e1000.c 170 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936
/**************************************************************************
Intel Pro 1000 for ppcboot/das-u-boot
Drivers are port from Intel's Linux driver e1000-4.3.15
and from Etherboot pro 1000 driver by mrakes at vivato dot net
tested on both gig copper and gig fiber boards
***************************************************************************/
/*******************************************************************************


  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved.

 * SPDX-License-Identifier:	GPL-2.0+

  Contact Information:
  Linux NICS <linux.nics@intel.com>
  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497

*******************************************************************************/
/*
 *  Copyright (C) Archway Digital Solutions.
 *
 *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
 *  2/9/2002
 *
 *  Copyright (C) Linux Networx.
 *  Massive upgrade to work with the new intel gigabit NICs.
 *  <ebiederman at lnxi dot com>
 *
 *  Copyright 2011 Freescale Semiconductor, Inc.
 */

#include <common.h>
#include <dm.h>
#include <errno.h>
#include <memalign.h>
#include <pci.h>
#include "e1000.h"

#define TOUT_LOOP   100000

#ifdef CONFIG_DM_ETH
#define virt_to_bus(devno, v)	dm_pci_virt_to_mem(devno, (void *) (v))
#define bus_to_phys(devno, a)	dm_pci_mem_to_phys(devno, a)
#else
#define virt_to_bus(devno, v)	pci_virt_to_mem(devno, (void *) (v))
#define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a)
#endif

#define E1000_DEFAULT_PCI_PBA	0x00000030
#define E1000_DEFAULT_PCIE_PBA	0x000a0026

/* NIC specific static variables go here */

/* Intel i210 needs the DMA descriptor rings aligned to 128b */
#define E1000_BUFFER_ALIGN	128

/*
 * TODO(sjg@chromium.org): Even with driver model we share these buffers.
 * Concurrent receiving on multiple active Ethernet devices will not work.
 * Normally U-Boot does not support this anyway. To fix it in this driver,
 * move these buffers and the tx/rx pointers to struct e1000_hw.
 */
DEFINE_ALIGN_BUFFER(struct e1000_tx_desc, tx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(struct e1000_rx_desc, rx_base, 16, E1000_BUFFER_ALIGN);
DEFINE_ALIGN_BUFFER(unsigned char, packet, 4096, E1000_BUFFER_ALIGN);

static int tx_tail;
static int rx_tail, rx_last;
#ifdef CONFIG_DM_ETH
static int num_cards;	/* Number of E1000 devices seen so far */
#endif

static struct pci_device_id e1000_supported[] = {
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF) },
	/* E1000 PCIe card */
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571PT_QUAD_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_QUAD_COPPER_LOWPROFILE) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_DUAL) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82571EB_SERDES_QUAD) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_FIBER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI_SERDES) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82572EI) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573E_IAMT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82573L) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82574L) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546GB_QUAD_COPPER_KSP3) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_DPT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_DPT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_COPPER_SPT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_80003ES2LAN_SERDES_SPT) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I211_COPPER) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS) },
	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I210_1000BASEKX) },

	{}
};

/* Function forward declarations */
static int e1000_setup_link(struct e1000_hw *hw);
static int e1000_setup_fiber_link(struct e1000_hw *hw);
static int e1000_setup_copper_link(struct e1000_hw *hw);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_check_for_link(struct e1000_hw *hw);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static int e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed,
				       uint16_t * duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
			      uint16_t * phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr,
			       uint16_t phy_data);
static int32_t e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
static void e1000_set_media_type(struct e1000_hw *hw);

static int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask);
static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask);
static int32_t e1000_check_phy_reset_block(struct e1000_hw *hw);

#ifndef CONFIG_E1000_NO_NVM
static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw);
static int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
		uint16_t words,
		uint16_t *data);
/******************************************************************************
 * Raises the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
	 * wait 50 microseconds.
	 */
	*eecd = *eecd | E1000_EECD_SK;
	E1000_WRITE_REG(hw, EECD, *eecd);
	E1000_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Lowers the EEPROM's clock input.
 *
 * hw - Struct containing variables accessed by shared code
 * eecd - EECD's current value
 *****************************************************************************/
void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd)
{
	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
	 * wait 50 microseconds.
	 */
	*eecd = *eecd & ~E1000_EECD_SK;
	E1000_WRITE_REG(hw, EECD, *eecd);
	E1000_WRITE_FLUSH(hw);
	udelay(50);
}

/******************************************************************************
 * Shift data bits out to the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * data - data to send to the EEPROM
 * count - number of bits to shift out
 *****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count)
{
	uint32_t eecd;
	uint32_t mask;

	/* We need to shift "count" bits out to the EEPROM. So, value in the
	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
	 * In order to do this, "data" must be broken down into bits.
	 */
	mask = 0x01 << (count - 1);
	eecd = E1000_READ_REG(hw, EECD);
	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	do {
		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
		 * and then raising and then lowering the clock (the SK bit controls
		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM
		 * by setting "DI" to "0" and then raising and then lowering the clock.
		 */
		eecd &= ~E1000_EECD_DI;

		if (data & mask)
			eecd |= E1000_EECD_DI;

		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);

		udelay(50);

		e1000_raise_ee_clk(hw, &eecd);
		e1000_lower_ee_clk(hw, &eecd);

		mask = mask >> 1;

	} while (mask);

	/* We leave the "DI" bit set to "0" when we leave this routine. */
	eecd &= ~E1000_EECD_DI;
	E1000_WRITE_REG(hw, EECD, eecd);
}

/******************************************************************************
 * Shift data bits in from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count)
{
	uint32_t eecd;
	uint32_t i;
	uint16_t data;

	/* In order to read a register from the EEPROM, we need to shift 'count'
	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
	 * input to the EEPROM (setting the SK bit), and then reading the
	 * value of the "DO" bit.  During this "shifting in" process the
	 * "DI" bit should always be clear.
	 */

	eecd = E1000_READ_REG(hw, EECD);

	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
	data = 0;

	for (i = 0; i < count; i++) {
		data = data << 1;
		e1000_raise_ee_clk(hw, &eecd);

		eecd = E1000_READ_REG(hw, EECD);

		eecd &= ~(E1000_EECD_DI);
		if (eecd & E1000_EECD_DO)
			data |= 1;

		e1000_lower_ee_clk(hw, &eecd);
	}

	return data;
}

/******************************************************************************
 * Returns EEPROM to a "standby" state
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void e1000_standby_eeprom(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd;

	eecd = E1000_READ_REG(hw, EECD);

	if (eeprom->type == e1000_eeprom_microwire) {
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);

		/* Clock high */
		eecd |= E1000_EECD_SK;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);

		/* Select EEPROM */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);

		/* Clock low */
		eecd &= ~E1000_EECD_SK;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);
	} else if (eeprom->type == e1000_eeprom_spi) {
		/* Toggle CS to flush commands */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);
		eecd &= ~E1000_EECD_CS;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(eeprom->delay_usec);
	}
}

/***************************************************************************
* Description:     Determines if the onboard NVM is FLASH or EEPROM.
*
* hw - Struct containing variables accessed by shared code
****************************************************************************/
static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw)
{
	uint32_t eecd = 0;

	DEBUGFUNC();

	if (hw->mac_type == e1000_ich8lan)
		return false;

	if (hw->mac_type == e1000_82573 || hw->mac_type == e1000_82574) {
		eecd = E1000_READ_REG(hw, EECD);

		/* Isolate bits 15 & 16 */
		eecd = ((eecd >> 15) & 0x03);

		/* If both bits are set, device is Flash type */
		if (eecd == 0x03)
			return false;
	}
	return true;
}

/******************************************************************************
 * Prepares EEPROM for access
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
 * function should be called before issuing a command to the EEPROM.
 *****************************************************************************/
int32_t e1000_acquire_eeprom(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd, i = 0;

	DEBUGFUNC();

	if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM))
		return -E1000_ERR_SWFW_SYNC;
	eecd = E1000_READ_REG(hw, EECD);

	if (hw->mac_type != e1000_82573 && hw->mac_type != e1000_82574) {
		/* Request EEPROM Access */
		if (hw->mac_type > e1000_82544) {
			eecd |= E1000_EECD_REQ;
			E1000_WRITE_REG(hw, EECD, eecd);
			eecd = E1000_READ_REG(hw, EECD);
			while ((!(eecd & E1000_EECD_GNT)) &&
				(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
				i++;
				udelay(5);
				eecd = E1000_READ_REG(hw, EECD);
			}
			if (!(eecd & E1000_EECD_GNT)) {
				eecd &= ~E1000_EECD_REQ;
				E1000_WRITE_REG(hw, EECD, eecd);
				DEBUGOUT("Could not acquire EEPROM grant\n");
				return -E1000_ERR_EEPROM;
			}
		}
	}

	/* Setup EEPROM for Read/Write */

	if (eeprom->type == e1000_eeprom_microwire) {
		/* Clear SK and DI */
		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
		E1000_WRITE_REG(hw, EECD, eecd);

		/* Set CS */
		eecd |= E1000_EECD_CS;
		E1000_WRITE_REG(hw, EECD, eecd);
	} else if (eeprom->type == e1000_eeprom_spi) {
		/* Clear SK and CS */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
		E1000_WRITE_REG(hw, EECD, eecd);
		udelay(1);
	}

	return E1000_SUCCESS;
}

/******************************************************************************
 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
 * is configured.  Additionally, if this is ICH8, the flash controller GbE
 * registers must be mapped, or this will crash.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t e1000_init_eeprom_params(struct e1000_hw *hw)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t eecd;
	int32_t ret_val = E1000_SUCCESS;
	uint16_t eeprom_size;

	if (hw->mac_type == e1000_igb)
		eecd = E1000_READ_REG(hw, I210_EECD);
	else
		eecd = E1000_READ_REG(hw, EECD);

	DEBUGFUNC();

	switch (hw->mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
	case e1000_82543:
	case e1000_82544:
		eeprom->type = e1000_eeprom_microwire;
		eeprom->word_size = 64;
		eeprom->opcode_bits = 3;
		eeprom->address_bits = 6;
		eeprom->delay_usec = 50;
		eeprom->use_eerd = false;
		eeprom->use_eewr = false;
	break;
	case e1000_82540:
	case e1000_82545:
	case e1000_82545_rev_3:
	case e1000_82546:
	case e1000_82546_rev_3:
		eeprom->type = e1000_eeprom_microwire;
		eeprom->opcode_bits = 3;
		eeprom->delay_usec = 50;
		if (eecd & E1000_EECD_SIZE) {
			eeprom->word_size = 256;
			eeprom->address_bits = 8;
		} else {
			eeprom->word_size = 64;
			eeprom->address_bits = 6;
		}
		eeprom->use_eerd = false;
		eeprom->use_eewr = false;
		break;
	case e1000_82541:
	case e1000_82541_rev_2:
	case e1000_82547:
	case e1000_82547_rev_2:
		if (eecd & E1000_EECD_TYPE) {
			eeprom->type = e1000_eeprom_spi;
			eeprom->opcode_bits = 8;
			eeprom->delay_usec = 1;
			if (eecd & E1000_EECD_ADDR_BITS) {
				eeprom->page_size = 32;
				eeprom->address_bits = 16;
			} else {
				eeprom->page_size = 8;
				eeprom->address_bits = 8;
			}
		} else {
			eeprom->type = e1000_eeprom_microwire;
			eeprom->opcode_bits = 3;
			eeprom->delay_usec = 50;
			if (eecd & E1000_EECD_ADDR_BITS) {
				eeprom->word_size = 256;
				eeprom->address_bits = 8;
			} else {
				eeprom->word_size = 64;
				eeprom->address_bits = 6;
			}
		}
		eeprom->use_eerd = false;
		eeprom->use_eewr = false;
		break;
	case e1000_82571:
	case e1000_82572:
		eeprom->type = e1000_eeprom_spi;
		eeprom->opcode_bits = 8;
		eeprom->delay_usec = 1;
		if (eecd & E1000_EECD_ADDR_BITS) {
			eeprom->page_size = 32;
			eeprom->address_bits = 16;
		} else {
			eeprom->page_size = 8;
			eeprom->address_bits = 8;
		}
		eeprom->use_eerd = false;
		eeprom->use_eewr = false;
		break;
	case e1000_82573:
	case e1000_82574:
		eeprom->type = e1000_eeprom_spi;
		eeprom->opcode_bits = 8;
		eeprom->delay_usec = 1;
		if (eecd & E1000_EECD_ADDR_BITS) {
			eeprom->page_size = 32;
			eeprom->address_bits = 16;
		} else {
			eeprom->page_size = 8;
			eeprom->address_bits = 8;
		}
		if (e1000_is_onboard_nvm_eeprom(hw) == false) {
			eeprom->use_eerd = true;
			eeprom->use_eewr = true;

			eeprom->type = e1000_eeprom_flash;
			eeprom->word_size = 2048;

		/* Ensure that the Autonomous FLASH update bit is cleared due to
		 * Flash update issue on parts which use a FLASH for NVM. */
			eecd &= ~E1000_EECD_AUPDEN;
			E1000_WRITE_REG(hw, EECD, eecd);
		}
		break;
	case e1000_80003es2lan:
		eeprom->type = e1000_eeprom_spi;
		eeprom->opcode_bits = 8;
		eeprom->delay_usec = 1;
		if (eecd & E1000_EECD_ADDR_BITS) {
			eeprom->page_size = 32;
			eeprom->address_bits = 16;
		} else {
			eeprom->page_size = 8;
			eeprom->address_bits = 8;
		}
		eeprom->use_eerd = true;
		eeprom->use_eewr = false;
		break;
	case e1000_igb:
		/* i210 has 4k of iNVM mapped as EEPROM */
		eeprom->type = e1000_eeprom_invm;
		eeprom->opcode_bits = 8;
		eeprom->delay_usec = 1;
		eeprom->page_size = 32;
		eeprom->address_bits = 16;
		eeprom->use_eerd = true;
		eeprom->use_eewr = false;
		break;
	default:
		break;
	}

	if (eeprom->type == e1000_eeprom_spi ||
	    eeprom->type == e1000_eeprom_invm) {
		/* eeprom_size will be an enum [0..8] that maps
		 * to eeprom sizes 128B to
		 * 32KB (incremented by powers of 2).
		 */
		if (hw->mac_type <= e1000_82547_rev_2) {
			/* Set to default value for initial eeprom read. */
			eeprom->word_size = 64;
			ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1,
					&eeprom_size);
			if (ret_val)
				return ret_val;
			eeprom_size = (eeprom_size & EEPROM_SIZE_MASK)
				>> EEPROM_SIZE_SHIFT;
			/* 256B eeprom size was not supported in earlier
			 * hardware, so we bump eeprom_size up one to
			 * ensure that "1" (which maps to 256B) is never
			 * the result used in the shifting logic below. */
			if (eeprom_size)
				eeprom_size++;
		} else {
			eeprom_size = (uint16_t)((eecd &
				E1000_EECD_SIZE_EX_MASK) >>
				E1000_EECD_SIZE_EX_SHIFT);
		}

		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
	}
	return ret_val;
}

/******************************************************************************
 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t
e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd)
{
	uint32_t attempts = 100000;
	uint32_t i, reg = 0;
	int32_t done = E1000_ERR_EEPROM;

	for (i = 0; i < attempts; i++) {
		if (eerd == E1000_EEPROM_POLL_READ) {
			if (hw->mac_type == e1000_igb)
				reg = E1000_READ_REG(hw, I210_EERD);
			else
				reg = E1000_READ_REG(hw, EERD);
		} else {
			if (hw->mac_type == e1000_igb)
				reg = E1000_READ_REG(hw, I210_EEWR);
			else
				reg = E1000_READ_REG(hw, EEWR);
		}

		if (reg & E1000_EEPROM_RW_REG_DONE) {
			done = E1000_SUCCESS;
			break;
		}
		udelay(5);
	}

	return done;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM using the EERD register.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 * words - number of words to read
 *****************************************************************************/
static int32_t
e1000_read_eeprom_eerd(struct e1000_hw *hw,
			uint16_t offset,
			uint16_t words,
			uint16_t *data)
{
	uint32_t i, eerd = 0;
	int32_t error = 0;

	for (i = 0; i < words; i++) {
		eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) +
			E1000_EEPROM_RW_REG_START;

		if (hw->mac_type == e1000_igb)
			E1000_WRITE_REG(hw, I210_EERD, eerd);
		else
			E1000_WRITE_REG(hw, EERD, eerd);

		error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ);

		if (error)
			break;

		if (hw->mac_type == e1000_igb) {
			data[i] = (E1000_READ_REG(hw, I210_EERD) >>
				E1000_EEPROM_RW_REG_DATA);
		} else {
			data[i] = (E1000_READ_REG(hw, EERD) >>
				E1000_EEPROM_RW_REG_DATA);
		}

	}

	return error;
}

void e1000_release_eeprom(struct e1000_hw *hw)
{
	uint32_t eecd;

	DEBUGFUNC();

	eecd = E1000_READ_REG(hw, EECD);

	if (hw->eeprom.type == e1000_eeprom_spi) {
		eecd |= E1000_EECD_CS;  /* Pull CS high */
		eecd &= ~E1000_EECD_SK; /* Lower SCK */

		E1000_WRITE_REG(hw, EECD, eecd);

		udelay(hw->eeprom.delay_usec);
	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
		/* cleanup eeprom */

		/* CS on Microwire is active-high */
		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);

		E1000_WRITE_REG(hw, EECD, eecd);

		/* Rising edge of clock */
		eecd |= E1000_EECD_SK;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(hw->eeprom.delay_usec);

		/* Falling edge of clock */
		eecd &= ~E1000_EECD_SK;
		E1000_WRITE_REG(hw, EECD, eecd);
		E1000_WRITE_FLUSH(hw);
		udelay(hw->eeprom.delay_usec);
	}

	/* Stop requesting EEPROM access */
	if (hw->mac_type > e1000_82544) {
		eecd &= ~E1000_EECD_REQ;
		E1000_WRITE_REG(hw, EECD, eecd);
	}

	e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM);
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
	uint16_t retry_count = 0;
	uint8_t spi_stat_reg;

	DEBUGFUNC();

	/* Read "Status Register" repeatedly until the LSB is cleared.  The
	 * EEPROM will signal that the command has been completed by clearing
	 * bit 0 of the internal status register.  If it's not cleared within
	 * 5 milliseconds, then error out.
	 */
	retry_count = 0;
	do {
		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
			hw->eeprom.opcode_bits);
		spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
			break;

		udelay(5);
		retry_count += 5;

		e1000_standby_eeprom(hw);
	} while (retry_count < EEPROM_MAX_RETRY_SPI);

	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
	 * only 0-5mSec on 5V devices)
	 */
	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
		DEBUGOUT("SPI EEPROM Status error\n");
		return -E1000_ERR_EEPROM;
	}

	return E1000_SUCCESS;
}

/******************************************************************************
 * Reads a 16 bit word from the EEPROM.
 *
 * hw - Struct containing variables accessed by shared code
 * offset - offset of  word in the EEPROM to read
 * data - word read from the EEPROM
 *****************************************************************************/
static int32_t
e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset,
		uint16_t words, uint16_t *data)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t i = 0;

	DEBUGFUNC();

	/* If eeprom is not yet detected, do so now */
	if (eeprom->word_size == 0)
		e1000_init_eeprom_params(hw);

	/* A check for invalid values:  offset too large, too many words,
	 * and not enough words.
	 */
	if ((offset >= eeprom->word_size) ||
		(words > eeprom->word_size - offset) ||
		(words == 0)) {
		DEBUGOUT("\"words\" parameter out of bounds."
			"Words = %d, size = %d\n", offset, eeprom->word_size);
		return -E1000_ERR_EEPROM;
	}

	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
	 * directly. In this case, we need to acquire the EEPROM so that
	 * FW or other port software does not interrupt.
	 */
	if (e1000_is_onboard_nvm_eeprom(hw) == true &&
		hw->eeprom.use_eerd == false) {

		/* Prepare the EEPROM for bit-bang reading */
		if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
			return -E1000_ERR_EEPROM;
	}

	/* Eerd register EEPROM access requires no eeprom aquire/release */
	if (eeprom->use_eerd == true)
		return e1000_read_eeprom_eerd(hw, offset, words, data);

	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
	 * acquired the EEPROM at this point, so any returns should relase it */
	if (eeprom->type == e1000_eeprom_spi) {
		uint16_t word_in;
		uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;

		if (e1000_spi_eeprom_ready(hw)) {
			e1000_release_eeprom(hw);
			return -E1000_ERR_EEPROM;
		}

		e1000_standby_eeprom(hw);

