN4I) || defined(CONFIG_MACH_SUN5I)
	/* only A0-A14 address lines on A10/A13, limiting max density to 4096 */
	para->density = 4096;
#else
	/* all A0-A15 address lines on A20, which allow density 8192 */
	para->density = 8192;
#endif

	dram_size = dramc_init_helper(para);
	if (!dram_size) {
		/* if 32-bit bus width failed, try 16-bit bus width instead */
		para->bus_width = 16;
		dram_size = dramc_init_helper(para);
		if (!dram_size) {
			/* if 16-bit bus width also failed, then bail out */
			return dram_size;
		}
	}

	/* check if we need to adjust the density */
	actual_density = (dram_size >> 17) * para->io_width / para->bus_width;

	if (actual_density != para->density) {
		/* update the density and re-initialize DRAM again */
		para->density = actual_density;
		dram_size = dramc_init_helper(para);
	}

	return dram_size;
}