socfpga_arria10.c 23.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017-2019 Intel Corporation <www.intel.com>
 */
#include <asm/io.h>
#include <asm/arch/fpga_manager.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/sdram.h>
#include <asm/arch/misc.h>
#include <altera.h>
#include <asm/arch/pinmux.h>
#include <common.h>
#include <dm/ofnode.h>
#include <errno.h>
#include <fs_loader.h>
#include <wait_bit.h>
#include <watchdog.h>

#define CFGWDTH_32	1
#define MIN_BITSTREAM_SIZECHECK	230
#define ENCRYPTION_OFFSET	69
#define COMPRESSION_OFFSET	229
#define FPGA_TIMEOUT_MSEC	1000  /* timeout in ms */
#define FPGA_TIMEOUT_CNT	0x1000000
#define DEFAULT_DDR_LOAD_ADDRESS	0x400

DECLARE_GLOBAL_DATA_PTR;

static const struct socfpga_fpga_manager *fpga_manager_base =
		(void *)SOCFPGA_FPGAMGRREGS_ADDRESS;

static void fpgamgr_set_cd_ratio(unsigned long ratio);

static uint32_t fpgamgr_get_msel(void)
{
	u32 reg;

	reg = readl(&fpga_manager_base->imgcfg_stat);
	reg = (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL_SET_MSD) >>
		ALT_FPGAMGR_IMGCFG_STAT_F2S_MSEL0_LSB;

	return reg;
}

static void fpgamgr_set_cfgwdth(int width)
{
	if (width)
		setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
			ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
	else
		clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
			ALT_FPGAMGR_IMGCFG_CTL_02_CFGWIDTH_SET_MSK);
}

int is_fpgamgr_user_mode(void)
{
	return (readl(&fpga_manager_base->imgcfg_stat) &
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) != 0;
}

static int wait_for_user_mode(void)
{
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK,
		1, FPGA_TIMEOUT_MSEC, false);
}

int is_fpgamgr_early_user_mode(void)
{
	return (readl(&fpga_manager_base->imgcfg_stat) &
		ALT_FPGAMGR_IMGCFG_STAT_F2S_EARLY_USERMODE_SET_MSK) != 0;
}

int fpgamgr_wait_early_user_mode(void)
{
	u32 sync_data = 0xffffffff;
	u32 i = 0;
	unsigned start = get_timer(0);
	unsigned long cd_ratio;

	/* Getting existing CDRATIO */
	cd_ratio = (readl(&fpga_manager_base->imgcfg_ctrl_02) &
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK) >>
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB;

	/* Using CDRATIO_X1 for better compatibility */
	fpgamgr_set_cd_ratio(CDRATIO_x1);

	while (!is_fpgamgr_early_user_mode()) {
		if (get_timer(start) > FPGA_TIMEOUT_MSEC)
			return -ETIMEDOUT;
		fpgamgr_program_write((const long unsigned int *)&sync_data,
				sizeof(sync_data));
		udelay(FPGA_TIMEOUT_MSEC);
		i++;
	}

	debug("FPGA: Additional %i sync word needed\n", i);

	/* restoring original CDRATIO */
	fpgamgr_set_cd_ratio(cd_ratio);

	return 0;
}

/* Read f2s_nconfig_pin and f2s_nstatus_pin; loop until de-asserted */
static int wait_for_nconfig_pin_and_nstatus_pin(void)
{
	unsigned long mask = ALT_FPGAMGR_IMGCFG_STAT_F2S_NCONFIG_PIN_SET_MSK |
				ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK;

	/*
	 * Poll until f2s_nconfig_pin and f2s_nstatus_pin; loop until
	 * de-asserted, timeout at 1000ms
	 */
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat, mask,
				 true, FPGA_TIMEOUT_MSEC, false);
}

static int wait_for_f2s_nstatus_pin(unsigned long value)
{
	/* Poll until f2s to specific value, timeout at 1000ms */
	return wait_for_bit_le32(&fpga_manager_base->imgcfg_stat,
		ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK,
		value, FPGA_TIMEOUT_MSEC, false);
}

/* set CD ratio */
static void fpgamgr_set_cd_ratio(unsigned long ratio)
{
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);

	setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		(ratio << ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_LSB) &
		ALT_FPGAMGR_IMGCFG_CTL_02_CDRATIO_SET_MSK);
}