		/* Some SPI eeproms use the 8th address bit embedded in
		 * the opcode */
		if ((eeprom->address_bits == 8) && (offset >= 128))
			read_opcode |= EEPROM_A8_OPCODE_SPI;

		/* Send the READ command (opcode + addr)  */
		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
		e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2),
				eeprom->address_bits);

		/* Read the data.  The address of the eeprom internally
		 * increments with each byte (spi) being read, saving on the
		 * overhead of eeprom setup and tear-down.  The address
		 * counter will roll over if reading beyond the size of
		 * the eeprom, thus allowing the entire memory to be read
		 * starting from any offset. */
		for (i = 0; i < words; i++) {
			word_in = e1000_shift_in_ee_bits(hw, 16);
			data[i] = (word_in >> 8) | (word_in << 8);
		}
	} else if (eeprom->type == e1000_eeprom_microwire) {
		for (i = 0; i < words; i++) {
			/* Send the READ command (opcode + addr)  */
			e1000_shift_out_ee_bits(hw,
				EEPROM_READ_OPCODE_MICROWIRE,
				eeprom->opcode_bits);
			e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
				eeprom->address_bits);

			/* Read the data.  For microwire, each word requires
			 * the overhead of eeprom setup and tear-down. */
			data[i] = e1000_shift_in_ee_bits(hw, 16);
			e1000_standby_eeprom(hw);
		}
	}

	/* End this read operation */
	e1000_release_eeprom(hw);

	return E1000_SUCCESS;
}

#ifndef CONFIG_DM_ETH
/******************************************************************************
 *  e1000_write_eeprom_srwr - Write to Shadow Ram using EEWR
 *  @hw: pointer to the HW structure
 *  @offset: offset within the Shadow Ram to be written to
 *  @words: number of words to write
 *  @data: 16 bit word(s) to be written to the Shadow Ram
 *
 *  Writes data to Shadow Ram at offset using EEWR register.
 *
 *  If e1000_update_eeprom_checksum_i210 is not called after this function, the
 *  Shadow Ram will most likely contain an invalid checksum.
 *****************************************************************************/
static int32_t e1000_write_eeprom_srwr(struct e1000_hw *hw, uint16_t offset,
				       uint16_t words, uint16_t *data)
{
	struct e1000_eeprom_info *eeprom = &hw->eeprom;
	uint32_t i, k, eewr = 0;
	uint32_t attempts = 100000;
	int32_t ret_val = 0;

	/* A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if ((offset >= eeprom->word_size) ||
	    (words > (eeprom->word_size - offset)) || (words == 0)) {
		DEBUGOUT("nvm parameter(s) out of bounds\n");
		ret_val = -E1000_ERR_EEPROM;
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << E1000_EEPROM_RW_ADDR_SHIFT)
				| (data[i] << E1000_EEPROM_RW_REG_DATA) |
				E1000_EEPROM_RW_REG_START;

		E1000_WRITE_REG(hw, I210_EEWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (E1000_EEPROM_RW_REG_DONE &
			    E1000_READ_REG(hw, I210_EEWR)) {
				ret_val = 0;
				break;
			}
			udelay(5);
		}

		if (ret_val) {
			DEBUGOUT("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

/******************************************************************************
 *  e1000_pool_flash_update_done_i210 - Pool FLUDONE status.
 *  @hw: pointer to the HW structure
 *
 *****************************************************************************/
static int32_t e1000_pool_flash_update_done_i210(struct e1000_hw *hw)
{
	int32_t ret_val = -E1000_ERR_EEPROM;
	uint32_t i, reg;

	for (i = 0; i < E1000_FLUDONE_ATTEMPTS; i++) {
		reg = E1000_READ_REG(hw, EECD);
		if (reg & E1000_EECD_FLUDONE_I210) {
			ret_val = 0;
			break;
		}
		udelay(5);
	}

	return ret_val;
}

/******************************************************************************
 *  e1000_update_flash_i210 - Commit EEPROM to the flash
 *  @hw: pointer to the HW structure
 *
 *****************************************************************************/
static int32_t e1000_update_flash_i210(struct e1000_hw *hw)
{
	int32_t ret_val = 0;
	uint32_t flup;

	ret_val = e1000_pool_flash_update_done_i210(hw);
	if (ret_val == -E1000_ERR_EEPROM) {
		DEBUGOUT("Flash update time out\n");
		goto out;
	}

	flup = E1000_READ_REG(hw, EECD) | E1000_EECD_FLUPD_I210;
	E1000_WRITE_REG(hw, EECD, flup);

	ret_val = e1000_pool_flash_update_done_i210(hw);
	if (ret_val)
		DEBUGOUT("Flash update time out\n");
	else
		DEBUGOUT("Flash update complete\n");

out:
	return ret_val;
}

/******************************************************************************
 *  e1000_update_eeprom_checksum_i210 - Update EEPROM checksum
 *  @hw: pointer to the HW structure
 *
 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 *  value to the EEPROM. Next commit EEPROM data onto the Flash.
 *****************************************************************************/
static int32_t e1000_update_eeprom_checksum_i210(struct e1000_hw *hw)
{
	int32_t ret_val = 0;
	uint16_t checksum = 0;
	uint16_t i, nvm_data;

	/* Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = e1000_read_eeprom_eerd(hw, 0, 1, &nvm_data);
	if (ret_val) {
		DEBUGOUT("EEPROM read failed\n");
		goto out;
	}

	if (!(e1000_get_hw_eeprom_semaphore(hw))) {
		/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
		 * because we do not want to take the synchronization
		 * semaphores twice here.
		 */

		for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
			ret_val = e1000_read_eeprom_eerd(hw, i, 1, &nvm_data);
			if (ret_val) {
				e1000_put_hw_eeprom_semaphore(hw);
				DEBUGOUT("EEPROM Read Error while updating checksum.\n");
				goto out;
			}
			checksum += nvm_data;
		}
		checksum = (uint16_t)EEPROM_SUM - checksum;
		ret_val = e1000_write_eeprom_srwr(hw, EEPROM_CHECKSUM_REG, 1,
						  &checksum);
		if (ret_val) {
			e1000_put_hw_eeprom_semaphore(hw);
			DEBUGOUT("EEPROM Write Error while updating checksum.\n");
			goto out;
		}

		e1000_put_hw_eeprom_semaphore(hw);

		ret_val = e1000_update_flash_i210(hw);
	} else {
		ret_val = -E1000_ERR_SWFW_SYNC;
	}

out:
	return ret_val;
}
#endif

/******************************************************************************
 * Verifies that the EEPROM has a valid checksum
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
 * valid.
 *****************************************************************************/
static int e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
	uint16_t i, checksum, checksum_reg, *buf;

	DEBUGFUNC();

	/* Allocate a temporary buffer */
	buf = malloc(sizeof(buf[0]) * (EEPROM_CHECKSUM_REG + 1));
	if (!buf) {
		E1000_ERR(hw, "Unable to allocate EEPROM buffer!\n");
		return -E1000_ERR_EEPROM;
	}

	/* Read the EEPROM */
	if (e1000_read_eeprom(hw, 0, EEPROM_CHECKSUM_REG + 1, buf) < 0) {
		E1000_ERR(hw, "Unable to read EEPROM!\n");
		return -E1000_ERR_EEPROM;
	}

	/* Compute the checksum */
	checksum = 0;
	for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
		checksum += buf[i];
	checksum = ((uint16_t)EEPROM_SUM) - checksum;
	checksum_reg = buf[i];

	/* Verify it! */
	if (checksum == checksum_reg)
		return 0;

	/* Hrm, verification failed, print an error */
	E1000_ERR(hw, "EEPROM checksum is incorrect!\n");
	E1000_ERR(hw, "  ...register was 0x%04hx, calculated 0x%04hx\n",
		  checksum_reg, checksum);

	return -E1000_ERR_EEPROM;
}
#endif /* CONFIG_E1000_NO_NVM */

/*****************************************************************************
 * Set PHY to class A mode
 * Assumes the following operations will follow to enable the new class mode.
 *  1. Do a PHY soft reset
 *  2. Restart auto-negotiation or force link.
 *
 * hw - Struct containing variables accessed by shared code
 ****************************************************************************/
static int32_t
e1000_set_phy_mode(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
	int32_t ret_val;
	uint16_t eeprom_data;

	DEBUGFUNC();

	if ((hw->mac_type == e1000_82545_rev_3) &&
		(hw->media_type == e1000_media_type_copper)) {
		ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD,
				1, &eeprom_data);
		if (ret_val)
			return ret_val;

		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
			(eeprom_data & EEPROM_PHY_CLASS_A)) {
			ret_val = e1000_write_phy_reg(hw,
					M88E1000_PHY_PAGE_SELECT, 0x000B);
			if (ret_val)
				return ret_val;
			ret_val = e1000_write_phy_reg(hw,
					M88E1000_PHY_GEN_CONTROL, 0x8104);
			if (ret_val)
				return ret_val;

			hw->phy_reset_disable = false;
		}
	}
#endif
	return E1000_SUCCESS;
}

#ifndef CONFIG_E1000_NO_NVM
/***************************************************************************
 *
 * Obtaining software semaphore bit (SMBI) before resetting PHY.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to obtain semaphore.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
static int32_t
e1000_get_software_semaphore(struct e1000_hw *hw)
{
	 int32_t timeout = hw->eeprom.word_size + 1;
	 uint32_t swsm;

	DEBUGFUNC();

	if (hw->mac_type != e1000_80003es2lan && hw->mac_type != e1000_igb)
		return E1000_SUCCESS;

	while (timeout) {
		swsm = E1000_READ_REG(hw, SWSM);
		/* If SMBI bit cleared, it is now set and we hold
		 * the semaphore */
		if (!(swsm & E1000_SWSM_SMBI))
			break;
		mdelay(1);
		timeout--;
	}

	if (!timeout) {
		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
		return -E1000_ERR_RESET;
	}

	return E1000_SUCCESS;
}
#endif

/***************************************************************************
 * This function clears HW semaphore bits.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - None.
 *
 ***************************************************************************/
static void
e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
	 uint32_t swsm;

	DEBUGFUNC();

	if (!hw->eeprom_semaphore_present)
		return;

	swsm = E1000_READ_REG(hw, SWSM);
	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
		/* Release both semaphores. */
		swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
	} else
		swsm &= ~(E1000_SWSM_SWESMBI);
	E1000_WRITE_REG(hw, SWSM, swsm);
#endif
}

/***************************************************************************
 *
 * Using the combination of SMBI and SWESMBI semaphore bits when resetting
 * adapter or Eeprom access.
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_EEPROM if fail to access EEPROM.
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
static int32_t
e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw)
{
#ifndef CONFIG_E1000_NO_NVM
	int32_t timeout;
	uint32_t swsm;

	DEBUGFUNC();

	if (!hw->eeprom_semaphore_present)
		return E1000_SUCCESS;

	if (hw->mac_type == e1000_80003es2lan || hw->mac_type == e1000_igb) {
		/* Get the SW semaphore. */
		if (e1000_get_software_semaphore(hw) != E1000_SUCCESS)
			return -E1000_ERR_EEPROM;
	}

	/* Get the FW semaphore. */
	timeout = hw->eeprom.word_size + 1;
	while (timeout) {
		swsm = E1000_READ_REG(hw, SWSM);
		swsm |= E1000_SWSM_SWESMBI;
		E1000_WRITE_REG(hw, SWSM, swsm);
		/* if we managed to set the bit we got the semaphore. */
		swsm = E1000_READ_REG(hw, SWSM);
		if (swsm & E1000_SWSM_SWESMBI)
			break;

		udelay(50);
		timeout--;
	}

	if (!timeout) {
		/* Release semaphores */
		e1000_put_hw_eeprom_semaphore(hw);
		DEBUGOUT("Driver can't access the Eeprom - "
				"SWESMBI bit is set.\n");
		return -E1000_ERR_EEPROM;
	}
#endif
	return E1000_SUCCESS;
}

/* Take ownership of the PHY */
static int32_t
e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask)
{
	uint32_t swfw_sync = 0;
	uint32_t swmask = mask;
	uint32_t fwmask = mask << 16;
	int32_t timeout = 200;

	DEBUGFUNC();
	while (timeout) {
		if (e1000_get_hw_eeprom_semaphore(hw))
			return -E1000_ERR_SWFW_SYNC;

		swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* firmware currently using resource (fwmask) */
		/* or other software thread currently using resource (swmask) */
		e1000_put_hw_eeprom_semaphore(hw);
		mdelay(5);
		timeout--;
	}

	if (!timeout) {
		DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n");
		return -E1000_ERR_SWFW_SYNC;
	}

	swfw_sync |= swmask;
	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

	e1000_put_hw_eeprom_semaphore(hw);
	return E1000_SUCCESS;
}

static void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask)
{
	uint32_t swfw_sync = 0;

	DEBUGFUNC();
	while (e1000_get_hw_eeprom_semaphore(hw))
		; /* Empty */

	swfw_sync = E1000_READ_REG(hw, SW_FW_SYNC);
	swfw_sync &= ~mask;
	E1000_WRITE_REG(hw, SW_FW_SYNC, swfw_sync);

	e1000_put_hw_eeprom_semaphore(hw);
}

static bool e1000_is_second_port(struct e1000_hw *hw)
{
	switch (hw->mac_type) {
	case e1000_80003es2lan:
	case e1000_82546:
	case e1000_82571:
		if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
			return true;
		/* Fallthrough */
	default:
		return false;
	}
}

#ifndef CONFIG_E1000_NO_NVM
/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM
 *
 * hw - Struct containing variables accessed by shared code
 * enetaddr - buffering where the MAC address will be stored
 *****************************************************************************/
static int e1000_read_mac_addr_from_eeprom(struct e1000_hw *hw,
					   unsigned char enetaddr[6])
{
	uint16_t offset;
	uint16_t eeprom_data;
	int i;

	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
		offset = i >> 1;
		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
			DEBUGOUT("EEPROM Read Error\n");
			return -E1000_ERR_EEPROM;
		}
		enetaddr[i] = eeprom_data & 0xff;
		enetaddr[i + 1] = (eeprom_data >> 8) & 0xff;
	}

	return 0;
}

/******************************************************************************
 * Reads the adapter's MAC address from the RAL/RAH registers
 *
 * hw - Struct containing variables accessed by shared code
 * enetaddr - buffering where the MAC address will be stored
 *****************************************************************************/
static int e1000_read_mac_addr_from_regs(struct e1000_hw *hw,
					 unsigned char enetaddr[6])
{
	uint16_t offset, tmp;
	uint32_t reg_data = 0;
	int i;

	if (hw->mac_type != e1000_igb)
		return -E1000_ERR_MAC_TYPE;

	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
		offset = i >> 1;

		if (offset == 0)
			reg_data = E1000_READ_REG_ARRAY(hw, RA, 0);
		else if (offset == 1)
			reg_data >>= 16;
		else if (offset == 2)
			reg_data = E1000_READ_REG_ARRAY(hw, RA, 1);
		tmp = reg_data & 0xffff;

		enetaddr[i] = tmp & 0xff;
		enetaddr[i + 1] = (tmp >> 8) & 0xff;
	}

	return 0;
}

/******************************************************************************
 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
 * second function of dual function devices
 *
 * hw - Struct containing variables accessed by shared code
 * enetaddr - buffering where the MAC address will be stored
 *****************************************************************************/
static int e1000_read_mac_addr(struct e1000_hw *hw, unsigned char enetaddr[6])
{
	int ret_val;

	if (hw->mac_type == e1000_igb) {
		/* i210 preloads MAC address into RAL/RAH registers */
		ret_val = e1000_read_mac_addr_from_regs(hw, enetaddr);
	} else {
		ret_val = e1000_read_mac_addr_from_eeprom(hw, enetaddr);
	}
	if (ret_val)
		return ret_val;

	/* Invert the last bit if this is the second device */
	if (e1000_is_second_port(hw))
		enetaddr[5] ^= 1;

	return 0;
}
#endif

/******************************************************************************
 * Initializes receive address filters.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Places the MAC address in receive address register 0 and clears the rest
 * of the receive addresss registers. Clears the multicast table. Assumes
 * the receiver is in reset when the routine is called.
 *****************************************************************************/
static void
e1000_init_rx_addrs(struct e1000_hw *hw, unsigned char enetaddr[6])
{
	uint32_t i;
	uint32_t addr_low;
	uint32_t addr_high;

	DEBUGFUNC();

	/* Setup the receive address. */
	DEBUGOUT("Programming MAC Address into RAR[0]\n");
	addr_low = (enetaddr[0] |
		    (enetaddr[1] << 8) |
		    (enetaddr[2] << 16) | (enetaddr[3] << 24));

	addr_high = (enetaddr[4] | (enetaddr[5] << 8) | E1000_RAH_AV);

	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);

	/* Zero out the other 15 receive addresses. */
	DEBUGOUT("Clearing RAR[1-15]\n");
	for (i = 1; i < E1000_RAR_ENTRIES; i++) {
		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
	}
}

/******************************************************************************
 * Clears the VLAN filer table
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_clear_vfta(struct e1000_hw *hw)
{
	uint32_t offset;

	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}

/******************************************************************************
 * Set the mac type member in the hw struct.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
int32_t
e1000_set_mac_type(struct e1000_hw *hw)
{
	DEBUGFUNC();

	switch (hw->device_id) {
	case E1000_DEV_ID_82542:
		switch (hw->revision_id) {
		case E1000_82542_2_0_REV_ID:
			hw->mac_type = e1000_82542_rev2_0;
			break;
		case E1000_82542_2_1_REV_ID:
			hw->mac_type = e1000_82542_rev2_1;
			break;
		default:
			/* Invalid 82542 revision ID */
			return -E1000_ERR_MAC_TYPE;
		}
		break;
	case E1000_DEV_ID_82543GC_FIBER:
	case E1000_DEV_ID_82543GC_COPPER:
		hw->mac_type = e1000_82543;
		break;
	case E1000_DEV_ID_82544EI_COPPER:
	case E1000_DEV_ID_82544EI_FIBER:
	case E1000_DEV_ID_82544GC_COPPER:
	case E1000_DEV_ID_82544GC_LOM:
		hw->mac_type = e1000_82544;
		break;
	case E1000_DEV_ID_82540EM:
	case E1000_DEV_ID_82540EM_LOM:
	case E1000_DEV_ID_82540EP:
	case E1000_DEV_ID_82540EP_LOM:
	case E1000_DEV_ID_82540EP_LP:
		hw->mac_type = e1000_82540;
		break;
	case E1000_DEV_ID_82545EM_COPPER:
	case E1000_DEV_ID_82545EM_FIBER:
		hw->mac_type = e1000_82545;
		break;
	case E1000_DEV_ID_82545GM_COPPER:
	case E1000_DEV_ID_82545GM_FIBER:
	case E1000_DEV_ID_82545GM_SERDES:
		hw->mac_type = e1000_82545_rev_3;
		break;
	case E1000_DEV_ID_82546EB_COPPER:
	case E1000_DEV_ID_82546EB_FIBER:
	case E1000_DEV_ID_82546EB_QUAD_COPPER:
		hw->mac_type = e1000_82546;
		break;
	case E1000_DEV_ID_82546GB_COPPER:
	case E1000_DEV_ID_82546GB_FIBER:
	case E1000_DEV_ID_82546GB_SERDES:
	case E1000_DEV_ID_82546GB_PCIE:
	case E1000_DEV_ID_82546GB_QUAD_COPPER:
	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
		hw->mac_type = e1000_82546_rev_3;
		break;
	case E1000_DEV_ID_82541EI:
	case E1000_DEV_ID_82541EI_MOBILE:
	case E1000_DEV_ID_82541ER_LOM:
		hw->mac_type = e1000_82541;
		break;
	case E1000_DEV_ID_82541ER:
	case E1000_DEV_ID_82541GI:
	case E1000_DEV_ID_82541GI_LF:
	case E1000_DEV_ID_82541GI_MOBILE:
		hw->mac_type = e1000_82541_rev_2;
		break;
	case E1000_DEV_ID_82547EI:
	case E1000_DEV_ID_82547EI_MOBILE:
		hw->mac_type = e1000_82547;
		break;
	case E1000_DEV_ID_82547GI:
		hw->mac_type = e1000_82547_rev_2;
		break;
	case E1000_DEV_ID_82571EB_COPPER:
	case E1000_DEV_ID_82571EB_FIBER:
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
	case E1000_DEV_ID_82571EB_QUAD_COPPER:
	case E1000_DEV_ID_82571PT_QUAD_COPPER:
	case E1000_DEV_ID_82571EB_QUAD_FIBER:
	case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
		hw->mac_type = e1000_82571;
		break;
	case E1000_DEV_ID_82572EI_COPPER:
	case E1000_DEV_ID_82572EI_FIBER:
	case E1000_DEV_ID_82572EI_SERDES:
	case E1000_DEV_ID_82572EI:
		hw->mac_type = e1000_82572;
		break;
	case E1000_DEV_ID_82573E:
	case E1000_DEV_ID_82573E_IAMT:
	case E1000_DEV_ID_82573L:
		hw->mac_type = e1000_82573;
		break;
	case E1000_DEV_ID_82574L:
		hw->mac_type = e1000_82574;
		break;
	case E1000_DEV_ID_80003ES2LAN_COPPER_SPT:
	case E1000_DEV_ID_80003ES2LAN_SERDES_SPT:
	case E1000_DEV_ID_80003ES2LAN_COPPER_DPT:
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
		hw->mac_type = e1000_80003es2lan;
		break;
	case E1000_DEV_ID_ICH8_IGP_M_AMT:
	case E1000_DEV_ID_ICH8_IGP_AMT:
	case E1000_DEV_ID_ICH8_IGP_C:
	case E1000_DEV_ID_ICH8_IFE:
	case E1000_DEV_ID_ICH8_IFE_GT:
	case E1000_DEV_ID_ICH8_IFE_G:
	case E1000_DEV_ID_ICH8_IGP_M:
		hw->mac_type = e1000_ich8lan;
		break;
	case PCI_DEVICE_ID_INTEL_I210_UNPROGRAMMED:
	case PCI_DEVICE_ID_INTEL_I211_UNPROGRAMMED:
	case PCI_DEVICE_ID_INTEL_I210_COPPER:
	case PCI_DEVICE_ID_INTEL_I211_COPPER:
	case PCI_DEVICE_ID_INTEL_I210_COPPER_FLASHLESS:
	case PCI_DEVICE_ID_INTEL_I210_SERDES:
	case PCI_DEVICE_ID_INTEL_I210_SERDES_FLASHLESS:
	case PCI_DEVICE_ID_INTEL_I210_1000BASEKX:
		hw->mac_type = e1000_igb;
		break;
	default:
		/* Should never have loaded on this device */
		return -E1000_ERR_MAC_TYPE;
	}
	return E1000_SUCCESS;
}

