sunxi-spl-image-builder.c 12.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
/*
 * Allwinner NAND randomizer and image builder implementation:
 *
 * Copyright © 2016 NextThing Co.
 * Copyright © 2016 Free Electrons
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 */

#include <linux/bch.h>

#include <getopt.h>
#include <version.h>

#define BCH_PRIMITIVE_POLY	0x5803

#define ARRAY_SIZE(arr)		(sizeof(arr) / sizeof((arr)[0]))
#define DIV_ROUND_UP(n,d)	(((n) + (d) - 1) / (d))

struct image_info {
	int ecc_strength;
	int ecc_step_size;
	int page_size;
	int oob_size;
	int usable_page_size;
	int eraseblock_size;
	int scramble;
	int boot0;
	off_t offset;
	const char *source;
	const char *dest;
};

static void swap_bits(uint8_t *buf, int len)
{
	int i, j;

	for (j = 0; j < len; j++) {
		uint8_t byte = buf[j];

		buf[j] = 0;
		for (i = 0; i < 8; i++) {
			if (byte & (1 << i))
				buf[j] |= (1 << (7 - i));
		}
	}
}

static uint16_t lfsr_step(uint16_t state, int count)
{
	state &= 0x7fff;
	while (count--)
		state = ((state >> 1) |
			 ((((state >> 0) ^ (state >> 1)) & 1) << 14)) & 0x7fff;

	return state;
}

static uint16_t default_scrambler_seeds[] = {
	0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72,
	0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436,
	0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d,
	0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130,
	0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56,
	0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55,
	0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb,
	0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17,
	0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62,
	0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064,
	0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126,
	0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e,
	0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3,
	0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b,
	0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d,
	0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db,
};

static uint16_t brom_scrambler_seeds[] = { 0x4a80 };

static void scramble(const struct image_info *info,
		     int page, uint8_t *data, int datalen)
{
	uint16_t state;
	int i;

	/* Boot0 is always scrambled no matter the command line option. */
	if (info->boot0) {
		state = brom_scrambler_seeds[0];
	} else {
		unsigned seedmod = info->eraseblock_size / info->page_size;

		/* Bail out earlier if the user didn't ask for scrambling. */
		if (!info->scramble)
			return;

		if (seedmod > ARRAY_SIZE(default_scrambler_seeds))
			seedmod = ARRAY_SIZE(default_scrambler_seeds);

		state = default_scrambler_seeds[page % seedmod];
	}

	/* Prepare the initial state... */
	state = lfsr_step(state, 15);

	/* and start scrambling data. */
	for (i = 0; i < datalen; i++) {
		data[i] ^= state;
		state = lfsr_step(state, 8);
	}
}

static int write_page(const struct image_info *info, uint8_t *buffer,
		      FILE *src, FILE *rnd, FILE *dst,
		      struct bch_control *bch, int page)
{
	int steps = info->usable_page_size / info->ecc_step_size;
	int eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
	off_t pos = ftell(dst);
	size_t pad, cnt;
	int i;

	if (eccbytes % 2)
		eccbytes++;

	memset(buffer, 0xff, info->page_size + info->oob_size);
	cnt = fread(buffer, 1, info->usable_page_size, src);
	if (!cnt) {
		if (!feof(src)) {
			fprintf(stderr,
				"Failed to read data from the source\n");
			return -1;
		} else {
			return 0;
		}
	}

	fwrite(buffer, info->page_size + info->oob_size, 1, dst);

	for (i = 0; i < info->usable_page_size; i++) {
		if (buffer[i] !=  0xff)
			break;
	}

	/* We leave empty pages at 0xff. */
	if (i == info->usable_page_size)
		return 0;

	/* Restore the source pointer to read it again. */
	fseek(src, -cnt, SEEK_CUR);

	/* Randomize unused space if scrambling is required. */
	if (info->scramble) {
		int offs;

		if (info->boot0) {
			size_t ret;

			offs = steps * (info->ecc_step_size + eccbytes + 4);
			cnt = info->page_size + info->oob_size - offs;
			ret = fread(buffer + offs, 1, cnt, rnd);
			if (!ret && !feof(rnd)) {
				fprintf(stderr,
					"Failed to read random data\n");
				return -1;
			}
		} else {
			offs = info->page_size + (steps * (eccbytes + 4));
			cnt = info->page_size + info->oob_size - offs;
			memset(buffer + offs, 0xff, cnt);
			scramble(info, page, buffer + offs, cnt);
		}
		fseek(dst, pos + offs, SEEK_SET);
		fwrite(buffer + offs, cnt, 1, dst);
	}

	for (i = 0; i < steps; i++) {
		int ecc_offs, data_offs;
		uint8_t *ecc;