/* get the MSEL value, verify we are set for FPP configuration mode */
static int fpgamgr_verify_msel(void)
{
	u32 msel = fpgamgr_get_msel();

	if (msel & ~BIT(0)) {
		printf("Fail: read msel=%d\n", msel);
		return -EPERM;
	}

	return 0;
}

/*
 * Write cdratio and cdwidth based on whether the bitstream is compressed
 * and/or encoded
 */
static int fpgamgr_set_cdratio_cdwidth(unsigned int cfg_width, u32 *rbf_data,
				       size_t rbf_size)
{
	unsigned int cd_ratio;
	bool encrypt, compress;

	/*
         * According to the bitstream specification,
	 * both encryption and compression status are
         * in location before offset 230 of the buffer.
         */
	if (rbf_size < MIN_BITSTREAM_SIZECHECK)
		return -EINVAL;

	encrypt = (rbf_data[ENCRYPTION_OFFSET] >> 2) & 3;
	encrypt = encrypt != 0;

	compress = (rbf_data[COMPRESSION_OFFSET] >> 1) & 1;
	compress = !compress;

	debug("FPGA: Header word %d = %08x.\n", 69, rbf_data[69]);
	debug("FPGA: Header word %d = %08x.\n", 229, rbf_data[229]);
	debug("FPGA: Read from rbf header: encrypt=%d compress=%d.\n", encrypt,
	     compress);

	/*
	 * from the register map description of cdratio in imgcfg_ctrl_02:
	 *  Normal Configuration    : 32bit Passive Parallel
	 *  Partial Reconfiguration : 16bit Passive Parallel
	 */

	/*
	 * cd ratio is dependent on cfg width and whether the bitstream
	 * is encrypted and/or compressed.
	 *
	 * | width | encr. | compr. | cd ratio |
	 * |  16   |   0   |   0    |     1    |
	 * |  16   |   0   |   1    |     4    |
	 * |  16   |   1   |   0    |     2    |
	 * |  16   |   1   |   1    |     4    |
	 * |  32   |   0   |   0    |     1    |
	 * |  32   |   0   |   1    |     8    |
	 * |  32   |   1   |   0    |     4    |
	 * |  32   |   1   |   1    |     8    |
	 */
	if (!compress && !encrypt) {
		cd_ratio = CDRATIO_x1;
	} else {
		if (compress)
			cd_ratio = CDRATIO_x4;
		else
			cd_ratio = CDRATIO_x2;

		/* if 32 bit, double the cd ratio (so register
		   field setting is incremented) */
		if (cfg_width == CFGWDTH_32)
			cd_ratio += 1;
	}

	fpgamgr_set_cfgwdth(cfg_width);
	fpgamgr_set_cd_ratio(cd_ratio);

	return 0;
}

static int fpgamgr_reset(void)
{
	unsigned long reg;

	/* S2F_NCONFIG = 0 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	/* Wait for f2s_nstatus == 0 */
	if (wait_for_f2s_nstatus_pin(0))
		return -ETIME;

	/* S2F_NCONFIG = 1 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	/* Wait for f2s_nstatus == 1 */
	if (wait_for_f2s_nstatus_pin(1))
		return -ETIME;

	/* read and confirm f2s_condone_pin = 0 and f2s_condone_oe = 1 */
	reg = readl(&fpga_manager_base->imgcfg_stat);
	if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) != 0)
		return -EPERM;

	if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_OE_SET_MSK) == 0)
		return -EPERM;

	return 0;
}

/* Start the FPGA programming by initialize the FPGA Manager */
int fpgamgr_program_init(u32 * rbf_data, size_t rbf_size)
{
	int ret;

	/* Step 1 */
	if (fpgamgr_verify_msel())
		return -EPERM;

	/* Step 2 */
	if (fpgamgr_set_cdratio_cdwidth(CFGWDTH_32, rbf_data, rbf_size))
		return -EPERM;

	/*
	 * Step 3:
	 * Make sure no other external devices are trying to interfere with
	 * programming:
	 */
	if (wait_for_nconfig_pin_and_nstatus_pin())
		return -ETIME;

	/*
	 * Step 4:
	 * Deassert the signal drives from HPS
	 *
	 * S2F_NCE = 1
	 * S2F_PR_REQUEST = 0
	 * EN_CFG_CTRL = 0
	 * EN_CFG_DATA = 0
	 * S2F_NCONFIG = 1
	 * S2F_NSTATUS_OE = 0
	 * S2F_CONDONE_OE = 0
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_PR_REQUEST_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NCONFIG_SET_MSK);

	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NSTATUS_OE_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_CONDONE_OE_SET_MSK);