/******************************************************************************
 * Reset the transmit and receive units; mask and clear all interrupts.
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void
e1000_reset_hw(struct e1000_hw *hw)
{
	uint32_t ctrl;
	uint32_t ctrl_ext;
	uint32_t manc;
	uint32_t pba = 0;
	uint32_t reg;

	DEBUGFUNC();

	/* get the correct pba value for both PCI and PCIe*/
	if (hw->mac_type <  e1000_82571)
		pba = E1000_DEFAULT_PCI_PBA;
	else
		pba = E1000_DEFAULT_PCIE_PBA;

	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
	if (hw->mac_type == e1000_82542_rev2_0) {
		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
#ifdef CONFIG_DM_ETH
		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#else
		pci_write_config_word(hw->pdev, PCI_COMMAND,
				hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#endif
	}

	/* Clear interrupt mask to stop board from generating interrupts */
	DEBUGOUT("Masking off all interrupts\n");
	if (hw->mac_type == e1000_igb)
		E1000_WRITE_REG(hw, I210_IAM, 0);
	E1000_WRITE_REG(hw, IMC, 0xffffffff);

	/* Disable the Transmit and Receive units.  Then delay to allow
	 * any pending transactions to complete before we hit the MAC with
	 * the global reset.
	 */
	E1000_WRITE_REG(hw, RCTL, 0);
	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
	E1000_WRITE_FLUSH(hw);

	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
	hw->tbi_compatibility_on = false;

	/* Delay to allow any outstanding PCI transactions to complete before
	 * resetting the device
	 */
	mdelay(10);

	/* Issue a global reset to the MAC.  This will reset the chip's
	 * transmit, receive, DMA, and link units.  It will not effect
	 * the current PCI configuration.  The global reset bit is self-
	 * clearing, and should clear within a microsecond.
	 */
	DEBUGOUT("Issuing a global reset to MAC\n");
	ctrl = E1000_READ_REG(hw, CTRL);

	E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));

	/* Force a reload from the EEPROM if necessary */
	if (hw->mac_type == e1000_igb) {
		mdelay(20);
		reg = E1000_READ_REG(hw, STATUS);
		if (reg & E1000_STATUS_PF_RST_DONE)
			DEBUGOUT("PF OK\n");
		reg = E1000_READ_REG(hw, I210_EECD);
		if (reg & E1000_EECD_AUTO_RD)
			DEBUGOUT("EEC OK\n");
	} else if (hw->mac_type < e1000_82540) {
		/* Wait for reset to complete */
		udelay(10);
		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
		E1000_WRITE_FLUSH(hw);
		/* Wait for EEPROM reload */
		mdelay(2);
	} else {
		/* Wait for EEPROM reload (it happens automatically) */
		mdelay(4);
		/* Dissable HW ARPs on ASF enabled adapters */
		manc = E1000_READ_REG(hw, MANC);
		manc &= ~(E1000_MANC_ARP_EN);
		E1000_WRITE_REG(hw, MANC, manc);
	}

	/* Clear interrupt mask to stop board from generating interrupts */
	DEBUGOUT("Masking off all interrupts\n");
	if (hw->mac_type == e1000_igb)
		E1000_WRITE_REG(hw, I210_IAM, 0);
	E1000_WRITE_REG(hw, IMC, 0xffffffff);

	/* Clear any pending interrupt events. */
	E1000_READ_REG(hw, ICR);

	/* If MWI was previously enabled, reenable it. */
	if (hw->mac_type == e1000_82542_rev2_0) {
#ifdef CONFIG_DM_ETH
		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#else
		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#endif
	}
	if (hw->mac_type != e1000_igb)
		E1000_WRITE_REG(hw, PBA, pba);
}

/******************************************************************************
 *
 * Initialize a number of hardware-dependent bits
 *
 * hw: Struct containing variables accessed by shared code
 *
 * This function contains hardware limitation workarounds for PCI-E adapters
 *
 *****************************************************************************/
static void
e1000_initialize_hardware_bits(struct e1000_hw *hw)
{
	if ((hw->mac_type >= e1000_82571) &&
			(!hw->initialize_hw_bits_disable)) {
		/* Settings common to all PCI-express silicon */
		uint32_t reg_ctrl, reg_ctrl_ext;
		uint32_t reg_tarc0, reg_tarc1;
		uint32_t reg_tctl;
		uint32_t reg_txdctl, reg_txdctl1;

		/* link autonegotiation/sync workarounds */
		reg_tarc0 = E1000_READ_REG(hw, TARC0);
		reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27));

		/* Enable not-done TX descriptor counting */
		reg_txdctl = E1000_READ_REG(hw, TXDCTL);
		reg_txdctl |= E1000_TXDCTL_COUNT_DESC;
		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);

		reg_txdctl1 = E1000_READ_REG(hw, TXDCTL1);
		reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC;
		E1000_WRITE_REG(hw, TXDCTL1, reg_txdctl1);


		switch (hw->mac_type) {
		case e1000_igb:			/* IGB is cool */
			return;
		case e1000_82571:
		case e1000_82572:
			/* Clear PHY TX compatible mode bits */
			reg_tarc1 = E1000_READ_REG(hw, TARC1);
			reg_tarc1 &= ~((1 << 30)|(1 << 29));

			/* link autonegotiation/sync workarounds */
			reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23));

			/* TX ring control fixes */
			reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24));

			/* Multiple read bit is reversed polarity */
			reg_tctl = E1000_READ_REG(hw, TCTL);
			if (reg_tctl & E1000_TCTL_MULR)
				reg_tarc1 &= ~(1 << 28);
			else
				reg_tarc1 |= (1 << 28);

			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
			break;
		case e1000_82573:
		case e1000_82574:
			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
			reg_ctrl_ext &= ~(1 << 23);
			reg_ctrl_ext |= (1 << 22);

			/* TX byte count fix */
			reg_ctrl = E1000_READ_REG(hw, CTRL);
			reg_ctrl &= ~(1 << 29);

			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);
			E1000_WRITE_REG(hw, CTRL, reg_ctrl);
			break;
		case e1000_80003es2lan:
	/* improve small packet performace for fiber/serdes */
			if ((hw->media_type == e1000_media_type_fiber)
			|| (hw->media_type ==
				e1000_media_type_internal_serdes)) {
				reg_tarc0 &= ~(1 << 20);
			}

		/* Multiple read bit is reversed polarity */
			reg_tctl = E1000_READ_REG(hw, TCTL);
			reg_tarc1 = E1000_READ_REG(hw, TARC1);
			if (reg_tctl & E1000_TCTL_MULR)
				reg_tarc1 &= ~(1 << 28);
			else
				reg_tarc1 |= (1 << 28);

			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
			break;
		case e1000_ich8lan:
			/* Reduce concurrent DMA requests to 3 from 4 */
			if ((hw->revision_id < 3) ||
			((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
				(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))
				reg_tarc0 |= ((1 << 29)|(1 << 28));

			reg_ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
			reg_ctrl_ext |= (1 << 22);
			E1000_WRITE_REG(hw, CTRL_EXT, reg_ctrl_ext);

			/* workaround TX hang with TSO=on */
			reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23));

			/* Multiple read bit is reversed polarity */
			reg_tctl = E1000_READ_REG(hw, TCTL);
			reg_tarc1 = E1000_READ_REG(hw, TARC1);
			if (reg_tctl & E1000_TCTL_MULR)
				reg_tarc1 &= ~(1 << 28);
			else
				reg_tarc1 |= (1 << 28);

			/* workaround TX hang with TSO=on */
			reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24));

			E1000_WRITE_REG(hw, TARC1, reg_tarc1);
			break;
		default:
			break;
		}

		E1000_WRITE_REG(hw, TARC0, reg_tarc0);
	}
}

/******************************************************************************
 * Performs basic configuration of the adapter.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Assumes that the controller has previously been reset and is in a
 * post-reset uninitialized state. Initializes the receive address registers,
 * multicast table, and VLAN filter table. Calls routines to setup link
 * configuration and flow control settings. Clears all on-chip counters. Leaves
 * the transmit and receive units disabled and uninitialized.
 *****************************************************************************/
static int
e1000_init_hw(struct e1000_hw *hw, unsigned char enetaddr[6])
{
	uint32_t ctrl;
	uint32_t i;
	int32_t ret_val;
	uint16_t pcix_cmd_word;
	uint16_t pcix_stat_hi_word;
	uint16_t cmd_mmrbc;
	uint16_t stat_mmrbc;
	uint32_t mta_size;
	uint32_t reg_data;
	uint32_t ctrl_ext;
	DEBUGFUNC();
	/* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */
	if ((hw->mac_type == e1000_ich8lan) &&
		((hw->revision_id < 3) ||
		((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) &&
		(hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) {
			reg_data = E1000_READ_REG(hw, STATUS);
			reg_data &= ~0x80000000;
			E1000_WRITE_REG(hw, STATUS, reg_data);
	}
	/* Do not need initialize Identification LED */

	/* Set the media type and TBI compatibility */
	e1000_set_media_type(hw);

	/* Must be called after e1000_set_media_type
	 * because media_type is used */
	e1000_initialize_hardware_bits(hw);

	/* Disabling VLAN filtering. */
	DEBUGOUT("Initializing the IEEE VLAN\n");
	/* VET hardcoded to standard value and VFTA removed in ICH8 LAN */
	if (hw->mac_type != e1000_ich8lan) {
		if (hw->mac_type < e1000_82545_rev_3)
			E1000_WRITE_REG(hw, VET, 0);
		e1000_clear_vfta(hw);
	}

	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
	if (hw->mac_type == e1000_82542_rev2_0) {
		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
#ifdef CONFIG_DM_ETH
		dm_pci_write_config16(hw->pdev, PCI_COMMAND,
				      hw->
				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#else
		pci_write_config_word(hw->pdev, PCI_COMMAND,
				      hw->
				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
#endif
		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
		E1000_WRITE_FLUSH(hw);
		mdelay(5);
	}

	/* Setup the receive address. This involves initializing all of the Receive
	 * Address Registers (RARs 0 - 15).
	 */
	e1000_init_rx_addrs(hw, enetaddr);

	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
	if (hw->mac_type == e1000_82542_rev2_0) {
		E1000_WRITE_REG(hw, RCTL, 0);
		E1000_WRITE_FLUSH(hw);
		mdelay(1);
#ifdef CONFIG_DM_ETH
		dm_pci_write_config16(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#else
		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
#endif
	}

	/* Zero out the Multicast HASH table */
	DEBUGOUT("Zeroing the MTA\n");
	mta_size = E1000_MC_TBL_SIZE;
	if (hw->mac_type == e1000_ich8lan)
		mta_size = E1000_MC_TBL_SIZE_ICH8LAN;
	for (i = 0; i < mta_size; i++) {
		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
		/* use write flush to prevent Memory Write Block (MWB) from
		 * occuring when accessing our register space */
		E1000_WRITE_FLUSH(hw);
	}

	switch (hw->mac_type) {
	case e1000_82545_rev_3:
	case e1000_82546_rev_3:
	case e1000_igb:
		break;
	default:
	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
	if (hw->bus_type == e1000_bus_type_pcix) {
#ifdef CONFIG_DM_ETH
		dm_pci_read_config16(hw->pdev, PCIX_COMMAND_REGISTER,
				     &pcix_cmd_word);
		dm_pci_read_config16(hw->pdev, PCIX_STATUS_REGISTER_HI,
				     &pcix_stat_hi_word);
#else
		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
				     &pcix_cmd_word);
		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI,
				     &pcix_stat_hi_word);
#endif
		cmd_mmrbc =
		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
		    PCIX_COMMAND_MMRBC_SHIFT;
		stat_mmrbc =
		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
		    PCIX_STATUS_HI_MMRBC_SHIFT;
		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
		if (cmd_mmrbc > stat_mmrbc) {
			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
#ifdef CONFIG_DM_ETH
			dm_pci_write_config16(hw->pdev, PCIX_COMMAND_REGISTER,
					      pcix_cmd_word);
#else
			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER,
					      pcix_cmd_word);
#endif
		}
	}
		break;
	}

	/* More time needed for PHY to initialize */
	if (hw->mac_type == e1000_ich8lan)
		mdelay(15);
	if (hw->mac_type == e1000_igb)
		mdelay(15);

	/* Call a subroutine to configure the link and setup flow control. */
	ret_val = e1000_setup_link(hw);

	/* Set the transmit descriptor write-back policy */
	if (hw->mac_type > e1000_82544) {
		ctrl = E1000_READ_REG(hw, TXDCTL);
		ctrl =
		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
		    E1000_TXDCTL_FULL_TX_DESC_WB;
		E1000_WRITE_REG(hw, TXDCTL, ctrl);
	}

	/* Set the receive descriptor write back policy */
	if (hw->mac_type >= e1000_82571) {
		ctrl = E1000_READ_REG(hw, RXDCTL);
		ctrl =
		    (ctrl & ~E1000_RXDCTL_WTHRESH) |
		    E1000_RXDCTL_FULL_RX_DESC_WB;
		E1000_WRITE_REG(hw, RXDCTL, ctrl);
	}

	switch (hw->mac_type) {
	default:
		break;
	case e1000_80003es2lan:
		/* Enable retransmit on late collisions */
		reg_data = E1000_READ_REG(hw, TCTL);
		reg_data |= E1000_TCTL_RTLC;
		E1000_WRITE_REG(hw, TCTL, reg_data);

		/* Configure Gigabit Carry Extend Padding */
		reg_data = E1000_READ_REG(hw, TCTL_EXT);
		reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
		reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX;
		E1000_WRITE_REG(hw, TCTL_EXT, reg_data);

		/* Configure Transmit Inter-Packet Gap */
		reg_data = E1000_READ_REG(hw, TIPG);
		reg_data &= ~E1000_TIPG_IPGT_MASK;
		reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
		E1000_WRITE_REG(hw, TIPG, reg_data);

		reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001);
		reg_data &= ~0x00100000;
		E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data);
		/* Fall through */
	case e1000_82571:
	case e1000_82572:
	case e1000_ich8lan:
		ctrl = E1000_READ_REG(hw, TXDCTL1);
		ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH)
			| E1000_TXDCTL_FULL_TX_DESC_WB;
		E1000_WRITE_REG(hw, TXDCTL1, ctrl);
		break;
	case e1000_82573:
	case e1000_82574:
		reg_data = E1000_READ_REG(hw, GCR);
		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
		E1000_WRITE_REG(hw, GCR, reg_data);
	case e1000_igb:
		break;
	}

	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
		hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
		/* Relaxed ordering must be disabled to avoid a parity
		 * error crash in a PCI slot. */
		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
	}

	return ret_val;
}

/******************************************************************************
 * Configures flow control and link settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Determines which flow control settings to use. Calls the apropriate media-
 * specific link configuration function. Configures the flow control settings.
 * Assuming the adapter has a valid link partner, a valid link should be
 * established. Assumes the hardware has previously been reset and the
 * transmitter and receiver are not enabled.
 *****************************************************************************/
static int
e1000_setup_link(struct e1000_hw *hw)
{
	int32_t ret_val;
#ifndef CONFIG_E1000_NO_NVM
	uint32_t ctrl_ext;
	uint16_t eeprom_data;
#endif

	DEBUGFUNC();

	/* In the case of the phy reset being blocked, we already have a link.
	 * We do not have to set it up again. */
	if (e1000_check_phy_reset_block(hw))
		return E1000_SUCCESS;

#ifndef CONFIG_E1000_NO_NVM
	/* Read and store word 0x0F of the EEPROM. This word contains bits
	 * that determine the hardware's default PAUSE (flow control) mode,
	 * a bit that determines whether the HW defaults to enabling or
	 * disabling auto-negotiation, and the direction of the
	 * SW defined pins. If there is no SW over-ride of the flow
	 * control setting, then the variable hw->fc will
	 * be initialized based on a value in the EEPROM.
	 */
	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1,
				&eeprom_data) < 0) {
		DEBUGOUT("EEPROM Read Error\n");
		return -E1000_ERR_EEPROM;
	}
#endif
	if (hw->fc == e1000_fc_default) {
		switch (hw->mac_type) {
		case e1000_ich8lan:
		case e1000_82573:
		case e1000_82574:
		case e1000_igb:
			hw->fc = e1000_fc_full;
			break;
		default:
#ifndef CONFIG_E1000_NO_NVM
			ret_val = e1000_read_eeprom(hw,
				EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
			if (ret_val) {
				DEBUGOUT("EEPROM Read Error\n");
				return -E1000_ERR_EEPROM;
			}
			if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
				hw->fc = e1000_fc_none;
			else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
				    EEPROM_WORD0F_ASM_DIR)
				hw->fc = e1000_fc_tx_pause;
			else
#endif
				hw->fc = e1000_fc_full;
			break;
		}
	}

	/* We want to save off the original Flow Control configuration just
	 * in case we get disconnected and then reconnected into a different
	 * hub or switch with different Flow Control capabilities.
	 */
	if (hw->mac_type == e1000_82542_rev2_0)
		hw->fc &= (~e1000_fc_tx_pause);

	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
		hw->fc &= (~e1000_fc_rx_pause);

	hw->original_fc = hw->fc;

	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc);

#ifndef CONFIG_E1000_NO_NVM
	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
	 * polarity value for the SW controlled pins, and setup the
	 * Extended Device Control reg with that info.
	 * This is needed because one of the SW controlled pins is used for
	 * signal detection.  So this should be done before e1000_setup_pcs_link()
	 * or e1000_phy_setup() is called.
	 */
	if (hw->mac_type == e1000_82543) {
		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
			    SWDPIO__EXT_SHIFT);
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
	}
#endif

	/* Call the necessary subroutine to configure the link. */
	ret_val = (hw->media_type == e1000_media_type_fiber) ?
	    e1000_setup_fiber_link(hw) : e1000_setup_copper_link(hw);
	if (ret_val < 0) {
		return ret_val;
	}

	/* Initialize the flow control address, type, and PAUSE timer
	 * registers to their default values.  This is done even if flow
	 * control is disabled, because it does not hurt anything to
	 * initialize these registers.
	 */
	DEBUGOUT("Initializing the Flow Control address, type"
			"and timer regs\n");