		memset(buffer, 0xff, info->ecc_step_size + eccbytes + 4);
		ecc = buffer + info->ecc_step_size + 4;
		if (info->boot0) {
			data_offs = i * (info->ecc_step_size + eccbytes + 4);
			ecc_offs = data_offs + info->ecc_step_size + 4;
		} else {
			data_offs = i * info->ecc_step_size;
			ecc_offs = info->page_size + 4 + (i * (eccbytes + 4));
		}

		cnt = fread(buffer, 1, info->ecc_step_size, src);
		if (!cnt && !feof(src)) {
			fprintf(stderr,
				"Failed to read data from the source\n");
			return -1;
		}

		pad = info->ecc_step_size - cnt;
		if (pad) {
			if (info->scramble && info->boot0) {
				size_t ret;

				ret = fread(buffer + cnt, 1, pad, rnd);
				if (!ret && !feof(rnd)) {
					fprintf(stderr,
						"Failed to read random data\n");
					return -1;
				}
			} else {
				memset(buffer + cnt, 0xff, pad);
			}
		}

		memset(ecc, 0, eccbytes);
		swap_bits(buffer, info->ecc_step_size + 4);
		encode_bch(bch, buffer, info->ecc_step_size + 4, ecc);
		swap_bits(buffer, info->ecc_step_size + 4);
		swap_bits(ecc, eccbytes);
		scramble(info, page, buffer, info->ecc_step_size + 4 + eccbytes);

		fseek(dst, pos + data_offs, SEEK_SET);
		fwrite(buffer, info->ecc_step_size, 1, dst);
		fseek(dst, pos + ecc_offs - 4, SEEK_SET);
		fwrite(ecc - 4, eccbytes + 4, 1, dst);
	}

	/* Fix BBM. */
	fseek(dst, pos + info->page_size, SEEK_SET);
	memset(buffer, 0xff, 2);
	fwrite(buffer, 2, 1, dst);

	/* Make dst pointer point to the next page. */
	fseek(dst, pos + info->page_size + info->oob_size, SEEK_SET);

	return 0;
}

static int create_image(const struct image_info *info)
{
	off_t page = info->offset / info->page_size;
	struct bch_control *bch;
	FILE *src, *dst, *rnd;
	uint8_t *buffer;

	bch = init_bch(14, info->ecc_strength, BCH_PRIMITIVE_POLY);
	if (!bch) {
		fprintf(stderr, "Failed to init the BCH engine\n");
		return -1;
	}

	buffer = malloc(info->page_size + info->oob_size);
	if (!buffer) {
		fprintf(stderr, "Failed to allocate the NAND page buffer\n");
		return -1;
	}

	memset(buffer, 0xff, info->page_size + info->oob_size);

	src = fopen(info->source, "r");
	if (!src) {
		fprintf(stderr, "Failed to open source file (%s)\n",
			info->source);
		return -1;
	}

	dst = fopen(info->dest, "w");
	if (!dst) {
		fprintf(stderr, "Failed to open dest file (%s)\n", info->dest);
		return -1;
	}

	rnd = fopen("/dev/urandom", "r");
	if (!rnd) {
		fprintf(stderr, "Failed to open /dev/urandom\n");
		return -1;
	}

	while (!feof(src)) {
		int ret;

		ret = write_page(info, buffer, src, rnd, dst, bch, page++);
		if (ret)
			return ret;
	}

	return 0;
}

static void display_help(int status)
{
	fprintf(status == EXIT_SUCCESS ? stdout : stderr,
		"sunxi-nand-image-builder %s\n"
		"\n"
		"Usage: sunxi-nand-image-builder [OPTIONS] source-image output-image\n"
		"\n"
		"Creates a raw NAND image that can be read by the sunxi NAND controller.\n"
		"\n"
		"-h               --help               Display this help and exit\n"
		"-c <str>/<step>  --ecc=<str>/<step>   ECC config (strength/step-size)\n"
		"-p <size>        --page=<size>        Page size\n"
		"-o <size>        --oob=<size>         OOB size\n"
		"-u <size>        --usable=<size>      Usable page size\n"
		"-e <size>        --eraseblock=<size>  Erase block size\n"
		"-b               --boot0              Build a boot0 image.\n"
		"-s               --scramble           Scramble data\n"
		"-a <offset>      --address=<offset>   Where the image will be programmed.\n"
		"\n"
		"Notes:\n"
		"All the information you need to pass to this tool should be part of\n"
		"the NAND datasheet.\n"
		"\n"
		"The NAND controller only supports the following ECC configs\n"
		"  Valid ECC strengths: 16, 24, 28, 32, 40, 48, 56, 60 and 64\n"
		"  Valid ECC step size: 512 and 1024\n"
		"\n"
		"If you are building a boot0 image, you'll have specify extra options.\n"
		"These options should be chosen based on the layouts described here:\n"
		"  http://linux-sunxi.org/NAND#More_information_on_BROM_NAND\n"
		"\n"
		"  --usable should be assigned the 'Hardware page' value\n"
		"  --ecc should be assigned the 'ECC capacity'/'ECC page' values\n"
		"  --usable should be smaller than --page\n"
		"\n"
		"The --address option is only required for non-boot0 images that are \n"
		"meant to be programmed at a non eraseblock aligned offset.\n"
		"\n"
		"Examples:\n"
		"  The H27UCG8T2BTR-BC NAND exposes\n"
		"  * 16k pages\n"
		"  * 1280 OOB bytes per page\n"
		"  * 4M eraseblocks\n"
		"  * requires data scrambling\n"
		"  * expects a minimum ECC of 40bits/1024bytes\n"
		"\n"
		"  A normal image can be generated with\n"
		"    sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -c 40/1024\n"
		"  A boot0 image can be generated with\n"
		"    sunxi-nand-image-builder -p 16384 -o 1280 -e 0x400000 -s -b -u 4096 -c 64/1024\n",
		PLAIN_VERSION);
	exit(status);
}