	/*
	 * Step 5:
	 * Enable overrides
	 * S2F_NENABLE_CONFIG = 0
	 * S2F_NENABLE_NCONFIG = 0
	 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);

	/*
	 * Disable driving signals that HPS doesn't need to drive.
	 * S2F_NENABLE_NSTATUS = 1
	 * S2F_NENABLE_CONDONE = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NSTATUS_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_CONDONE_SET_MSK);

	/*
	 * Step 6:
	 * Drive chip select S2F_NCE = 0
	 */
	 clrbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	/* Step 7 */
	if (wait_for_nconfig_pin_and_nstatus_pin())
		return -ETIME;

	/* Step 8 */
	ret = fpgamgr_reset();

	if (ret)
		return ret;

	/*
	 * Step 9:
	 * EN_CFG_CTRL and EN_CFG_DATA = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	return 0;
}

/* Ensure the FPGA entering config done */
static int fpgamgr_program_poll_cd(void)
{
	unsigned long reg, i;

	for (i = 0; i < FPGA_TIMEOUT_CNT; i++) {
		reg = readl(&fpga_manager_base->imgcfg_stat);
		if (reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK)
			return 0;

		if ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) == 0) {
			printf("nstatus == 0 while waiting for condone\n");
			return -EPERM;
		}
		WATCHDOG_RESET();
	}

	if (i == FPGA_TIMEOUT_CNT)
		return -ETIME;

	return 0;
}

/* Ensure the FPGA entering user mode */
static int fpgamgr_program_poll_usermode(void)
{
	unsigned long reg;
	int ret = 0;

	if (fpgamgr_dclkcnt_set(0xf))
		return -ETIME;

	ret = wait_for_user_mode();
	if (ret < 0) {
		printf("%s: Failed to enter user mode with ", __func__);
		printf("error code %d\n", ret);
		return ret;
	}

	/*
	 * Step 14:
	 * Stop DATA path and Dclk
	 * EN_CFG_CTRL and EN_CFG_DATA = 0
	 */
	clrbits_le32(&fpga_manager_base->imgcfg_ctrl_02,
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_DATA_SET_MSK |
		ALT_FPGAMGR_IMGCFG_CTL_02_EN_CFG_CTRL_SET_MSK);

	/*
	 * Step 15:
	 * Disable overrides
	 * S2F_NENABLE_CONFIG = 1
	 * S2F_NENABLE_NCONFIG = 1
	 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NENABLE_CONFIG_SET_MSK);
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_00,
		ALT_FPGAMGR_IMGCFG_CTL_00_S2F_NENABLE_NCONFIG_SET_MSK);

	/* Disable chip select S2F_NCE = 1 */
	setbits_le32(&fpga_manager_base->imgcfg_ctrl_01,
		ALT_FPGAMGR_IMGCFG_CTL_01_S2F_NCE_SET_MSK);

	/*
	 * Step 16:
	 * Final check
	 */
	reg = readl(&fpga_manager_base->imgcfg_stat);
	if (((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_USERMODE_SET_MSK) ||
	    ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_CONDONE_PIN_SET_MSK) ||
	    ((reg & ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK) !=
		ALT_FPGAMGR_IMGCFG_STAT_F2S_NSTATUS_PIN_SET_MSK))
		return -EPERM;

	return 0;
}

int fpgamgr_program_finish(void)
{
	/* Ensure the FPGA entering config done */
	int status = fpgamgr_program_poll_cd();

	if (status) {
		printf("FPGA: Poll CD failed with error code %d\n", status);
		return -EPERM;
	}

	/* Ensure the FPGA entering user mode */
	status = fpgamgr_program_poll_usermode();
	if (status) {
		printf("FPGA: Poll usermode failed with error code %d\n",
			status);
		return -EPERM;
	}

	printf("Full Configuration Succeeded.\n");

	return 0;
}

ofnode get_fpga_mgr_ofnode(ofnode from)
{
	return ofnode_by_compatible(from, "altr,socfpga-a10-fpga-mgr");
}

const char *get_fpga_filename(void)
{
	const char *fpga_filename = NULL;

	ofnode fpgamgr_node = get_fpga_mgr_ofnode(ofnode_null());

	if (ofnode_valid(fpgamgr_node))
		fpga_filename = ofnode_read_string(fpgamgr_node,
						"altr,bitstream");