	/* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */
	if (hw->mac_type != e1000_ich8lan) {
		E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
		E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
		E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
	}

	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);

	/* Set the flow control receive threshold registers.  Normally,
	 * these registers will be set to a default threshold that may be
	 * adjusted later by the driver's runtime code.  However, if the
	 * ability to transmit pause frames in not enabled, then these
	 * registers will be set to 0.
	 */
	if (!(hw->fc & e1000_fc_tx_pause)) {
		E1000_WRITE_REG(hw, FCRTL, 0);
		E1000_WRITE_REG(hw, FCRTH, 0);
	} else {
		/* We need to set up the Receive Threshold high and low water marks
		 * as well as (optionally) enabling the transmission of XON frames.
		 */
		if (hw->fc_send_xon) {
			E1000_WRITE_REG(hw, FCRTL,
					(hw->fc_low_water | E1000_FCRTL_XONE));
			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
		} else {
			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
		}
	}
	return ret_val;
}

/******************************************************************************
 * Sets up link for a fiber based adapter
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Manipulates Physical Coding Sublayer functions in order to configure
 * link. Assumes the hardware has been previously reset and the transmitter
 * and receiver are not enabled.
 *****************************************************************************/
static int
e1000_setup_fiber_link(struct e1000_hw *hw)
{
	uint32_t ctrl;
	uint32_t status;
	uint32_t txcw = 0;
	uint32_t i;
	uint32_t signal;
	int32_t ret_val;

	DEBUGFUNC();
	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
	 * set when the optics detect a signal. On older adapters, it will be
	 * cleared when there is a signal
	 */
	ctrl = E1000_READ_REG(hw, CTRL);
	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
		signal = E1000_CTRL_SWDPIN1;
	else
		signal = 0;

	printf("signal for %s is %x (ctrl %08x)!!!!\n", hw->name, signal,
	       ctrl);
	/* Take the link out of reset */
	ctrl &= ~(E1000_CTRL_LRST);

	e1000_config_collision_dist(hw);

	/* Check for a software override of the flow control settings, and setup
	 * the device accordingly.  If auto-negotiation is enabled, then software
	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit
	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if
	 * auto-negotiation is disabled, then software will have to manually
	 * configure the two flow control enable bits in the CTRL register.
	 *
	 * The possible values of the "fc" parameter are:
	 *	0:  Flow control is completely disabled
	 *	1:  Rx flow control is enabled (we can receive pause frames, but
	 *	    not send pause frames).
	 *	2:  Tx flow control is enabled (we can send pause frames but we do
	 *	    not support receiving pause frames).
	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
	 */
	switch (hw->fc) {
	case e1000_fc_none:
		/* Flow control is completely disabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
		break;
	case e1000_fc_rx_pause:
		/* RX Flow control is enabled and TX Flow control is disabled by a
		 * software over-ride. Since there really isn't a way to advertise
		 * that we are capable of RX Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric RX PAUSE. Later, we will
		 *  disable the adapter's ability to send PAUSE frames.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	case e1000_fc_tx_pause:
		/* TX Flow control is enabled, and RX Flow control is disabled, by a
		 * software over-ride.
		 */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
		break;
	case e1000_fc_full:
		/* Flow control (both RX and TX) is enabled by a software over-ride. */
		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
		break;
	default:
		DEBUGOUT("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
		break;
	}

	/* Since auto-negotiation is enabled, take the link out of reset (the link
	 * will be in reset, because we previously reset the chip). This will
	 * restart auto-negotiation.  If auto-neogtiation is successful then the
	 * link-up status bit will be set and the flow control enable bits (RFCE
	 * and TFCE) will be set according to their negotiated value.
	 */
	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw);

	E1000_WRITE_REG(hw, TXCW, txcw);
	E1000_WRITE_REG(hw, CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);

	hw->txcw = txcw;
	mdelay(1);

	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
	 * indication in the Device Status Register.  Time-out if a link isn't
	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in
	 * less than 500 milliseconds even if the other end is doing it in SW).
	 */
	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
		DEBUGOUT("Looking for Link\n");
		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
			mdelay(10);
			status = E1000_READ_REG(hw, STATUS);
			if (status & E1000_STATUS_LU)
				break;
		}
		if (i == (LINK_UP_TIMEOUT / 10)) {
			/* AutoNeg failed to achieve a link, so we'll call
			 * e1000_check_for_link. This routine will force the link up if we
			 * detect a signal. This will allow us to communicate with
			 * non-autonegotiating link partners.
			 */
			DEBUGOUT("Never got a valid link from auto-neg!!!\n");
			hw->autoneg_failed = 1;
			ret_val = e1000_check_for_link(hw);
			if (ret_val < 0) {
				DEBUGOUT("Error while checking for link\n");
				return ret_val;
			}
			hw->autoneg_failed = 0;
		} else {
			hw->autoneg_failed = 0;
			DEBUGOUT("Valid Link Found\n");
		}
	} else {
		DEBUGOUT("No Signal Detected\n");
		return -E1000_ERR_NOLINK;
	}
	return 0;
}

/******************************************************************************
* Make sure we have a valid PHY and change PHY mode before link setup.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_preconfig(struct e1000_hw *hw)
{
	uint32_t ctrl;
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	ctrl = E1000_READ_REG(hw, CTRL);
	/* With 82543, we need to force speed and duplex on the MAC equal to what
	 * the PHY speed and duplex configuration is. In addition, we need to
	 * perform a hardware reset on the PHY to take it out of reset.
	 */
	if (hw->mac_type > e1000_82543) {
		ctrl |= E1000_CTRL_SLU;
		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
		E1000_WRITE_REG(hw, CTRL, ctrl);
	} else {
		ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX
				| E1000_CTRL_SLU);
		E1000_WRITE_REG(hw, CTRL, ctrl);
		ret_val = e1000_phy_hw_reset(hw);
		if (ret_val)
			return ret_val;
	}

	/* Make sure we have a valid PHY */
	ret_val = e1000_detect_gig_phy(hw);
	if (ret_val) {
		DEBUGOUT("Error, did not detect valid phy.\n");
		return ret_val;
	}
	DEBUGOUT("Phy ID = %x\n", hw->phy_id);

	/* Set PHY to class A mode (if necessary) */
	ret_val = e1000_set_phy_mode(hw);
	if (ret_val)
		return ret_val;
	if ((hw->mac_type == e1000_82545_rev_3) ||
		(hw->mac_type == e1000_82546_rev_3)) {
		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
				&phy_data);
		phy_data |= 0x00000008;
		ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
				phy_data);
	}

	if (hw->mac_type <= e1000_82543 ||
		hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
		hw->mac_type == e1000_82541_rev_2
		|| hw->mac_type == e1000_82547_rev_2)
			hw->phy_reset_disable = false;

	return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

static int32_t
e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
	uint32_t phy_ctrl = 0;
	int32_t ret_val;
	uint16_t phy_data;
	DEBUGFUNC();

	if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2
	    && hw->phy_type != e1000_phy_igp_3)
		return E1000_SUCCESS;

	/* During driver activity LPLU should not be used or it will attain link
	 * from the lowest speeds starting from 10Mbps. The capability is used
	 * for Dx transitions and states */
	if (hw->mac_type == e1000_82541_rev_2
			|| hw->mac_type == e1000_82547_rev_2) {
		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
				&phy_data);
		if (ret_val)
			return ret_val;
	} else if (hw->mac_type == e1000_ich8lan) {
		/* MAC writes into PHY register based on the state transition
		 * and start auto-negotiation. SW driver can overwrite the
		 * settings in CSR PHY power control E1000_PHY_CTRL register. */
		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
	} else {
		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
				&phy_data);
		if (ret_val)
			return ret_val;
	}

	if (!active) {
		if (hw->mac_type == e1000_82541_rev_2 ||
			hw->mac_type == e1000_82547_rev_2) {
			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
			ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
					phy_data);
			if (ret_val)
				return ret_val;
		} else {
			if (hw->mac_type == e1000_ich8lan) {
				phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
			} else {
				phy_data &= ~IGP02E1000_PM_D3_LPLU;
				ret_val = e1000_write_phy_reg(hw,
					IGP02E1000_PHY_POWER_MGMT, phy_data);
				if (ret_val)
					return ret_val;
			}
		}

	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
	 * Dx states where the power conservation is most important.  During
	 * driver activity we should enable SmartSpeed, so performance is
	 * maintained. */
		if (hw->smart_speed == e1000_smart_speed_on) {
			ret_val = e1000_read_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
			if (ret_val)
				return ret_val;

			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, phy_data);
			if (ret_val)
				return ret_val;
		} else if (hw->smart_speed == e1000_smart_speed_off) {
			ret_val = e1000_read_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
			if (ret_val)
				return ret_val;

			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, phy_data);
			if (ret_val)
				return ret_val;
		}

	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
		|| (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL) ||
		(hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) {

		if (hw->mac_type == e1000_82541_rev_2 ||
		    hw->mac_type == e1000_82547_rev_2) {
			phy_data |= IGP01E1000_GMII_FLEX_SPD;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_GMII_FIFO, phy_data);
			if (ret_val)
				return ret_val;
		} else {
			if (hw->mac_type == e1000_ich8lan) {
				phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
				E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
			} else {
				phy_data |= IGP02E1000_PM_D3_LPLU;
				ret_val = e1000_write_phy_reg(hw,
					IGP02E1000_PHY_POWER_MGMT, phy_data);
				if (ret_val)
					return ret_val;
			}
		}

		/* When LPLU is enabled we should disable SmartSpeed */
		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
				&phy_data);
		if (ret_val)
			return ret_val;

		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
				phy_data);
		if (ret_val)
			return ret_val;
	}
	return E1000_SUCCESS;
}

/*****************************************************************************
 *
 * This function sets the lplu d0 state according to the active flag.  When
 * activating lplu this function also disables smart speed and vise versa.
 * lplu will not be activated unless the device autonegotiation advertisment
 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
 * hw: Struct containing variables accessed by shared code
 * active - true to enable lplu false to disable lplu.
 *
 * returns: - E1000_ERR_PHY if fail to read/write the PHY
 *            E1000_SUCCESS at any other case.
 *
 ****************************************************************************/

static int32_t
e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
{
	uint32_t phy_ctrl = 0;
	int32_t ret_val;
	uint16_t phy_data;
	DEBUGFUNC();

	if (hw->mac_type <= e1000_82547_rev_2)
		return E1000_SUCCESS;

	if (hw->mac_type == e1000_ich8lan) {
		phy_ctrl = E1000_READ_REG(hw, PHY_CTRL);
	} else if (hw->mac_type == e1000_igb) {
		phy_ctrl = E1000_READ_REG(hw, I210_PHY_CTRL);
	} else {
		ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
				&phy_data);
		if (ret_val)
			return ret_val;
	}

	if (!active) {
		if (hw->mac_type == e1000_ich8lan) {
			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
		} else if (hw->mac_type == e1000_igb) {
			phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
		} else {
			phy_data &= ~IGP02E1000_PM_D0_LPLU;
			ret_val = e1000_write_phy_reg(hw,
					IGP02E1000_PHY_POWER_MGMT, phy_data);
			if (ret_val)
				return ret_val;
		}

		if (hw->mac_type == e1000_igb)
			return E1000_SUCCESS;

	/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during
	 * Dx states where the power conservation is most important.  During
	 * driver activity we should enable SmartSpeed, so performance is
	 * maintained. */
		if (hw->smart_speed == e1000_smart_speed_on) {
			ret_val = e1000_read_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
			if (ret_val)
				return ret_val;

			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, phy_data);
			if (ret_val)
				return ret_val;
		} else if (hw->smart_speed == e1000_smart_speed_off) {
			ret_val = e1000_read_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
			if (ret_val)
				return ret_val;

			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, phy_data);
			if (ret_val)
				return ret_val;
		}


	} else {

		if (hw->mac_type == e1000_ich8lan) {
			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
			E1000_WRITE_REG(hw, PHY_CTRL, phy_ctrl);
		} else if (hw->mac_type == e1000_igb) {
			phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
			E1000_WRITE_REG(hw, I210_PHY_CTRL, phy_ctrl);
		} else {
			phy_data |= IGP02E1000_PM_D0_LPLU;
			ret_val = e1000_write_phy_reg(hw,
					IGP02E1000_PHY_POWER_MGMT, phy_data);
			if (ret_val)
				return ret_val;
		}

		if (hw->mac_type == e1000_igb)
			return E1000_SUCCESS;

		/* When LPLU is enabled we should disable SmartSpeed */
		ret_val = e1000_read_phy_reg(hw,
				IGP01E1000_PHY_PORT_CONFIG, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
		ret_val = e1000_write_phy_reg(hw,
				IGP01E1000_PHY_PORT_CONFIG, phy_data);
		if (ret_val)
			return ret_val;

	}
	return E1000_SUCCESS;
}

/********************************************************************
* Copper link setup for e1000_phy_igp series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_igp_setup(struct e1000_hw *hw)
{
	uint32_t led_ctrl;
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	if (hw->phy_reset_disable)
		return E1000_SUCCESS;

	ret_val = e1000_phy_reset(hw);
	if (ret_val) {
		DEBUGOUT("Error Resetting the PHY\n");
		return ret_val;
	}

	/* Wait 15ms for MAC to configure PHY from eeprom settings */
	mdelay(15);
	if (hw->mac_type != e1000_ich8lan) {
		/* Configure activity LED after PHY reset */
		led_ctrl = E1000_READ_REG(hw, LEDCTL);
		led_ctrl &= IGP_ACTIVITY_LED_MASK;
		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
	}

	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
	if (hw->phy_type == e1000_phy_igp) {
		/* disable lplu d3 during driver init */
		ret_val = e1000_set_d3_lplu_state(hw, false);
		if (ret_val) {
			DEBUGOUT("Error Disabling LPLU D3\n");
			return ret_val;
		}
	}

	/* disable lplu d0 during driver init */
	ret_val = e1000_set_d0_lplu_state(hw, false);
	if (ret_val) {
		DEBUGOUT("Error Disabling LPLU D0\n");
		return ret_val;
	}
	/* Configure mdi-mdix settings */
	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
		hw->dsp_config_state = e1000_dsp_config_disabled;
		/* Force MDI for earlier revs of the IGP PHY */
		phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX
				| IGP01E1000_PSCR_FORCE_MDI_MDIX);
		hw->mdix = 1;

	} else {
		hw->dsp_config_state = e1000_dsp_config_enabled;
		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;

		switch (hw->mdix) {
		case 1:
			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
			break;
		case 2:
			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
			break;
		case 0:
		default:
			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
			break;
		}
	}
	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	/* set auto-master slave resolution settings */
	if (hw->autoneg) {
		e1000_ms_type phy_ms_setting = hw->master_slave;

		if (hw->ffe_config_state == e1000_ffe_config_active)
			hw->ffe_config_state = e1000_ffe_config_enabled;

		if (hw->dsp_config_state == e1000_dsp_config_activated)
			hw->dsp_config_state = e1000_dsp_config_enabled;

		/* when autonegotiation advertisment is only 1000Mbps then we
		  * should disable SmartSpeed and enable Auto MasterSlave
		  * resolution as hardware default. */
		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
			/* Disable SmartSpeed */
			ret_val = e1000_read_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, &phy_data);
			if (ret_val)
				return ret_val;
			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
			ret_val = e1000_write_phy_reg(hw,
					IGP01E1000_PHY_PORT_CONFIG, phy_data);
			if (ret_val)
				return ret_val;
			/* Set auto Master/Slave resolution process */
			ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
					&phy_data);
			if (ret_val)
				return ret_val;
			phy_data &= ~CR_1000T_MS_ENABLE;
			ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
					phy_data);
			if (ret_val)
				return ret_val;
		}

		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		/* load defaults for future use */
		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
				((phy_data & CR_1000T_MS_VALUE) ?
				e1000_ms_force_master :
				e1000_ms_force_slave) :
				e1000_ms_auto;

		switch (phy_ms_setting) {
		case e1000_ms_force_master:
			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
			break;
		case e1000_ms_force_slave:
			phy_data |= CR_1000T_MS_ENABLE;
			phy_data &= ~(CR_1000T_MS_VALUE);
			break;
		case e1000_ms_auto:
			phy_data &= ~CR_1000T_MS_ENABLE;
		default:
			break;
		}
		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}

	return E1000_SUCCESS;
}

/*****************************************************************************
 * This function checks the mode of the firmware.
 *
 * returns  - true when the mode is IAMT or false.
 ****************************************************************************/
bool
e1000_check_mng_mode(struct e1000_hw *hw)
{
	uint32_t fwsm;
	DEBUGFUNC();

	fwsm = E1000_READ_REG(hw, FWSM);

	if (hw->mac_type == e1000_ich8lan) {
		if ((fwsm & E1000_FWSM_MODE_MASK) ==
		    (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
			return true;
	} else if ((fwsm & E1000_FWSM_MODE_MASK) ==
		       (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT))
			return true;

	return false;
}

static int32_t
e1000_write_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data)
{
	uint16_t swfw = E1000_SWFW_PHY0_SM;
	uint32_t reg_val;
	DEBUGFUNC();

	if (e1000_is_second_port(hw))
		swfw = E1000_SWFW_PHY1_SM;

	if (e1000_swfw_sync_acquire(hw, swfw))
		return -E1000_ERR_SWFW_SYNC;

	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT)
			& E1000_KUMCTRLSTA_OFFSET) | data;
	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
	udelay(2);

	return E1000_SUCCESS;
}

static int32_t
e1000_read_kmrn_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *data)
{
	uint16_t swfw = E1000_SWFW_PHY0_SM;
	uint32_t reg_val;
	DEBUGFUNC();

	if (e1000_is_second_port(hw))
		swfw = E1000_SWFW_PHY1_SM;

	if (e1000_swfw_sync_acquire(hw, swfw)) {
		debug("%s[%i]\n", __func__, __LINE__);
		return -E1000_ERR_SWFW_SYNC;
	}

	/* Write register address */
	reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) &
			E1000_KUMCTRLSTA_OFFSET) | E1000_KUMCTRLSTA_REN;
	E1000_WRITE_REG(hw, KUMCTRLSTA, reg_val);
	udelay(2);

	/* Read the data returned */
	reg_val = E1000_READ_REG(hw, KUMCTRLSTA);
	*data = (uint16_t)reg_val;

	return E1000_SUCCESS;
}

/********************************************************************
* Copper link setup for e1000_phy_gg82563 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_ggp_setup(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t phy_data;
	uint32_t reg_data;

	DEBUGFUNC();

	if (!hw->phy_reset_disable) {
		/* Enable CRS on TX for half-duplex operation. */
		ret_val = e1000_read_phy_reg(hw,
				GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
		/* Use 25MHz for both link down and 1000BASE-T for Tx clock */
		phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ;

		ret_val = e1000_write_phy_reg(hw,
				GG82563_PHY_MAC_SPEC_CTRL, phy_data);
		if (ret_val)
			return ret_val;

		/* Options:
		 *   MDI/MDI-X = 0 (default)
		 *   0 - Auto for all speeds
		 *   1 - MDI mode
		 *   2 - MDI-X mode
		 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
		 */
		ret_val = e1000_read_phy_reg(hw,
				GG82563_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;

		switch (hw->mdix) {
		case 1:
			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
			break;
		case 2:
			phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
			break;
		case 0:
		default:
			phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
			break;
		}

		/* Options:
		 *   disable_polarity_correction = 0 (default)
		 *       Automatic Correction for Reversed Cable Polarity
		 *   0 - Disabled
		 *   1 - Enabled
		 */
		phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
		ret_val = e1000_write_phy_reg(hw,
				GG82563_PHY_SPEC_CTRL, phy_data);

		if (ret_val)
			return ret_val;

		/* SW Reset the PHY so all changes take effect */
		ret_val = e1000_phy_reset(hw);
		if (ret_val) {
			DEBUGOUT("Error Resetting the PHY\n");
			return ret_val;
		}
	} /* phy_reset_disable */

	if (hw->mac_type == e1000_80003es2lan) {
		/* Bypass RX and TX FIFO's */
		ret_val = e1000_write_kmrn_reg(hw,
				E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL,
				E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS
				| E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS);
		if (ret_val)
			return ret_val;

		ret_val = e1000_read_phy_reg(hw,
				GG82563_PHY_SPEC_CTRL_2, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
		ret_val = e1000_write_phy_reg(hw,
				GG82563_PHY_SPEC_CTRL_2, phy_data);

		if (ret_val)
			return ret_val;

		reg_data = E1000_READ_REG(hw, CTRL_EXT);
		reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
		E1000_WRITE_REG(hw, CTRL_EXT, reg_data);

		ret_val = e1000_read_phy_reg(hw,
				GG82563_PHY_PWR_MGMT_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