static int check_image_info(struct image_info *info)
{
	static int valid_ecc_strengths[] = { 16, 24, 28, 32, 40, 48, 56, 60, 64 };
	int eccbytes, eccsteps;
	unsigned i;

	if (!info->page_size) {
		fprintf(stderr, "--page is missing\n");
		return -EINVAL;
	}

	if (!info->page_size) {
		fprintf(stderr, "--oob is missing\n");
		return -EINVAL;
	}

	if (!info->eraseblock_size) {
		fprintf(stderr, "--eraseblock is missing\n");
		return -EINVAL;
	}

	if (info->ecc_step_size != 512 && info->ecc_step_size != 1024) {
		fprintf(stderr, "Invalid ECC step argument: %d\n",
			info->ecc_step_size);
		return -EINVAL;
	}

	for (i = 0; i < ARRAY_SIZE(valid_ecc_strengths); i++) {
		if (valid_ecc_strengths[i] == info->ecc_strength)
			break;
	}

	if (i == ARRAY_SIZE(valid_ecc_strengths)) {
		fprintf(stderr, "Invalid ECC strength argument: %d\n",
			info->ecc_strength);
		return -EINVAL;
	}

	eccbytes = DIV_ROUND_UP(info->ecc_strength * 14, 8);
	if (eccbytes % 2)
		eccbytes++;
	eccbytes += 4;

	eccsteps = info->usable_page_size / info->ecc_step_size;

	if (info->page_size + info->oob_size <
	    info->usable_page_size + (eccsteps * eccbytes)) {
		fprintf(stderr,
			"ECC bytes do not fit in the NAND page, choose a weaker ECC\n");
		return -EINVAL;
	}

	return 0;
}

int main(int argc, char **argv)
{
	struct image_info info;

	memset(&info, 0, sizeof(info));
	/*
	 * Process user arguments
	 */
	for (;;) {
		int option_index = 0;
		char *endptr = NULL;
		static const struct option long_options[] = {
			{"help", no_argument, 0, 'h'},
			{"ecc", required_argument, 0, 'c'},
			{"page", required_argument, 0, 'p'},
			{"oob", required_argument, 0, 'o'},
			{"usable", required_argument, 0, 'u'},
			{"eraseblock", required_argument, 0, 'e'},
			{"boot0", no_argument, 0, 'b'},
			{"scramble", no_argument, 0, 's'},
			{"address", required_argument, 0, 'a'},
			{0, 0, 0, 0},
		};

		int c = getopt_long(argc, argv, "c:p:o:u:e:ba:sh",
				long_options, &option_index);
		if (c == EOF)
			break;

		switch (c) {
		case 'h':
			display_help(0);
			break;
		case 's':
			info.scramble = 1;
			break;
		case 'c':
			info.ecc_strength = strtol(optarg, &endptr, 0);
			if (*endptr == '/')
				info.ecc_step_size = strtol(endptr + 1, NULL, 0);
			break;
		case 'p':
			info.page_size = strtol(optarg, NULL, 0);
			break;
		case 'o':
			info.oob_size = strtol(optarg, NULL, 0);
			break;
		case 'u':
			info.usable_page_size = strtol(optarg, NULL, 0);
			break;
		case 'e':
			info.eraseblock_size = strtol(optarg, NULL, 0);
			break;
		case 'b':
			info.boot0 = 1;
			break;
		case 'a':
			info.offset = strtoull(optarg, NULL, 0);
			break;
		case '?':
			display_help(-1);
			break;
		}
	}

	if ((argc - optind) != 2)
		display_help(-1);

	info.source = argv[optind];
	info.dest = argv[optind + 1];

	if (!info.boot0) {
		info.usable_page_size = info.page_size;
	} else if (!info.usable_page_size) {
		if (info.page_size > 8192)
			info.usable_page_size = 8192;
		else if (info.page_size > 4096)
			info.usable_page_size = 4096;
		else
			info.usable_page_size = 1024;
	}

	if (check_image_info(&info))
		display_help(-1);

	return create_image(&info);
}