	return fpga_filename;
}

static void get_rbf_image_info(struct rbf_info *rbf, u16 *buffer)
{
	/*
	 * Magic ID starting at:
	 * -> 1st dword[15:0] in periph.rbf
	 * -> 2nd dword[15:0] in core.rbf
	 * Note: dword == 32 bits
	 */
	u32 word_reading_max = 2;
	u32 i;

	for (i = 0; i < word_reading_max; i++) {
		if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
			rbf->security = unencrypted;
		} else if (*(buffer + i) == FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
			rbf->security = encrypted;
		} else if (*(buffer + i + 1) ==
				FPGA_SOCFPGA_A10_RBF_UNENCRYPTED) {
			rbf->security = unencrypted;
		} else if (*(buffer + i + 1) ==
				FPGA_SOCFPGA_A10_RBF_ENCRYPTED) {
			rbf->security = encrypted;
		} else {
			rbf->security = invalid;
			continue;
		}

		/* PERIPH RBF(buffer + i + 1), CORE RBF(buffer + i + 2) */
		if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
			rbf->section = periph_section;
			break;
		} else if (*(buffer + i + 1) == FPGA_SOCFPGA_A10_RBF_CORE) {
			rbf->section = core_section;
			break;
		} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_PERIPH) {
			rbf->section = periph_section;
			break;
		} else if (*(buffer + i + 2) == FPGA_SOCFPGA_A10_RBF_CORE) {
			rbf->section = core_section;
			break;
		}

		rbf->section = unknown;
		break;

		WATCHDOG_RESET();
	}
}

#ifdef CONFIG_FS_LOADER
static int first_loading_rbf_to_buffer(struct udevice *dev,
				struct fpga_loadfs_info *fpga_loadfs,
				u32 *buffer, size_t *buffer_bsize)
{
	u32 *buffer_p = (u32 *)*buffer;
	u32 *loadable = buffer_p;
	size_t buffer_size = *buffer_bsize;
	size_t fit_size;
	int ret, i, count, confs_noffset, images_noffset, rbf_offset, rbf_size;
	const char *fpga_node_name = NULL;
	const char *uname = NULL;

	/* Load image header into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, sizeof(struct image_header),
					0);
	if (ret < 0) {
		debug("FPGA: Failed to read image header from flash.\n");
		return -ENOENT;
	}

	if (image_get_magic((struct image_header *)buffer_p) != FDT_MAGIC) {
		debug("FPGA: No FDT magic was found.\n");
		return -EBADF;
	}

	fit_size = fdt_totalsize(buffer_p);

	if (fit_size > buffer_size) {
		debug("FPGA: FIT image is larger than available buffer.\n");
		debug("Please use FIT external data or increasing buffer.\n");
		return -ENOMEM;
	}

	/* Load entire FIT into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, fit_size, 0);
	if (ret < 0)
		return ret;

	ret = fit_check_format(buffer_p);
	if (!ret) {
		debug("FPGA: No valid FIT image was found.\n");
		return -EBADF;
	}

	confs_noffset = fdt_path_offset(buffer_p, FIT_CONFS_PATH);
	images_noffset = fdt_path_offset(buffer_p, FIT_IMAGES_PATH);
	if (confs_noffset < 0 || images_noffset < 0) {
		debug("FPGA: No Configurations or images nodes were found.\n");
		return -ENOENT;
	}

	/* Get default configuration unit name from default property */
	confs_noffset = fit_conf_get_node(buffer_p, NULL);
	if (confs_noffset < 0) {
		debug("FPGA: No default configuration was found in config.\n");
		return -ENOENT;
	}

	count = fit_conf_get_prop_node_count(buffer_p, confs_noffset,
					    FIT_FPGA_PROP);
	if (count < 0) {
		debug("FPGA: Invalid configuration format for FPGA node.\n");
		return count;
	}
	debug("FPGA: FPGA node count: %d\n", count);

	for (i = 0; i < count; i++) {
		images_noffset = fit_conf_get_prop_node_index(buffer_p,
							     confs_noffset,
							     FIT_FPGA_PROP, i);
		uname = fit_get_name(buffer_p, images_noffset, NULL);
		if (uname) {
			debug("FPGA: %s\n", uname);

			if (strstr(uname, "fpga-periph") &&
				(!is_fpgamgr_early_user_mode() ||
				is_fpgamgr_user_mode())) {
				fpga_node_name = uname;
				printf("FPGA: Start to program ");
				printf("peripheral/full bitstream ...\n");
				break;
			} else if (strstr(uname, "fpga-core") &&
					(is_fpgamgr_early_user_mode() &&
					!is_fpgamgr_user_mode())) {
				fpga_node_name = uname;
				printf("FPGA: Start to program core ");
				printf("bitstream ...\n");
				break;
			}
		}
		WATCHDOG_RESET();
	}