	/* Do not init these registers when the HW is in IAMT mode, since the
	 * firmware will have already initialized them.  We only initialize
	 * them if the HW is not in IAMT mode.
	 */
		if (e1000_check_mng_mode(hw) == false) {
			/* Enable Electrical Idle on the PHY */
			phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
			ret_val = e1000_write_phy_reg(hw,
					GG82563_PHY_PWR_MGMT_CTRL, phy_data);
			if (ret_val)
				return ret_val;

			ret_val = e1000_read_phy_reg(hw,
					GG82563_PHY_KMRN_MODE_CTRL, &phy_data);
			if (ret_val)
				return ret_val;

			phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
			ret_val = e1000_write_phy_reg(hw,
					GG82563_PHY_KMRN_MODE_CTRL, phy_data);

			if (ret_val)
				return ret_val;
		}

		/* Workaround: Disable padding in Kumeran interface in the MAC
		 * and in the PHY to avoid CRC errors.
		 */
		ret_val = e1000_read_phy_reg(hw,
				GG82563_PHY_INBAND_CTRL, &phy_data);
		if (ret_val)
			return ret_val;
		phy_data |= GG82563_ICR_DIS_PADDING;
		ret_val = e1000_write_phy_reg(hw,
				GG82563_PHY_INBAND_CTRL, phy_data);
		if (ret_val)
			return ret_val;
	}
	return E1000_SUCCESS;
}

/********************************************************************
* Copper link setup for e1000_phy_m88 series.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_mgp_setup(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	if (hw->phy_reset_disable)
		return E1000_SUCCESS;

	/* Enable CRS on TX. This must be set for half-duplex operation. */
	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;

	/* Options:
	 *   MDI/MDI-X = 0 (default)
	 *   0 - Auto for all speeds
	 *   1 - MDI mode
	 *   2 - MDI-X mode
	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
	 */
	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;

	switch (hw->mdix) {
	case 1:
		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
		break;
	case 2:
		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
		break;
	case 3:
		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
		break;
	case 0:
	default:
		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
		break;
	}

	/* Options:
	 *   disable_polarity_correction = 0 (default)
	 *       Automatic Correction for Reversed Cable Polarity
	 *   0 - Disabled
	 *   1 - Enabled
	 */
	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	if (hw->phy_revision < M88E1011_I_REV_4) {
		/* Force TX_CLK in the Extended PHY Specific Control Register
		 * to 25MHz clock.
		 */
		ret_val = e1000_read_phy_reg(hw,
				M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= M88E1000_EPSCR_TX_CLK_25;

		if ((hw->phy_revision == E1000_REVISION_2) &&
			(hw->phy_id == M88E1111_I_PHY_ID)) {
			/* Vidalia Phy, set the downshift counter to 5x */
			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
			ret_val = e1000_write_phy_reg(hw,
					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
			if (ret_val)
				return ret_val;
		} else {
			/* Configure Master and Slave downshift values */
			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
					| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
			ret_val = e1000_write_phy_reg(hw,
					M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
			if (ret_val)
				return ret_val;
		}
	}

	/* SW Reset the PHY so all changes take effect */
	ret_val = e1000_phy_reset(hw);
	if (ret_val) {
		DEBUGOUT("Error Resetting the PHY\n");
		return ret_val;
	}

	return E1000_SUCCESS;
}

/********************************************************************
* Setup auto-negotiation and flow control advertisements,
* and then perform auto-negotiation.
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
static int32_t
e1000_copper_link_autoneg(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	/* Perform some bounds checking on the hw->autoneg_advertised
	 * parameter.  If this variable is zero, then set it to the default.
	 */
	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;

	/* If autoneg_advertised is zero, we assume it was not defaulted
	 * by the calling code so we set to advertise full capability.
	 */
	if (hw->autoneg_advertised == 0)
		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;

	/* IFE phy only supports 10/100 */
	if (hw->phy_type == e1000_phy_ife)
		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;

	DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
	ret_val = e1000_phy_setup_autoneg(hw);
	if (ret_val) {
		DEBUGOUT("Error Setting up Auto-Negotiation\n");
		return ret_val;
	}
	DEBUGOUT("Restarting Auto-Neg\n");

	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
	 * the Auto Neg Restart bit in the PHY control register.
	 */
	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
	if (ret_val)
		return ret_val;

	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
	if (ret_val)
		return ret_val;

	/* Does the user want to wait for Auto-Neg to complete here, or
	 * check at a later time (for example, callback routine).
	 */
	/* If we do not wait for autonegtation to complete I
	 * do not see a valid link status.
	 * wait_autoneg_complete = 1 .
	 */
	if (hw->wait_autoneg_complete) {
		ret_val = e1000_wait_autoneg(hw);
		if (ret_val) {
			DEBUGOUT("Error while waiting for autoneg"
					"to complete\n");
			return ret_val;
		}
	}

	hw->get_link_status = true;

	return E1000_SUCCESS;
}

/******************************************************************************
* Config the MAC and the PHY after link is up.
*   1) Set up the MAC to the current PHY speed/duplex
*      if we are on 82543.  If we
*      are on newer silicon, we only need to configure
*      collision distance in the Transmit Control Register.
*   2) Set up flow control on the MAC to that established with
*      the link partner.
*   3) Config DSP to improve Gigabit link quality for some PHY revisions.
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_copper_link_postconfig(struct e1000_hw *hw)
{
	int32_t ret_val;
	DEBUGFUNC();

	if (hw->mac_type >= e1000_82544) {
		e1000_config_collision_dist(hw);
	} else {
		ret_val = e1000_config_mac_to_phy(hw);
		if (ret_val) {
			DEBUGOUT("Error configuring MAC to PHY settings\n");
			return ret_val;
		}
	}
	ret_val = e1000_config_fc_after_link_up(hw);
	if (ret_val) {
		DEBUGOUT("Error Configuring Flow Control\n");
		return ret_val;
	}
	return E1000_SUCCESS;
}

/******************************************************************************
* Detects which PHY is present and setup the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_setup_copper_link(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t i;
	uint16_t phy_data;
	uint16_t reg_data;

	DEBUGFUNC();

	switch (hw->mac_type) {
	case e1000_80003es2lan:
	case e1000_ich8lan:
		/* Set the mac to wait the maximum time between each
		 * iteration and increase the max iterations when
		 * polling the phy; this fixes erroneous timeouts at 10Mbps. */
		ret_val = e1000_write_kmrn_reg(hw,
				GG82563_REG(0x34, 4), 0xFFFF);
		if (ret_val)
			return ret_val;
		ret_val = e1000_read_kmrn_reg(hw,
				GG82563_REG(0x34, 9), &reg_data);
		if (ret_val)
			return ret_val;
		reg_data |= 0x3F;
		ret_val = e1000_write_kmrn_reg(hw,
				GG82563_REG(0x34, 9), reg_data);
		if (ret_val)
			return ret_val;
	default:
		break;
	}

	/* Check if it is a valid PHY and set PHY mode if necessary. */
	ret_val = e1000_copper_link_preconfig(hw);
	if (ret_val)
		return ret_val;
	switch (hw->mac_type) {
	case e1000_80003es2lan:
		/* Kumeran registers are written-only */
		reg_data =
		E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT;
		reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING;
		ret_val = e1000_write_kmrn_reg(hw,
				E1000_KUMCTRLSTA_OFFSET_INB_CTRL, reg_data);
		if (ret_val)
			return ret_val;
		break;
	default:
		break;
	}

	if (hw->phy_type == e1000_phy_igp ||
		hw->phy_type == e1000_phy_igp_3 ||
		hw->phy_type == e1000_phy_igp_2) {
		ret_val = e1000_copper_link_igp_setup(hw);
		if (ret_val)
			return ret_val;
	} else if (hw->phy_type == e1000_phy_m88 ||
		hw->phy_type == e1000_phy_igb) {
		ret_val = e1000_copper_link_mgp_setup(hw);
		if (ret_val)
			return ret_val;
	} else if (hw->phy_type == e1000_phy_gg82563) {
		ret_val = e1000_copper_link_ggp_setup(hw);
		if (ret_val)
			return ret_val;
	}

	/* always auto */
	/* Setup autoneg and flow control advertisement
	  * and perform autonegotiation */
	ret_val = e1000_copper_link_autoneg(hw);
	if (ret_val)
		return ret_val;

	/* Check link status. Wait up to 100 microseconds for link to become
	 * valid.
	 */
	for (i = 0; i < 10; i++) {
		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
		if (ret_val)
			return ret_val;
		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
		if (ret_val)
			return ret_val;

		if (phy_data & MII_SR_LINK_STATUS) {
			/* Config the MAC and PHY after link is up */
			ret_val = e1000_copper_link_postconfig(hw);
			if (ret_val)
				return ret_val;

			DEBUGOUT("Valid link established!!!\n");
			return E1000_SUCCESS;
		}
		udelay(10);
	}

	DEBUGOUT("Unable to establish link!!!\n");
	return E1000_SUCCESS;
}

/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t mii_autoneg_adv_reg;
	uint16_t mii_1000t_ctrl_reg;

	DEBUGFUNC();

	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	if (hw->phy_type != e1000_phy_ife) {
		/* Read the MII 1000Base-T Control Register (Address 9). */
		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
				&mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	} else
		mii_1000t_ctrl_reg = 0;

	/* Need to parse both autoneg_advertised and fc and set up
	 * the appropriate PHY registers.  First we will parse for
	 * autoneg_advertised software override.  Since we can advertise
	 * a plethora of combinations, we need to check each bit
	 * individually.
	 */

	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
	 * the  1000Base-T Control Register (Address 9).
	 */
	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;

	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised);

	/* Do we want to advertise 10 Mb Half Duplex? */
	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
		DEBUGOUT("Advertise 10mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
	}

	/* Do we want to advertise 10 Mb Full Duplex? */
	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
		DEBUGOUT("Advertise 10mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
	}

	/* Do we want to advertise 100 Mb Half Duplex? */
	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
		DEBUGOUT("Advertise 100mb Half duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
	}

	/* Do we want to advertise 100 Mb Full Duplex? */
	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
		DEBUGOUT("Advertise 100mb Full duplex\n");
		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
	}

	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
		DEBUGOUT
		    ("Advertise 1000mb Half duplex requested, request denied!\n");
	}

	/* Do we want to advertise 1000 Mb Full Duplex? */
	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
		DEBUGOUT("Advertise 1000mb Full duplex\n");
		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
	}

	/* Check for a software override of the flow control settings, and
	 * setup the PHY advertisement registers accordingly.  If
	 * auto-negotiation is enabled, then software will have to set the
	 * "PAUSE" bits to the correct value in the Auto-Negotiation
	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
	 *
	 * The possible values of the "fc" parameter are:
	 *	0:  Flow control is completely disabled
	 *	1:  Rx flow control is enabled (we can receive pause frames
	 *	    but not send pause frames).
	 *	2:  Tx flow control is enabled (we can send pause frames
	 *	    but we do not support receiving pause frames).
	 *	3:  Both Rx and TX flow control (symmetric) are enabled.
	 *  other:  No software override.  The flow control configuration
	 *	    in the EEPROM is used.
	 */
	switch (hw->fc) {
	case e1000_fc_none:	/* 0 */
		/* Flow control (RX & TX) is completely disabled by a
		 * software over-ride.
		 */
		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_rx_pause:	/* 1 */
		/* RX Flow control is enabled, and TX Flow control is
		 * disabled, by a software over-ride.
		 */
		/* Since there really isn't a way to advertise that we are
		 * capable of RX Pause ONLY, we will advertise that we
		 * support both symmetric and asymmetric RX PAUSE.  Later
		 * (in e1000_config_fc_after_link_up) we will disable the
		 *hw's ability to send PAUSE frames.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	case e1000_fc_tx_pause:	/* 2 */
		/* TX Flow control is enabled, and RX Flow control is
		 * disabled, by a software over-ride.
		 */
		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
		break;
	case e1000_fc_full:	/* 3 */
		/* Flow control (both RX and TX) is enabled by a software
		 * over-ride.
		 */
		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
		break;
	default:
		DEBUGOUT("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
	}

	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
	if (ret_val)
		return ret_val;

	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);

	if (hw->phy_type != e1000_phy_ife) {
		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
				mii_1000t_ctrl_reg);
		if (ret_val)
			return ret_val;
	}

	return E1000_SUCCESS;
}

/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void
e1000_config_collision_dist(struct e1000_hw *hw)
{
	uint32_t tctl, coll_dist;

	DEBUGFUNC();

	if (hw->mac_type < e1000_82543)
		coll_dist = E1000_COLLISION_DISTANCE_82542;
	else
		coll_dist = E1000_COLLISION_DISTANCE;

	tctl = E1000_READ_REG(hw, TCTL);

	tctl &= ~E1000_TCTL_COLD;
	tctl |= coll_dist << E1000_COLD_SHIFT;

	E1000_WRITE_REG(hw, TCTL, tctl);
	E1000_WRITE_FLUSH(hw);
}

/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
	uint32_t ctrl;
	uint16_t phy_data;

	DEBUGFUNC();

	/* Read the Device Control Register and set the bits to Force Speed
	 * and Duplex.
	 */
	ctrl = E1000_READ_REG(hw, CTRL);
	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
	ctrl &= ~(E1000_CTRL_ILOS);
	ctrl |= (E1000_CTRL_SPD_SEL);

	/* Set up duplex in the Device Control and Transmit Control
	 * registers depending on negotiated values.
	 */
	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) {
		DEBUGOUT("PHY Read Error\n");
		return -E1000_ERR_PHY;
	}
	if (phy_data & M88E1000_PSSR_DPLX)
		ctrl |= E1000_CTRL_FD;
	else
		ctrl &= ~E1000_CTRL_FD;

	e1000_config_collision_dist(hw);

	/* Set up speed in the Device Control register depending on
	 * negotiated values.
	 */
	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
		ctrl |= E1000_CTRL_SPD_1000;
	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
		ctrl |= E1000_CTRL_SPD_100;
	/* Write the configured values back to the Device Control Reg. */
	E1000_WRITE_REG(hw, CTRL, ctrl);
	return 0;
}

/******************************************************************************
 * Forces the MAC's flow control settings.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Sets the TFCE and RFCE bits in the device control register to reflect
 * the adapter settings. TFCE and RFCE need to be explicitly set by
 * software when a Copper PHY is used because autonegotiation is managed
 * by the PHY rather than the MAC. Software must also configure these
 * bits when link is forced on a fiber connection.
 *****************************************************************************/
static int
e1000_force_mac_fc(struct e1000_hw *hw)
{
	uint32_t ctrl;

	DEBUGFUNC();

	/* Get the current configuration of the Device Control Register */
	ctrl = E1000_READ_REG(hw, CTRL);

	/* Because we didn't get link via the internal auto-negotiation
	 * mechanism (we either forced link or we got link via PHY
	 * auto-neg), we have to manually enable/disable transmit an
	 * receive flow control.
	 *
	 * The "Case" statement below enables/disable flow control
	 * according to the "hw->fc" parameter.
	 *
	 * The possible values of the "fc" parameter are:
	 *	0:  Flow control is completely disabled
	 *	1:  Rx flow control is enabled (we can receive pause
	 *	    frames but not send pause frames).
	 *	2:  Tx flow control is enabled (we can send pause frames
	 *	    frames but we do not receive pause frames).
	 *	3:  Both Rx and TX flow control (symmetric) is enabled.
	 *  other:  No other values should be possible at this point.
	 */

	switch (hw->fc) {
	case e1000_fc_none:
		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
		break;
	case e1000_fc_rx_pause:
		ctrl &= (~E1000_CTRL_TFCE);
		ctrl |= E1000_CTRL_RFCE;
		break;
	case e1000_fc_tx_pause:
		ctrl &= (~E1000_CTRL_RFCE);
		ctrl |= E1000_CTRL_TFCE;
		break;
	case e1000_fc_full:
		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
		break;
	default:
		DEBUGOUT("Flow control param set incorrectly\n");
		return -E1000_ERR_CONFIG;
	}

	/* Disable TX Flow Control for 82542 (rev 2.0) */
	if (hw->mac_type == e1000_82542_rev2_0)
		ctrl &= (~E1000_CTRL_TFCE);

	E1000_WRITE_REG(hw, CTRL, ctrl);
	return 0;
}

/******************************************************************************
 * Configures flow control settings after link is established
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Should be called immediately after a valid link has been established.
 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
 * and autonegotiation is enabled, the MAC flow control settings will be set
 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
 * and RFCE bits will be automaticaly set to the negotiated flow control mode.
 *****************************************************************************/
static int32_t
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t mii_status_reg;
	uint16_t mii_nway_adv_reg;
	uint16_t mii_nway_lp_ability_reg;
	uint16_t speed;
	uint16_t duplex;

	DEBUGFUNC();

	/* Check for the case where we have fiber media and auto-neg failed
	 * so we had to force link.  In this case, we need to force the
	 * configuration of the MAC to match the "fc" parameter.
	 */
	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
		|| ((hw->media_type == e1000_media_type_internal_serdes)
		&& (hw->autoneg_failed))
		|| ((hw->media_type == e1000_media_type_copper)
		&& (!hw->autoneg))) {
		ret_val = e1000_force_mac_fc(hw);
		if (ret_val < 0) {
			DEBUGOUT("Error forcing flow control settings\n");
			return ret_val;
		}
	}

	/* Check for the case where we have copper media and auto-neg is
	 * enabled.  In this case, we need to check and see if Auto-Neg
	 * has completed, and if so, how the PHY and link partner has
	 * flow control configured.
	 */
	if (hw->media_type == e1000_media_type_copper) {
		/* Read the MII Status Register and check to see if AutoNeg
		 * has completed.  We read this twice because this reg has
		 * some "sticky" (latched) bits.
		 */
		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}
		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}

		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
			/* The AutoNeg process has completed, so we now need to
			 * read both the Auto Negotiation Advertisement Register
			 * (Address 4) and the Auto_Negotiation Base Page Ability
			 * Register (Address 5) to determine how flow control was
			 * negotiated.
			 */
			if (e1000_read_phy_reg
			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) {
				DEBUGOUT("PHY Read Error\n");
				return -E1000_ERR_PHY;
			}
			if (e1000_read_phy_reg
			    (hw, PHY_LP_ABILITY,
			     &mii_nway_lp_ability_reg) < 0) {
				DEBUGOUT("PHY Read Error\n");
				return -E1000_ERR_PHY;
			}

			/* Two bits in the Auto Negotiation Advertisement Register
			 * (Address 4) and two bits in the Auto Negotiation Base
			 * Page Ability Register (Address 5) determine flow control
			 * for both the PHY and the link partner.  The following
			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
			 * 1999, describes these PAUSE resolution bits and how flow
			 * control is determined based upon these settings.
			 * NOTE:  DC = Don't Care
			 *
			 *   LOCAL DEVICE  |   LINK PARTNER
			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
			 *-------|---------|-------|---------|--------------------
			 *   0	 |    0    |  DC   |   DC    | e1000_fc_none
			 *   0	 |    1    |   0   |   DC    | e1000_fc_none
			 *   0	 |    1    |   1   |	0    | e1000_fc_none
			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
			 *   1	 |    0    |   0   |   DC    | e1000_fc_none
			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
			 *   1	 |    1    |   0   |	0    | e1000_fc_none
			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
			 *
			 */
			/* Are both PAUSE bits set to 1?  If so, this implies
			 * Symmetric Flow Control is enabled at both ends.  The
			 * ASM_DIR bits are irrelevant per the spec.
			 *
			 * For Symmetric Flow Control:
			 *
			 *   LOCAL DEVICE  |   LINK PARTNER
			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
			 *-------|---------|-------|---------|--------------------
			 *   1	 |   DC    |   1   |   DC    | e1000_fc_full
			 *
			 */
			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
				/* Now we need to check if the user selected RX ONLY
				 * of pause frames.  In this case, we had to advertise
				 * FULL flow control because we could not advertise RX
				 * ONLY. Hence, we must now check to see if we need to
				 * turn OFF  the TRANSMISSION of PAUSE frames.
				 */
				if (hw->original_fc == e1000_fc_full) {
					hw->fc = e1000_fc_full;
					DEBUGOUT("Flow Control = FULL.\r\n");
				} else {
					hw->fc = e1000_fc_rx_pause;
					DEBUGOUT
					    ("Flow Control = RX PAUSE frames only.\r\n");
				}
			}
			/* For receiving PAUSE frames ONLY.
			 *
			 *   LOCAL DEVICE  |   LINK PARTNER
			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
			 *-------|---------|-------|---------|--------------------
			 *   0	 |    1    |   1   |	1    | e1000_fc_tx_pause
			 *
			 */
			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
			{
				hw->fc = e1000_fc_tx_pause;
				DEBUGOUT
				    ("Flow Control = TX PAUSE frames only.\r\n");
			}
			/* For transmitting PAUSE frames ONLY.
			 *
			 *   LOCAL DEVICE  |   LINK PARTNER
			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
			 *-------|---------|-------|---------|--------------------
			 *   1	 |    1    |   0   |	1    | e1000_fc_rx_pause
			 *
			 */
			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
			{
				hw->fc = e1000_fc_rx_pause;
				DEBUGOUT
				    ("Flow Control = RX PAUSE frames only.\r\n");
			}
			/* Per the IEEE spec, at this point flow control should be
			 * disabled.  However, we want to consider that we could
			 * be connected to a legacy switch that doesn't advertise
			 * desired flow control, but can be forced on the link
			 * partner.  So if we advertised no flow control, that is
			 * what we will resolve to.  If we advertised some kind of
			 * receive capability (Rx Pause Only or Full Flow Control)
			 * and the link partner advertised none, we will configure
			 * ourselves to enable Rx Flow Control only.  We can do
			 * this safely for two reasons:  If the link partner really
			 * didn't want flow control enabled, and we enable Rx, no
			 * harm done since we won't be receiving any PAUSE frames
			 * anyway.  If the intent on the link partner was to have
			 * flow control enabled, then by us enabling RX only, we
			 * can at least receive pause frames and process them.
			 * This is a good idea because in most cases, since we are
			 * predominantly a server NIC, more times than not we will
			 * be asked to delay transmission of packets than asking
			 * our link partner to pause transmission of frames.
			 */
			else if (hw->original_fc == e1000_fc_none ||
				 hw->original_fc == e1000_fc_tx_pause) {
				hw->fc = e1000_fc_none;
				DEBUGOUT("Flow Control = NONE.\r\n");
			} else {
				hw->fc = e1000_fc_rx_pause;
				DEBUGOUT
				    ("Flow Control = RX PAUSE frames only.\r\n");
			}

			/* Now we need to do one last check...	If we auto-
			 * negotiated to HALF DUPLEX, flow control should not be
			 * enabled per IEEE 802.3 spec.
			 */
			e1000_get_speed_and_duplex(hw, &speed, &duplex);

			if (duplex == HALF_DUPLEX)
				hw->fc = e1000_fc_none;

			/* Now we call a subroutine to actually force the MAC
			 * controller to use the correct flow control settings.
			 */
			ret_val = e1000_force_mac_fc(hw);
			if (ret_val < 0) {
				DEBUGOUT
				    ("Error forcing flow control settings\n");
				return ret_val;
			}
		} else {
			DEBUGOUT
			    ("Copper PHY and Auto Neg has not completed.\r\n");
		}
	}
	return E1000_SUCCESS;
}

/******************************************************************************
 * Checks to see if the link status of the hardware has changed.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * Called by any function that needs to check the link status of the adapter.
 *****************************************************************************/
static int
e1000_check_for_link(struct e1000_hw *hw)
{
	uint32_t rxcw;
	uint32_t ctrl;
	uint32_t status;
	uint32_t rctl;
	uint32_t signal;
	int32_t ret_val;
	uint16_t phy_data;
	uint16_t lp_capability;

	DEBUGFUNC();

	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be
	 * set when the optics detect a signal. On older adapters, it will be
	 * cleared when there is a signal
	 */
	ctrl = E1000_READ_REG(hw, CTRL);
	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS))
		signal = E1000_CTRL_SWDPIN1;
	else
		signal = 0;

	status = E1000_READ_REG(hw, STATUS);
	rxcw = E1000_READ_REG(hw, RXCW);
	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw);

	/* If we have a copper PHY then we only want to go out to the PHY
	 * registers to see if Auto-Neg has completed and/or if our link
	 * status has changed.	The get_link_status flag will be set if we
	 * receive a Link Status Change interrupt or we have Rx Sequence
	 * Errors.
	 */
	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
		/* First we want to see if the MII Status Register reports
		 * link.  If so, then we want to get the current speed/duplex
		 * of the PHY.
		 * Read the register twice since the link bit is sticky.
		 */
		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}
		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}

		if (phy_data & MII_SR_LINK_STATUS) {
			hw->get_link_status = false;
		} else {
			/* No link detected */
			return -E1000_ERR_NOLINK;
		}

		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
		 * have Si on board that is 82544 or newer, Auto
		 * Speed Detection takes care of MAC speed/duplex
		 * configuration.  So we only need to configure Collision
		 * Distance in the MAC.  Otherwise, we need to force
		 * speed/duplex on the MAC to the current PHY speed/duplex
		 * settings.
		 */
		if (hw->mac_type >= e1000_82544)
			e1000_config_collision_dist(hw);
		else {
			ret_val = e1000_config_mac_to_phy(hw);
			if (ret_val < 0) {
				DEBUGOUT
				    ("Error configuring MAC to PHY settings\n");
				return ret_val;
			}
		}

		/* Configure Flow Control now that Auto-Neg has completed. First, we
		 * need to restore the desired flow control settings because we may
		 * have had to re-autoneg with a different link partner.
		 */
		ret_val = e1000_config_fc_after_link_up(hw);
		if (ret_val < 0) {
			DEBUGOUT("Error configuring flow control\n");
			return ret_val;
		}

		/* At this point we know that we are on copper and we have
		 * auto-negotiated link.  These are conditions for checking the link
		 * parter capability register.	We use the link partner capability to
		 * determine if TBI Compatibility needs to be turned on or off.  If
		 * the link partner advertises any speed in addition to Gigabit, then
		 * we assume that they are GMII-based, and TBI compatibility is not
		 * needed. If no other speeds are advertised, we assume the link
		 * partner is TBI-based, and we turn on TBI Compatibility.
		 */
		if (hw->tbi_compatibility_en) {
			if (e1000_read_phy_reg
			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) {
				DEBUGOUT("PHY Read Error\n");
				return -E1000_ERR_PHY;
			}
			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS |
					     NWAY_LPAR_10T_FD_CAPS |
					     NWAY_LPAR_100TX_HD_CAPS |
					     NWAY_LPAR_100TX_FD_CAPS |
					     NWAY_LPAR_100T4_CAPS)) {
				/* If our link partner advertises anything in addition to
				 * gigabit, we do not need to enable TBI compatibility.
				 */
				if (hw->tbi_compatibility_on) {
					/* If we previously were in the mode, turn it off. */
					rctl = E1000_READ_REG(hw, RCTL);
					rctl &= ~E1000_RCTL_SBP;
					E1000_WRITE_REG(hw, RCTL, rctl);
					hw->tbi_compatibility_on = false;
				}
			} else {
				/* If TBI compatibility is was previously off, turn it on. For
				 * compatibility with a TBI link partner, we will store bad
				 * packets. Some frames have an additional byte on the end and
				 * will look like CRC errors to to the hardware.
				 */
				if (!hw->tbi_compatibility_on) {
					hw->tbi_compatibility_on = true;
					rctl = E1000_READ_REG(hw, RCTL);
					rctl |= E1000_RCTL_SBP;
					E1000_WRITE_REG(hw, RCTL, rctl);
				}
			}
		}
	}
	/* If we don't have link (auto-negotiation failed or link partner cannot
	 * auto-negotiate), the cable is plugged in (we have signal), and our
	 * link partner is not trying to auto-negotiate with us (we are receiving
	 * idles or data), we need to force link up. We also need to give
	 * auto-negotiation time to complete, in case the cable was just plugged
	 * in. The autoneg_failed flag does this.
	 */
	else if ((hw->media_type == e1000_media_type_fiber) &&
		 (!(status & E1000_STATUS_LU)) &&
		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) &&
		 (!(rxcw & E1000_RXCW_C))) {
		if (hw->autoneg_failed == 0) {
			hw->autoneg_failed = 1;
			return 0;
		}
		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");

		/* Disable auto-negotiation in the TXCW register */
		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));

		/* Force link-up and also force full-duplex. */
		ctrl = E1000_READ_REG(hw, CTRL);
		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
		E1000_WRITE_REG(hw, CTRL, ctrl);

		/* Configure Flow Control after forcing link up. */
		ret_val = e1000_config_fc_after_link_up(hw);
		if (ret_val < 0) {
			DEBUGOUT("Error configuring flow control\n");
			return ret_val;
		}
	}
	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
	 * auto-negotiation in the TXCW register and disable forced link in the
	 * Device Control register in an attempt to auto-negotiate with our link
	 * partner.
	 */
	else if ((hw->media_type == e1000_media_type_fiber) &&
		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
		DEBUGOUT
		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
		E1000_WRITE_REG(hw, TXCW, hw->txcw);
		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
	}
	return 0;
}

/******************************************************************************
* Configure the MAC-to-PHY interface for 10/100Mbps
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, uint16_t duplex)
{
	int32_t ret_val = E1000_SUCCESS;
	uint32_t tipg;
	uint16_t reg_data;

	DEBUGFUNC();

	reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT;
	ret_val = e1000_write_kmrn_reg(hw,
			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100;
	E1000_WRITE_REG(hw, TIPG, tipg);

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

	if (ret_val)
		return ret_val;

	if (duplex == HALF_DUPLEX)
		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
	else
		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;

	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

	return ret_val;
}

static int32_t
e1000_configure_kmrn_for_1000(struct e1000_hw *hw)
{
	int32_t ret_val = E1000_SUCCESS;
	uint16_t reg_data;
	uint32_t tipg;

	DEBUGFUNC();

	reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT;
	ret_val = e1000_write_kmrn_reg(hw,
			E1000_KUMCTRLSTA_OFFSET_HD_CTRL, reg_data);
	if (ret_val)
		return ret_val;

	/* Configure Transmit Inter-Packet Gap */
	tipg = E1000_READ_REG(hw, TIPG);
	tipg &= ~E1000_TIPG_IPGT_MASK;
	tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000;
	E1000_WRITE_REG(hw, TIPG, tipg);

	ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);

	if (ret_val)
		return ret_val;

	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
	ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);

	return ret_val;
}

/******************************************************************************
 * Detects the current speed and duplex settings of the hardware.
 *
 * hw - Struct containing variables accessed by shared code
 * speed - Speed of the connection
 * duplex - Duplex setting of the connection
 *****************************************************************************/
static int
e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed,
		uint16_t *duplex)
{
	uint32_t status;
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	if (hw->mac_type >= e1000_82543) {
		status = E1000_READ_REG(hw, STATUS);
		if (status & E1000_STATUS_SPEED_1000) {
			*speed = SPEED_1000;
			DEBUGOUT("1000 Mbs, ");
		} else if (status & E1000_STATUS_SPEED_100) {
			*speed = SPEED_100;
			DEBUGOUT("100 Mbs, ");
		} else {
			*speed = SPEED_10;
			DEBUGOUT("10 Mbs, ");
		}

		if (status & E1000_STATUS_FD) {
			*duplex = FULL_DUPLEX;
			DEBUGOUT("Full Duplex\r\n");
		} else {
			*duplex = HALF_DUPLEX;
			DEBUGOUT(" Half Duplex\r\n");
		}
	} else {
		DEBUGOUT("1000 Mbs, Full Duplex\r\n");
		*speed = SPEED_1000;
		*duplex = FULL_DUPLEX;
	}

	/* IGP01 PHY may advertise full duplex operation after speed downgrade
	 * even if it is operating at half duplex.  Here we set the duplex
	 * settings to match the duplex in the link partner's capabilities.
	 */
	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
		if (ret_val)
			return ret_val;

		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
			*duplex = HALF_DUPLEX;
		else {
			ret_val = e1000_read_phy_reg(hw,
					PHY_LP_ABILITY, &phy_data);
			if (ret_val)
				return ret_val;
			if ((*speed == SPEED_100 &&
				!(phy_data & NWAY_LPAR_100TX_FD_CAPS))
				|| (*speed == SPEED_10
				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
				*duplex = HALF_DUPLEX;
		}
	}

	if ((hw->mac_type == e1000_80003es2lan) &&
		(hw->media_type == e1000_media_type_copper)) {
		if (*speed == SPEED_1000)
			ret_val = e1000_configure_kmrn_for_1000(hw);
		else
			ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex);
		if (ret_val)
			return ret_val;
	}
	return E1000_SUCCESS;
}

/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_wait_autoneg(struct e1000_hw *hw)
{
	uint16_t i;
	uint16_t phy_data;

	DEBUGFUNC();
	DEBUGOUT("Waiting for Auto-Neg to complete.\n");

	/* We will wait for autoneg to complete or timeout to expire. */
	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
		/* Read the MII Status Register and wait for Auto-Neg
		 * Complete bit to be set.
		 */
		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}
		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) {
			DEBUGOUT("PHY Read Error\n");
			return -E1000_ERR_PHY;
		}
		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
			DEBUGOUT("Auto-Neg complete.\n");
			return 0;
		}
		mdelay(100);
	}
	DEBUGOUT("Auto-Neg timedout.\n");
	return -E1000_ERR_TIMEOUT;
}

/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
	/* Raise the clock input to the Management Data Clock (by setting the MDC
	 * bit), and then delay 2 microseconds.
	 */
	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	udelay(2);
}

/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl)
{
	/* Lower the clock input to the Management Data Clock (by clearing the MDC
	 * bit), and then delay 2 microseconds.
	 */
	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
	E1000_WRITE_FLUSH(hw);
	udelay(2);
}

/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count)
{
	uint32_t ctrl;
	uint32_t mask;

	/* We need to shift "count" number of bits out to the PHY. So, the value
	 * in the "data" parameter will be shifted out to the PHY one bit at a
	 * time. In order to do this, "data" must be broken down into bits.
	 */
	mask = 0x01;
	mask <<= (count - 1);

	ctrl = E1000_READ_REG(hw, CTRL);

	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);

	while (mask) {
		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
		 * then raising and lowering the Management Data Clock. A "0" is
		 * shifted out to the PHY by setting the MDIO bit to "0" and then
		 * raising and lowering the clock.
		 */
		if (data & mask)
			ctrl |= E1000_CTRL_MDIO;
		else
			ctrl &= ~E1000_CTRL_MDIO;

		E1000_WRITE_REG(hw, CTRL, ctrl);
		E1000_WRITE_FLUSH(hw);

		udelay(2);

		e1000_raise_mdi_clk(hw, &ctrl);
		e1000_lower_mdi_clk(hw, &ctrl);

		mask = mask >> 1;
	}
}

/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
	uint32_t ctrl;
	uint16_t data = 0;
	uint8_t i;

	/* In order to read a register from the PHY, we need to shift in a total
	 * of 18 bits from the PHY. The first two bit (turnaround) times are used
	 * to avoid contention on the MDIO pin when a read operation is performed.
	 * These two bits are ignored by us and thrown away. Bits are "shifted in"
	 * by raising the input to the Management Data Clock (setting the MDC bit),
	 * and then reading the value of the MDIO bit.
	 */
	ctrl = E1000_READ_REG(hw, CTRL);

	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
	ctrl &= ~E1000_CTRL_MDIO_DIR;
	ctrl &= ~E1000_CTRL_MDIO;

	E1000_WRITE_REG(hw, CTRL, ctrl);
	E1000_WRITE_FLUSH(hw);

	/* Raise and Lower the clock before reading in the data. This accounts for
	 * the turnaround bits. The first clock occurred when we clocked out the
	 * last bit of the Register Address.
	 */
	e1000_raise_mdi_clk(hw, &ctrl);
	e1000_lower_mdi_clk(hw, &ctrl);

	for (data = 0, i = 0; i < 16; i++) {
		data = data << 1;
		e1000_raise_mdi_clk(hw, &ctrl);
		ctrl = E1000_READ_REG(hw, CTRL);
		/* Check to see if we shifted in a "1". */
		if (ctrl & E1000_CTRL_MDIO)
			data |= 1;
		e1000_lower_mdi_clk(hw, &ctrl);
	}

	e1000_raise_mdi_clk(hw, &ctrl);
	e1000_lower_mdi_clk(hw, &ctrl);

	return data;
}

/*****************************************************************************
* Reads the value from a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int
e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data)
{
	uint32_t i;
	uint32_t mdic = 0;
	const uint32_t phy_addr = 1;

	if (reg_addr > MAX_PHY_REG_ADDRESS) {
		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
		return -E1000_ERR_PARAM;
	}

	if (hw->mac_type > e1000_82543) {
		/* Set up Op-code, Phy Address, and register address in the MDI
		 * Control register.  The MAC will take care of interfacing with the
		 * PHY to retrieve the desired data.
		 */
		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
			(phy_addr << E1000_MDIC_PHY_SHIFT) |
			(E1000_MDIC_OP_READ));

		E1000_WRITE_REG(hw, MDIC, mdic);

		/* Poll the ready bit to see if the MDI read completed */
		for (i = 0; i < 64; i++) {
			udelay(10);
			mdic = E1000_READ_REG(hw, MDIC);
			if (mdic & E1000_MDIC_READY)
				break;
		}
		if (!(mdic & E1000_MDIC_READY)) {
			DEBUGOUT("MDI Read did not complete\n");
			return -E1000_ERR_PHY;
		}
		if (mdic & E1000_MDIC_ERROR) {
			DEBUGOUT("MDI Error\n");
			return -E1000_ERR_PHY;
		}
		*phy_data = (uint16_t) mdic;
	} else {
		/* We must first send a preamble through the MDIO pin to signal the
		 * beginning of an MII instruction.  This is done by sending 32
		 * consecutive "1" bits.
		 */
		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

		/* Now combine the next few fields that are required for a read
		 * operation.  We use this method instead of calling the
		 * e1000_shift_out_mdi_bits routine five different times. The format of
		 * a MII read instruction consists of a shift out of 14 bits and is
		 * defined as follows:
		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
		 * followed by a shift in of 18 bits.  This first two bits shifted in
		 * are TurnAround bits used to avoid contention on the MDIO pin when a
		 * READ operation is performed.  These two bits are thrown away
		 * followed by a shift in of 16 bits which contains the desired data.
		 */
		mdic = ((reg_addr) | (phy_addr << 5) |
			(PHY_OP_READ << 10) | (PHY_SOF << 12));

		e1000_shift_out_mdi_bits(hw, mdic, 14);

		/* Now that we've shifted out the read command to the MII, we need to
		 * "shift in" the 16-bit value (18 total bits) of the requested PHY
		 * register address.
		 */
		*phy_data = e1000_shift_in_mdi_bits(hw);
	}
	return 0;
}

/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int
e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data)
{
	uint32_t i;
	uint32_t mdic = 0;
	const uint32_t phy_addr = 1;

	if (reg_addr > MAX_PHY_REG_ADDRESS) {
		DEBUGOUT("PHY Address %d is out of range\n", reg_addr);
		return -E1000_ERR_PARAM;
	}

	if (hw->mac_type > e1000_82543) {
		/* Set up Op-code, Phy Address, register address, and data intended
		 * for the PHY register in the MDI Control register.  The MAC will take
		 * care of interfacing with the PHY to send the desired data.
		 */
		mdic = (((uint32_t) phy_data) |
			(reg_addr << E1000_MDIC_REG_SHIFT) |
			(phy_addr << E1000_MDIC_PHY_SHIFT) |
			(E1000_MDIC_OP_WRITE));

		E1000_WRITE_REG(hw, MDIC, mdic);

		/* Poll the ready bit to see if the MDI read completed */
		for (i = 0; i < 64; i++) {
			udelay(10);
			mdic = E1000_READ_REG(hw, MDIC);
			if (mdic & E1000_MDIC_READY)
				break;
		}
		if (!(mdic & E1000_MDIC_READY)) {
			DEBUGOUT("MDI Write did not complete\n");
			return -E1000_ERR_PHY;
		}
	} else {
		/* We'll need to use the SW defined pins to shift the write command
		 * out to the PHY. We first send a preamble to the PHY to signal the
		 * beginning of the MII instruction.  This is done by sending 32
		 * consecutive "1" bits.
		 */
		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);

		/* Now combine the remaining required fields that will indicate a
		 * write operation. We use this method instead of calling the
		 * e1000_shift_out_mdi_bits routine for each field in the command. The
		 * format of a MII write instruction is as follows:
		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
		 */
		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
		mdic <<= 16;
		mdic |= (uint32_t) phy_data;

		e1000_shift_out_mdi_bits(hw, mdic, 32);
	}
	return 0;
}

/******************************************************************************
 * Checks if PHY reset is blocked due to SOL/IDER session, for example.
 * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to
 * the caller to figure out how to deal with it.
 *
 * hw - Struct containing variables accessed by shared code
 *
 * returns: - E1000_BLK_PHY_RESET
 *            E1000_SUCCESS
 *
 *****************************************************************************/
int32_t
e1000_check_phy_reset_block(struct e1000_hw *hw)
{
	uint32_t manc = 0;
	uint32_t fwsm = 0;

	if (hw->mac_type == e1000_ich8lan) {
		fwsm = E1000_READ_REG(hw, FWSM);
		return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS
						: E1000_BLK_PHY_RESET;
	}

	if (hw->mac_type > e1000_82547_rev_2)
		manc = E1000_READ_REG(hw, MANC);
	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
		E1000_BLK_PHY_RESET : E1000_SUCCESS;
}

/***************************************************************************
 * Checks if the PHY configuration is done
 *
 * hw: Struct containing variables accessed by shared code
 *
 * returns: - E1000_ERR_RESET if fail to reset MAC
 *            E1000_SUCCESS at any other case.
 *
 ***************************************************************************/
static int32_t
e1000_get_phy_cfg_done(struct e1000_hw *hw)
{
	int32_t timeout = PHY_CFG_TIMEOUT;
	uint32_t cfg_mask = E1000_EEPROM_CFG_DONE;

	DEBUGFUNC();

	switch (hw->mac_type) {
	default:
		mdelay(10);
		break;

	case e1000_80003es2lan:
		/* Separate *_CFG_DONE_* bit for each port */
		if (e1000_is_second_port(hw))
			cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1;
		/* Fall Through */

	case e1000_82571:
	case e1000_82572:
	case e1000_igb:
		while (timeout) {
			if (hw->mac_type == e1000_igb) {
				if (E1000_READ_REG(hw, I210_EEMNGCTL) & cfg_mask)
					break;
			} else {
				if (E1000_READ_REG(hw, EEMNGCTL) & cfg_mask)
					break;
			}
			mdelay(1);
			timeout--;
		}
		if (!timeout) {
			DEBUGOUT("MNG configuration cycle has not "
					"completed.\n");
			return -E1000_ERR_RESET;
		}
		break;
	}

	return E1000_SUCCESS;
}

/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
int32_t
e1000_phy_hw_reset(struct e1000_hw *hw)
{
	uint16_t swfw = E1000_SWFW_PHY0_SM;
	uint32_t ctrl, ctrl_ext;
	uint32_t led_ctrl;
	int32_t ret_val;

	DEBUGFUNC();

	/* In the case of the phy reset being blocked, it's not an error, we
	 * simply return success without performing the reset. */
	ret_val = e1000_check_phy_reset_block(hw);
	if (ret_val)
		return E1000_SUCCESS;

	DEBUGOUT("Resetting Phy...\n");

	if (hw->mac_type > e1000_82543) {
		if (e1000_is_second_port(hw))
			swfw = E1000_SWFW_PHY1_SM;

		if (e1000_swfw_sync_acquire(hw, swfw)) {
			DEBUGOUT("Unable to acquire swfw sync\n");
			return -E1000_ERR_SWFW_SYNC;
		}

		/* Read the device control register and assert the E1000_CTRL_PHY_RST
		 * bit. Then, take it out of reset.
		 */
		ctrl = E1000_READ_REG(hw, CTRL);
		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
		E1000_WRITE_FLUSH(hw);

		if (hw->mac_type < e1000_82571)
			udelay(10);
		else
			udelay(100);

		E1000_WRITE_REG(hw, CTRL, ctrl);
		E1000_WRITE_FLUSH(hw);

		if (hw->mac_type >= e1000_82571)
			mdelay(10);

	} else {
		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
		 * bit to put the PHY into reset. Then, take it out of reset.
		 */
		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
		E1000_WRITE_FLUSH(hw);
		mdelay(10);
		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
		E1000_WRITE_FLUSH(hw);
	}
	udelay(150);

	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
		/* Configure activity LED after PHY reset */
		led_ctrl = E1000_READ_REG(hw, LEDCTL);
		led_ctrl &= IGP_ACTIVITY_LED_MASK;
		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
		E1000_WRITE_REG(hw, LEDCTL, led_ctrl);
	}

	e1000_swfw_sync_release(hw, swfw);

	/* Wait for FW to finish PHY configuration. */
	ret_val = e1000_get_phy_cfg_done(hw);
	if (ret_val != E1000_SUCCESS)
		return ret_val;

	return ret_val;
}

/******************************************************************************
 * IGP phy init script - initializes the GbE PHY
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
	uint32_t ret_val;
	uint16_t phy_saved_data;
	DEBUGFUNC();

	if (hw->phy_init_script) {
		mdelay(20);

		/* Save off the current value of register 0x2F5B to be
		 * restored at the end of this routine. */
		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);

		/* Disabled the PHY transmitter */
		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

		mdelay(20);

		e1000_write_phy_reg(hw, 0x0000, 0x0140);

		mdelay(5);

		switch (hw->mac_type) {
		case e1000_82541:
		case e1000_82547:
			e1000_write_phy_reg(hw, 0x1F95, 0x0001);

			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);

			e1000_write_phy_reg(hw, 0x1F79, 0x0018);

			e1000_write_phy_reg(hw, 0x1F30, 0x1600);

			e1000_write_phy_reg(hw, 0x1F31, 0x0014);

			e1000_write_phy_reg(hw, 0x1F32, 0x161C);

			e1000_write_phy_reg(hw, 0x1F94, 0x0003);

			e1000_write_phy_reg(hw, 0x1F96, 0x003F);

			e1000_write_phy_reg(hw, 0x2010, 0x0008);
			break;

		case e1000_82541_rev_2:
		case e1000_82547_rev_2:
			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
			break;
		default:
			break;
		}

		e1000_write_phy_reg(hw, 0x0000, 0x3300);

		mdelay(20);

		/* Now enable the transmitter */
		if (!ret_val)
			e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);

		if (hw->mac_type == e1000_82547) {
			uint16_t fused, fine, coarse;

			/* Move to analog registers page */
			e1000_read_phy_reg(hw,
				IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);

			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
				e1000_read_phy_reg(hw,
					IGP01E1000_ANALOG_FUSE_STATUS, &fused);

				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
				coarse = fused
					& IGP01E1000_ANALOG_FUSE_COARSE_MASK;

				if (coarse >
					IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
					coarse -=
					IGP01E1000_ANALOG_FUSE_COARSE_10;
					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
				} else if (coarse
					== IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;

				fused = (fused
					& IGP01E1000_ANALOG_FUSE_POLY_MASK) |
					(fine
					& IGP01E1000_ANALOG_FUSE_FINE_MASK) |
					(coarse
					& IGP01E1000_ANALOG_FUSE_COARSE_MASK);

				e1000_write_phy_reg(hw,
					IGP01E1000_ANALOG_FUSE_CONTROL, fused);
				e1000_write_phy_reg(hw,
					IGP01E1000_ANALOG_FUSE_BYPASS,
				IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
			}
		}
	}
}

/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control register
******************************************************************************/
int32_t
e1000_phy_reset(struct e1000_hw *hw)
{
	int32_t ret_val;
	uint16_t phy_data;

	DEBUGFUNC();

	/* In the case of the phy reset being blocked, it's not an error, we
	 * simply return success without performing the reset. */
	ret_val = e1000_check_phy_reset_block(hw);
	if (ret_val)
		return E1000_SUCCESS;

	switch (hw->phy_type) {
	case e1000_phy_igp:
	case e1000_phy_igp_2:
	case e1000_phy_igp_3:
	case e1000_phy_ife:
	case e1000_phy_igb:
		ret_val = e1000_phy_hw_reset(hw);
		if (ret_val)
			return ret_val;
		break;
	default:
		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
		if (ret_val)
			return ret_val;

		phy_data |= MII_CR_RESET;
		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
		if (ret_val)
			return ret_val;

		udelay(1);
		break;
	}

	if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2)
		e1000_phy_init_script(hw);

	return E1000_SUCCESS;
}

static int e1000_set_phy_type (struct e1000_hw *hw)
{
	DEBUGFUNC ();

	if (hw->mac_type == e1000_undefined)
		return -E1000_ERR_PHY_TYPE;

	switch (hw->phy_id) {
	case M88E1000_E_PHY_ID:
	case M88E1000_I_PHY_ID:
	case M88E1011_I_PHY_ID:
	case M88E1111_I_PHY_ID:
		hw->phy_type = e1000_phy_m88;
		break;
	case IGP01E1000_I_PHY_ID:
		if (hw->mac_type == e1000_82541 ||
			hw->mac_type == e1000_82541_rev_2 ||
			hw->mac_type == e1000_82547 ||
			hw->mac_type == e1000_82547_rev_2) {
			hw->phy_type = e1000_phy_igp;
			break;
		}
	case IGP03E1000_E_PHY_ID:
		hw->phy_type = e1000_phy_igp_3;
		break;
	case IFE_E_PHY_ID:
	case IFE_PLUS_E_PHY_ID:
	case IFE_C_E_PHY_ID:
		hw->phy_type = e1000_phy_ife;
		break;
	case GG82563_E_PHY_ID:
		if (hw->mac_type == e1000_80003es2lan) {
			hw->phy_type = e1000_phy_gg82563;
			break;
		}
	case BME1000_E_PHY_ID:
		hw->phy_type = e1000_phy_bm;
		break;
	case I210_I_PHY_ID:
		hw->phy_type = e1000_phy_igb;
		break;
		/* Fall Through */
	default:
		/* Should never have loaded on this device */
		hw->phy_type = e1000_phy_undefined;
		return -E1000_ERR_PHY_TYPE;
	}

	return E1000_SUCCESS;
}

/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int32_t
e1000_detect_gig_phy(struct e1000_hw *hw)
{
	int32_t phy_init_status, ret_val;
	uint16_t phy_id_high, phy_id_low;
	bool match = false;

	DEBUGFUNC();

	/* The 82571 firmware may still be configuring the PHY.  In this
	 * case, we cannot access the PHY until the configuration is done.  So
	 * we explicitly set the PHY values. */
	if (hw->mac_type == e1000_82571 ||
		hw->mac_type == e1000_82572) {
		hw->phy_id = IGP01E1000_I_PHY_ID;
		hw->phy_type = e1000_phy_igp_2;
		return E1000_SUCCESS;
	}

	/* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a
	 * work- around that forces PHY page 0 to be set or the reads fail.
	 * The rest of the code in this routine uses e1000_read_phy_reg to
	 * read the PHY ID.  So for ESB-2 we need to have this set so our
	 * reads won't fail.  If the attached PHY is not a e1000_phy_gg82563,
	 * the routines below will figure this out as well. */
	if (hw->mac_type == e1000_80003es2lan)
		hw->phy_type = e1000_phy_gg82563;

	/* Read the PHY ID Registers to identify which PHY is onboard. */
	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
	if (ret_val)
		return ret_val;

	hw->phy_id = (uint32_t) (phy_id_high << 16);
	udelay(20);
	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
	if (ret_val)
		return ret_val;

	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
	hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;

	switch (hw->mac_type) {
	case e1000_82543:
		if (hw->phy_id == M88E1000_E_PHY_ID)
			match = true;
		break;
	case e1000_82544:
		if (hw->phy_id == M88E1000_I_PHY_ID)
			match = true;
		break;
	case e1000_82540:
	case e1000_82545:
	case e1000_82545_rev_3:
	case e1000_82546:
	case e1000_82546_rev_3:
		if (hw->phy_id == M88E1011_I_PHY_ID)
			match = true;
		break;
	case e1000_82541:
	case e1000_82541_rev_2:
	case e1000_82547:
	case e1000_82547_rev_2:
		if(hw->phy_id == IGP01E1000_I_PHY_ID)
			match = true;

		break;
	case e1000_82573:
		if (hw->phy_id == M88E1111_I_PHY_ID)
			match = true;
		break;
	case e1000_82574:
		if (hw->phy_id == BME1000_E_PHY_ID)
			match = true;
		break;
	case e1000_80003es2lan:
		if (hw->phy_id == GG82563_E_PHY_ID)
			match = true;
		break;
	case e1000_ich8lan:
		if (hw->phy_id == IGP03E1000_E_PHY_ID)
			match = true;
		if (hw->phy_id == IFE_E_PHY_ID)
			match = true;
		if (hw->phy_id == IFE_PLUS_E_PHY_ID)
			match = true;
		if (hw->phy_id == IFE_C_E_PHY_ID)
			match = true;
		break;
	case e1000_igb:
		if (hw->phy_id == I210_I_PHY_ID)
			match = true;
		break;
	default:
		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type);
		return -E1000_ERR_CONFIG;
	}

	phy_init_status = e1000_set_phy_type(hw);

	if ((match) && (phy_init_status == E1000_SUCCESS)) {
		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id);
		return 0;
	}
	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id);
	return -E1000_ERR_PHY;
}

/*****************************************************************************
 * Set media type and TBI compatibility.
 *
 * hw - Struct containing variables accessed by shared code
 * **************************************************************************/
void
e1000_set_media_type(struct e1000_hw *hw)
{
	uint32_t status;

	DEBUGFUNC();

	if (hw->mac_type != e1000_82543) {
		/* tbi_compatibility is only valid on 82543 */
		hw->tbi_compatibility_en = false;
	}

	switch (hw->device_id) {
	case E1000_DEV_ID_82545GM_SERDES:
	case E1000_DEV_ID_82546GB_SERDES:
	case E1000_DEV_ID_82571EB_SERDES:
	case E1000_DEV_ID_82571EB_SERDES_DUAL:
	case E1000_DEV_ID_82571EB_SERDES_QUAD:
	case E1000_DEV_ID_82572EI_SERDES:
	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
		hw->media_type = e1000_media_type_internal_serdes;
		break;
	default:
		switch (hw->mac_type) {
		case e1000_82542_rev2_0:
		case e1000_82542_rev2_1:
			hw->media_type = e1000_media_type_fiber;
			break;
		case e1000_ich8lan:
		case e1000_82573:
		case e1000_82574:
		case e1000_igb:
			/* The STATUS_TBIMODE bit is reserved or reused
			 * for the this device.
			 */
			hw->media_type = e1000_media_type_copper;
			break;
		default:
			status = E1000_READ_REG(hw, STATUS);
			if (status & E1000_STATUS_TBIMODE) {
				hw->media_type = e1000_media_type_fiber;
				/* tbi_compatibility not valid on fiber */
				hw->tbi_compatibility_en = false;
			} else {
				hw->media_type = e1000_media_type_copper;
			}
			break;
		}
	}
}

/**
 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
 *
 * e1000_sw_init initializes the Adapter private data structure.
 * Fields are initialized based on PCI device information and
 * OS network device settings (MTU size).
 **/

static int
e1000_sw_init(struct e1000_hw *hw)
{
	int result;

	/* PCI config space info */
#ifdef CONFIG_DM_ETH
	dm_pci_read_config16(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
	dm_pci_read_config16(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
			     &hw->subsystem_vendor_id);
	dm_pci_read_config16(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);

	dm_pci_read_config8(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
	dm_pci_read_config16(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
#else
	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id);
	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id);
	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID,
			     &hw->subsystem_vendor_id);
	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);

	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id);
	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word);
#endif

	/* identify the MAC */
	result = e1000_set_mac_type(hw);
	if (result) {
		E1000_ERR(hw, "Unknown MAC Type\n");
		return result;
	}

	switch (hw->mac_type) {
	default:
		break;
	case e1000_82541:
	case e1000_82547:
	case e1000_82541_rev_2:
	case e1000_82547_rev_2:
		hw->phy_init_script = 1;
		break;
	}

	/* flow control settings */
	hw->fc_high_water = E1000_FC_HIGH_THRESH;
	hw->fc_low_water = E1000_FC_LOW_THRESH;
	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
	hw->fc_send_xon = 1;

	/* Media type - copper or fiber */
	hw->tbi_compatibility_en = true;
	e1000_set_media_type(hw);

	if (hw->mac_type >= e1000_82543) {
		uint32_t status = E1000_READ_REG(hw, STATUS);

		if (status & E1000_STATUS_TBIMODE) {
			DEBUGOUT("fiber interface\n");
			hw->media_type = e1000_media_type_fiber;
		} else {
			DEBUGOUT("copper interface\n");
			hw->media_type = e1000_media_type_copper;
		}
	} else {
		hw->media_type = e1000_media_type_fiber;
	}

	hw->wait_autoneg_complete = true;
	if (hw->mac_type < e1000_82543)
		hw->report_tx_early = 0;
	else
		hw->report_tx_early = 1;

	return E1000_SUCCESS;
}

void
fill_rx(struct e1000_hw *hw)
{
	struct e1000_rx_desc *rd;
	unsigned long flush_start, flush_end;

	rx_last = rx_tail;
	rd = rx_base + rx_tail;
	rx_tail = (rx_tail + 1) % 8;
	memset(rd, 0, 16);
	rd->buffer_addr = cpu_to_le64((unsigned long)packet);

	/*
	 * Make sure there are no stale data in WB over this area, which
	 * might get written into the memory while the e1000 also writes
	 * into the same memory area.
	 */
	invalidate_dcache_range((unsigned long)packet,
				(unsigned long)packet + 4096);
	/* Dump the DMA descriptor into RAM. */
	flush_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
	flush_end = flush_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
	flush_dcache_range(flush_start, flush_end);

	E1000_WRITE_REG(hw, RDT, rx_tail);
}

/**
 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Tx unit of the MAC after a reset.
 **/

static void
e1000_configure_tx(struct e1000_hw *hw)
{
	unsigned long tctl;
	unsigned long tipg, tarc;
	uint32_t ipgr1, ipgr2;

	E1000_WRITE_REG(hw, TDBAL, lower_32_bits((unsigned long)tx_base));
	E1000_WRITE_REG(hw, TDBAH, upper_32_bits((unsigned long)tx_base));

	E1000_WRITE_REG(hw, TDLEN, 128);

	/* Setup the HW Tx Head and Tail descriptor pointers */
	E1000_WRITE_REG(hw, TDH, 0);
	E1000_WRITE_REG(hw, TDT, 0);
	tx_tail = 0;

	/* Set the default values for the Tx Inter Packet Gap timer */
	if (hw->mac_type <= e1000_82547_rev_2 &&
	    (hw->media_type == e1000_media_type_fiber ||
	     hw->media_type == e1000_media_type_internal_serdes))
		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
	else
		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;

	/* Set the default values for the Tx Inter Packet Gap timer */
	switch (hw->mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
		tipg = DEFAULT_82542_TIPG_IPGT;
		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
		break;
	case e1000_80003es2lan:
		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
		break;
	default:
		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
		break;
	}
	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
	E1000_WRITE_REG(hw, TIPG, tipg);
	/* Program the Transmit Control Register */
	tctl = E1000_READ_REG(hw, TCTL);
	tctl &= ~E1000_TCTL_CT;
	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);

	if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
		tarc = E1000_READ_REG(hw, TARC0);
		/* set the speed mode bit, we'll clear it if we're not at
		 * gigabit link later */
		/* git bit can be set to 1*/
	} else if (hw->mac_type == e1000_80003es2lan) {
		tarc = E1000_READ_REG(hw, TARC0);
		tarc |= 1;
		E1000_WRITE_REG(hw, TARC0, tarc);
		tarc = E1000_READ_REG(hw, TARC1);
		tarc |= 1;
		E1000_WRITE_REG(hw, TARC1, tarc);
	}


	e1000_config_collision_dist(hw);
	/* Setup Transmit Descriptor Settings for eop descriptor */
	hw->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;

	/* Need to set up RS bit */
	if (hw->mac_type < e1000_82543)
		hw->txd_cmd |= E1000_TXD_CMD_RPS;
	else
		hw->txd_cmd |= E1000_TXD_CMD_RS;


	if (hw->mac_type == e1000_igb) {
		E1000_WRITE_REG(hw, TCTL_EXT, 0x42 << 10);

		uint32_t reg_txdctl = E1000_READ_REG(hw, TXDCTL);
		reg_txdctl |= 1 << 25;
		E1000_WRITE_REG(hw, TXDCTL, reg_txdctl);
		mdelay(20);
	}



	E1000_WRITE_REG(hw, TCTL, tctl);


}

/**
 * e1000_setup_rctl - configure the receive control register
 * @adapter: Board private structure
 **/
static void
e1000_setup_rctl(struct e1000_hw *hw)
{
	uint32_t rctl;

	rctl = E1000_READ_REG(hw, RCTL);

	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);

	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO
		| E1000_RCTL_RDMTS_HALF;	/* |
			(hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */

	if (hw->tbi_compatibility_on == 1)
		rctl |= E1000_RCTL_SBP;
	else
		rctl &= ~E1000_RCTL_SBP;

	rctl &= ~(E1000_RCTL_SZ_4096);
		rctl |= E1000_RCTL_SZ_2048;
		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
	E1000_WRITE_REG(hw, RCTL, rctl);
}

/**
 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
 * @adapter: board private structure
 *
 * Configure the Rx unit of the MAC after a reset.
 **/
static void
e1000_configure_rx(struct e1000_hw *hw)
{
	unsigned long rctl, ctrl_ext;
	rx_tail = 0;

	/* make sure receives are disabled while setting up the descriptors */
	rctl = E1000_READ_REG(hw, RCTL);
	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
	if (hw->mac_type >= e1000_82540) {
		/* Set the interrupt throttling rate.  Value is calculated
		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */
#define MAX_INTS_PER_SEC	8000
#define DEFAULT_ITR		1000000000/(MAX_INTS_PER_SEC * 256)
		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR);
	}

	if (hw->mac_type >= e1000_82571) {
		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
		/* Reset delay timers after every interrupt */
		ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
		E1000_WRITE_FLUSH(hw);
	}
	/* Setup the Base and Length of the Rx Descriptor Ring */
	E1000_WRITE_REG(hw, RDBAL, lower_32_bits((unsigned long)rx_base));
	E1000_WRITE_REG(hw, RDBAH, upper_32_bits((unsigned long)rx_base));

	E1000_WRITE_REG(hw, RDLEN, 128);

	/* Setup the HW Rx Head and Tail Descriptor Pointers */
	E1000_WRITE_REG(hw, RDH, 0);
	E1000_WRITE_REG(hw, RDT, 0);
	/* Enable Receives */

	if (hw->mac_type == e1000_igb) {

		uint32_t reg_rxdctl = E1000_READ_REG(hw, RXDCTL);
		reg_rxdctl |= 1 << 25;
		E1000_WRITE_REG(hw, RXDCTL, reg_rxdctl);
		mdelay(20);
	}

	E1000_WRITE_REG(hw, RCTL, rctl);

	fill_rx(hw);
}

/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int
_e1000_poll(struct e1000_hw *hw)
{
	struct e1000_rx_desc *rd;
	unsigned long inval_start, inval_end;
	uint32_t len;

	/* return true if there's an ethernet packet ready to read */
	rd = rx_base + rx_last;

	/* Re-load the descriptor from RAM. */
	inval_start = ((unsigned long)rd) & ~(ARCH_DMA_MINALIGN - 1);
	inval_end = inval_start + roundup(sizeof(*rd), ARCH_DMA_MINALIGN);
	invalidate_dcache_range(inval_start, inval_end);

	if (!(rd->status & E1000_RXD_STAT_DD))
		return 0;
	/* DEBUGOUT("recv: packet len=%d\n", rd->length); */
	/* Packet received, make sure the data are re-loaded from RAM. */
	len = le16_to_cpu(rd->length);
	invalidate_dcache_range((unsigned long)packet,
				(unsigned long)packet +
				roundup(len, ARCH_DMA_MINALIGN));
	return len;
}

static int _e1000_transmit(struct e1000_hw *hw, void *txpacket, int length)
{
	void *nv_packet = (void *)txpacket;
	struct e1000_tx_desc *txp;
	int i = 0;
	unsigned long flush_start, flush_end;

	txp = tx_base + tx_tail;
	tx_tail = (tx_tail + 1) % 8;

	txp->buffer_addr = cpu_to_le64(virt_to_bus(hw->pdev, nv_packet));
	txp->lower.data = cpu_to_le32(hw->txd_cmd | length);
	txp->upper.data = 0;

	/* Dump the packet into RAM so e1000 can pick them. */
	flush_dcache_range((unsigned long)nv_packet,
			   (unsigned long)nv_packet +
			   roundup(length, ARCH_DMA_MINALIGN));
	/* Dump the descriptor into RAM as well. */
	flush_start = ((unsigned long)txp) & ~(ARCH_DMA_MINALIGN - 1);
	flush_end = flush_start + roundup(sizeof(*txp), ARCH_DMA_MINALIGN);
	flush_dcache_range(flush_start, flush_end);

	E1000_WRITE_REG(hw, TDT, tx_tail);

	E1000_WRITE_FLUSH(hw);
	while (1) {
		invalidate_dcache_range(flush_start, flush_end);
		if (le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)
			break;
		if (i++ > TOUT_LOOP) {
			DEBUGOUT("e1000: tx timeout\n");
			return 0;
		}
		udelay(10);	/* give the nic a chance to write to the register */
	}
	return 1;
}

static void
_e1000_disable(struct e1000_hw *hw)
{
	/* Turn off the ethernet interface */
	E1000_WRITE_REG(hw, RCTL, 0);
	E1000_WRITE_REG(hw, TCTL, 0);

	/* Clear the transmit ring */
	E1000_WRITE_REG(hw, TDH, 0);
	E1000_WRITE_REG(hw, TDT, 0);

	/* Clear the receive ring */
	E1000_WRITE_REG(hw, RDH, 0);
	E1000_WRITE_REG(hw, RDT, 0);

	mdelay(10);
}

/*reset function*/
static inline int
e1000_reset(struct e1000_hw *hw, unsigned char enetaddr[6])
{
	e1000_reset_hw(hw);
	if (hw->mac_type >= e1000_82544)
		E1000_WRITE_REG(hw, WUC, 0);

	return e1000_init_hw(hw, enetaddr);
}

static int
_e1000_init(struct e1000_hw *hw, unsigned char enetaddr[6])
{
	int ret_val = 0;

	ret_val = e1000_reset(hw, enetaddr);
	if (ret_val < 0) {
		if ((ret_val == -E1000_ERR_NOLINK) ||
		    (ret_val == -E1000_ERR_TIMEOUT)) {
			E1000_ERR(hw, "Valid Link not detected: %d\n", ret_val);
		} else {
			E1000_ERR(hw, "Hardware Initialization Failed\n");
		}
		return ret_val;
	}
	e1000_configure_tx(hw);
	e1000_setup_rctl(hw);
	e1000_configure_rx(hw);
	return 0;
}

/******************************************************************************
 * Gets the current PCI bus type of hardware
 *
 * hw - Struct containing variables accessed by shared code
 *****************************************************************************/
void e1000_get_bus_type(struct e1000_hw *hw)
{
	uint32_t status;

	switch (hw->mac_type) {
	case e1000_82542_rev2_0:
	case e1000_82542_rev2_1:
		hw->bus_type = e1000_bus_type_pci;
		break;
	case e1000_82571:
	case e1000_82572:
	case e1000_82573:
	case e1000_82574:
	case e1000_80003es2lan:
	case e1000_ich8lan:
	case e1000_igb:
		hw->bus_type = e1000_bus_type_pci_express;
		break;
	default:
		status = E1000_READ_REG(hw, STATUS);
		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
				e1000_bus_type_pcix : e1000_bus_type_pci;
		break;
	}
}

#ifndef CONFIG_DM_ETH
/* A list of all registered e1000 devices */
static LIST_HEAD(e1000_hw_list);
#endif

#ifdef CONFIG_DM_ETH
static int e1000_init_one(struct e1000_hw *hw, int cardnum,
			  struct udevice *devno, unsigned char enetaddr[6])
#else
static int e1000_init_one(struct e1000_hw *hw, int cardnum, pci_dev_t devno,
			  unsigned char enetaddr[6])
#endif
{
	u32 val;

	/* Assign the passed-in values */
#ifdef CONFIG_DM_ETH
	hw->pdev = devno;
#else
	hw->pdev = devno;
#endif
	hw->cardnum = cardnum;

	/* Print a debug message with the IO base address */
#ifdef CONFIG_DM_ETH
	dm_pci_read_config32(devno, PCI_BASE_ADDRESS_0, &val);
#else
	pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &val);
#endif
	E1000_DBG(hw, "iobase 0x%08x\n", val & 0xfffffff0);

	/* Try to enable I/O accesses and bus-mastering */
	val = PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER;
#ifdef CONFIG_DM_ETH
	dm_pci_write_config32(devno, PCI_COMMAND, val);
#else
	pci_write_config_dword(devno, PCI_COMMAND, val);
#endif

	/* Make sure it worked */
#ifdef CONFIG_DM_ETH
	dm_pci_read_config32(devno, PCI_COMMAND, &val);
#else
	pci_read_config_dword(devno, PCI_COMMAND, &val);
#endif
	if (!(val & PCI_COMMAND_MEMORY)) {
		E1000_ERR(hw, "Can't enable I/O memory\n");
		return -ENOSPC;
	}
	if (!(val & PCI_COMMAND_MASTER)) {
		E1000_ERR(hw, "Can't enable bus-mastering\n");
		return -EPERM;
	}

	/* Are these variables needed? */
	hw->fc = e1000_fc_default;
	hw->original_fc = e1000_fc_default;
	hw->autoneg_failed = 0;
	hw->autoneg = 1;
	hw->get_link_status = true;
#ifndef CONFIG_E1000_NO_NVM
	hw->eeprom_semaphore_present = true;
#endif
#ifdef CONFIG_DM_ETH
	hw->hw_addr = dm_pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
						PCI_REGION_MEM);
#else
	hw->hw_addr = pci_map_bar(devno,	PCI_BASE_ADDRESS_0,
						PCI_REGION_MEM);
#endif
	hw->mac_type = e1000_undefined;

	/* MAC and Phy settings */
	if (e1000_sw_init(hw) < 0) {
		E1000_ERR(hw, "Software init failed\n");
		return -EIO;
	}
	if (e1000_check_phy_reset_block(hw))
		E1000_ERR(hw, "PHY Reset is blocked!\n");

	/* Basic init was OK, reset the hardware and allow SPI access */
	e1000_reset_hw(hw);

#ifndef CONFIG_E1000_NO_NVM
	/* Validate the EEPROM and get chipset information */
	if (e1000_init_eeprom_params(hw)) {
		E1000_ERR(hw, "EEPROM is invalid!\n");
		return -EINVAL;
	}
	if ((E1000_READ_REG(hw, I210_EECD) & E1000_EECD_FLUPD) &&
	    e1000_validate_eeprom_checksum(hw))
		return -ENXIO;
	e1000_read_mac_addr(hw, enetaddr);
#endif
	e1000_get_bus_type(hw);

#ifndef CONFIG_E1000_NO_NVM
	printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n       ",
	       enetaddr[0], enetaddr[1], enetaddr[2],
	       enetaddr[3], enetaddr[4], enetaddr[5]);
#else
	memset(enetaddr, 0, 6);
	printf("e1000: no NVM\n");
#endif

	return 0;
}

/* Put the name of a device in a string */
static void e1000_name(char *str, int cardnum)
{
	sprintf(str, "e1000#%u", cardnum);
}

#ifndef CONFIG_DM_ETH
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static int e1000_transmit(struct eth_device *nic, void *txpacket, int length)
{
	struct e1000_hw *hw = nic->priv;

	return _e1000_transmit(hw, txpacket, length);
}

/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void
e1000_disable(struct eth_device *nic)
{
	struct e1000_hw *hw = nic->priv;

	_e1000_disable(hw);
}

/**************************************************************************
INIT - set up ethernet interface(s)
***************************************************************************/
static int
e1000_init(struct eth_device *nic, bd_t *bis)
{
	struct e1000_hw *hw = nic->priv;

	return _e1000_init(hw, nic->enetaddr);
}

static int
e1000_poll(struct eth_device *nic)
{
	struct e1000_hw *hw = nic->priv;
	int len;

	len = _e1000_poll(hw);
	if (len) {
		net_process_received_packet((uchar *)packet, len);
		fill_rx(hw);
	}

	return len ? 1 : 0;
}

static int e1000_write_hwaddr(struct eth_device *dev)
{
#ifndef CONFIG_E1000_NO_NVM
	unsigned char *mac = dev->enetaddr;
	unsigned char current_mac[6];
	struct e1000_hw *hw = dev->priv;
	uint16_t data[3];
	int ret_val, i;

	DEBUGOUT("%s: mac=%pM\n", __func__, mac);

	memset(current_mac, 0, 6);

	/* Read from EEPROM, not from registers, to make sure
	 * the address is persistently configured
	 */
	ret_val = e1000_read_mac_addr_from_eeprom(hw, current_mac);
	DEBUGOUT("%s: current mac=%pM\n", __func__, current_mac);

	/* Only write to EEPROM if the given address is different or
	 * reading the current address failed
	 */
	if (!ret_val && memcmp(current_mac, mac, 6) == 0)
		return 0;

	for (i = 0; i < 3; ++i)
		data[i] = mac[i * 2 + 1] << 8 | mac[i * 2];

	ret_val = e1000_write_eeprom_srwr(hw, 0x0, 3, data);

	if (!ret_val)
		ret_val = e1000_update_eeprom_checksum_i210(hw);

	return ret_val;
#else
	return 0;
#endif
}

/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
***************************************************************************/
int
e1000_initialize(bd_t * bis)
{
	unsigned int i;
	pci_dev_t devno;
	int ret;

	DEBUGFUNC();

	/* Find and probe all the matching PCI devices */
	for (i = 0; (devno = pci_find_devices(e1000_supported, i)) >= 0; i++) {
		/*
		 * These will never get freed due to errors, this allows us to
		 * perform SPI EEPROM programming from U-Boot, for example.
		 */
		struct eth_device *nic = malloc(sizeof(*nic));
		struct e1000_hw *hw = malloc(sizeof(*hw));
		if (!nic || !hw) {
			printf("e1000#%u: Out of Memory!\n", i);
			free(nic);
			free(hw);
			continue;
		}

		/* Make sure all of the fields are initially zeroed */
		memset(nic, 0, sizeof(*nic));
		memset(hw, 0, sizeof(*hw));
		nic->priv = hw;

		/* Generate a card name */
		e1000_name(nic->name, i);
		hw->name = nic->name;

		ret = e1000_init_one(hw, i, devno, nic->enetaddr);
		if (ret)
			continue;
		list_add_tail(&hw->list_node, &e1000_hw_list);

		hw->nic = nic;

		/* Set up the function pointers and register the device */
		nic->init = e1000_init;
		nic->recv = e1000_poll;
		nic->send = e1000_transmit;
		nic->halt = e1000_disable;
		nic->write_hwaddr = e1000_write_hwaddr;
		eth_register(nic);
	}

	return i;
}

struct e1000_hw *e1000_find_card(unsigned int cardnum)
{
	struct e1000_hw *hw;

	list_for_each_entry(hw, &e1000_hw_list, list_node)
		if (hw->cardnum == cardnum)
			return hw;

	return NULL;
}
#endif /* !CONFIG_DM_ETH */

#ifdef CONFIG_CMD_E1000
static int do_e1000(cmd_tbl_t *cmdtp, int flag,
		int argc, char * const argv[])
{
	unsigned char *mac = NULL;
#ifdef CONFIG_DM_ETH
	struct eth_pdata *plat;
	struct udevice *dev;
	char name[30];
	int ret;
#endif
#if !defined(CONFIG_DM_ETH) || defined(CONFIG_E1000_SPI)
	struct e1000_hw *hw;
#endif
	int cardnum;

	if (argc < 3) {
		cmd_usage(cmdtp);
		return 1;
	}

	/* Make sure we can find the requested e1000 card */
	cardnum = simple_strtoul(argv[1], NULL, 10);
#ifdef CONFIG_DM_ETH
	e1000_name(name, cardnum);
	ret = uclass_get_device_by_name(UCLASS_ETH, name, &dev);
	if (!ret) {
		plat = dev_get_platdata(dev);
		mac = plat->enetaddr;
	}
#else
	hw = e1000_find_card(cardnum);
	if (hw)
		mac = hw->nic->enetaddr;
#endif
	if (!mac) {
		printf("e1000: ERROR: No such device: e1000#%s\n", argv[1]);
		return 1;
	}

	if (!strcmp(argv[2], "print-mac-address")) {
		printf("%02x:%02x:%02x:%02x:%02x:%02x\n",
			mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
		return 0;
	}

#ifdef CONFIG_E1000_SPI
#ifdef CONFIG_DM_ETH
	hw = dev_get_priv(dev);
#endif
	/* Handle the "SPI" subcommand */
	if (!strcmp(argv[2], "spi"))
		return do_e1000_spi(cmdtp, hw, argc - 3, argv + 3);
#endif

	cmd_usage(cmdtp);
	return 1;
}

U_BOOT_CMD(
	e1000, 7, 0, do_e1000,
	"Intel e1000 controller management",
	/*  */"<card#> print-mac-address\n"
#ifdef CONFIG_E1000_SPI
	"e1000 <card#> spi show [<offset> [<length>]]\n"
	"e1000 <card#> spi dump <addr> <offset> <length>\n"
	"e1000 <card#> spi program <addr> <offset> <length>\n"
	"e1000 <card#> spi checksum [update]\n"
#endif
	"       - Manage the Intel E1000 PCI device"
);
#endif /* not CONFIG_CMD_E1000 */

#ifdef CONFIG_DM_ETH
static int e1000_eth_start(struct udevice *dev)
{
	struct eth_pdata *plat = dev_get_platdata(dev);
	struct e1000_hw *hw = dev_get_priv(dev);

	return _e1000_init(hw, plat->enetaddr);
}

static void e1000_eth_stop(struct udevice *dev)
{
	struct e1000_hw *hw = dev_get_priv(dev);

	_e1000_disable(hw);
}

static int e1000_eth_send(struct udevice *dev, void *packet, int length)
{
	struct e1000_hw *hw = dev_get_priv(dev);
	int ret;

	ret = _e1000_transmit(hw, packet, length);

	return ret ? 0 : -ETIMEDOUT;
}

static int e1000_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
	struct e1000_hw *hw = dev_get_priv(dev);
	int len;

	len = _e1000_poll(hw);
	if (len)
		*packetp = packet;

	return len ? len : -EAGAIN;
}

static int e1000_free_pkt(struct udevice *dev, uchar *packet, int length)
{
	struct e1000_hw *hw = dev_get_priv(dev);

	fill_rx(hw);

	return 0;
}

static int e1000_eth_probe(struct udevice *dev)
{
	struct eth_pdata *plat = dev_get_platdata(dev);
	struct e1000_hw *hw = dev_get_priv(dev);
	int ret;

	hw->name = dev->name;
	ret = e1000_init_one(hw, trailing_strtol(dev->name),
			     dev, plat->enetaddr);
	if (ret < 0) {
		printf(pr_fmt("failed to initialize card: %d\n"), ret);
		return ret;
	}

	return 0;
}

static int e1000_eth_bind(struct udevice *dev)
{
	char name[20];

	/*
	 * A simple way to number the devices. When device tree is used this
	 * is unnecessary, but when the device is just discovered on the PCI
	 * bus we need a name. We could instead have the uclass figure out
	 * which devices are different and number them.
	 */
	e1000_name(name, num_cards++);

	return device_set_name(dev, name);
}

static const struct eth_ops e1000_eth_ops = {
	.start	= e1000_eth_start,
	.send	= e1000_eth_send,
	.recv	= e1000_eth_recv,
	.stop	= e1000_eth_stop,
	.free_pkt = e1000_free_pkt,
};

static const struct udevice_id e1000_eth_ids[] = {
	{ .compatible = "intel,e1000" },
	{ }
};

U_BOOT_DRIVER(eth_e1000) = {
	.name	= "eth_e1000",
	.id	= UCLASS_ETH,
	.of_match = e1000_eth_ids,
	.bind	= e1000_eth_bind,
	.probe	= e1000_eth_probe,
	.ops	= &e1000_eth_ops,
	.priv_auto_alloc_size = sizeof(struct e1000_hw),
	.platdata_auto_alloc_size = sizeof(struct eth_pdata),
};

U_BOOT_PCI_DEVICE(eth_e1000, e1000_supported);
#endif