	if (!fpga_node_name) {
		debug("FPGA: No suitable bitstream was found, count: %d.\n", i);
		return 1;
	}

	images_noffset = fit_image_get_node(buffer_p, fpga_node_name);
	if (images_noffset < 0) {
		debug("FPGA: No node '%s' was found in FIT.\n",
		     fpga_node_name);
		return -ENOENT;
	}

	if (!fit_image_get_data_position(buffer_p, images_noffset,
					&rbf_offset)) {
		debug("FPGA: Data position was found.\n");
	} else if (!fit_image_get_data_offset(buffer_p, images_noffset,
		  &rbf_offset)) {
		/*
		 * For FIT with external data, figure out where
		 * the external images start. This is the base
		 * for the data-offset properties in each image.
		 */
		rbf_offset += ((fdt_totalsize(buffer_p) + 3) & ~3);
		debug("FPGA: Data offset was found.\n");
	} else {
		debug("FPGA: No data position/offset was found.\n");
		return -ENOENT;
	}

	ret = fit_image_get_data_size(buffer_p, images_noffset, &rbf_size);
	if (ret < 0) {
		debug("FPGA: No data size was found (err=%d).\n", ret);
		return -ENOENT;
	}

	if (gd->ram_size < rbf_size) {
		debug("FPGA: Using default OCRAM buffer and size.\n");
	} else {
		ret = fit_image_get_load(buffer_p, images_noffset,
					(ulong *)loadable);
		if (ret < 0) {
			buffer_p = (u32 *)DEFAULT_DDR_LOAD_ADDRESS;
			debug("FPGA: No loadable was found.\n");
			debug("FPGA: Using default DDR load address: 0x%x .\n",
			     DEFAULT_DDR_LOAD_ADDRESS);
		} else {
			buffer_p = (u32 *)*loadable;
			debug("FPGA: Found loadable address = 0x%x.\n",
			     *loadable);
		}

		buffer_size = rbf_size;
	}

	debug("FPGA: External data: offset = 0x%x, size = 0x%x.\n",
	      rbf_offset, rbf_size);

	fpga_loadfs->remaining = rbf_size;

	/*
	 * Determine buffer size vs bitstream size, and calculating number of
	 * chunk by chunk transfer is required due to smaller buffer size
	 * compare to bitstream
	 */
	if (rbf_size <= buffer_size) {
		/* Loading whole bitstream into buffer */
		buffer_size = rbf_size;
		fpga_loadfs->remaining = 0;
	} else {
		fpga_loadfs->remaining -= buffer_size;
	}

	fpga_loadfs->offset = rbf_offset;
	/* Loading bitstream into buffer */
	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, buffer_size,
					fpga_loadfs->offset);
	if (ret < 0) {
		debug("FPGA: Failed to read bitstream from flash.\n");
		return -ENOENT;
	}

	/* Getting info about bitstream types */
	get_rbf_image_info(&fpga_loadfs->rbfinfo, (u16 *)buffer_p);

	/* Update next reading bitstream offset */
	fpga_loadfs->offset += buffer_size;

	/* Update the final addr for bitstream */
	*buffer = (u32)buffer_p;

	/* Update the size of bitstream to be programmed into FPGA */
	*buffer_bsize = buffer_size;

	return 0;
}

static int subsequent_loading_rbf_to_buffer(struct udevice *dev,
					struct fpga_loadfs_info *fpga_loadfs,
					u32 *buffer, size_t *buffer_bsize)
{
	int ret = 0;
	u32 *buffer_p = (u32 *)*buffer;

	/* Read the bitstream chunk by chunk. */
	if (fpga_loadfs->remaining > *buffer_bsize) {
		fpga_loadfs->remaining -= *buffer_bsize;
	} else {
		*buffer_bsize = fpga_loadfs->remaining;
		fpga_loadfs->remaining = 0;
	}

	ret = request_firmware_into_buf(dev,
					fpga_loadfs->fpga_fsinfo->filename,
					buffer_p, *buffer_bsize,
					fpga_loadfs->offset);
	if (ret < 0) {
		debug("FPGA: Failed to read bitstream from flash.\n");
		return -ENOENT;
	}

	/* Update next reading bitstream offset */
	fpga_loadfs->offset += *buffer_bsize;

	return 0;
}

int socfpga_loadfs(fpga_fs_info *fpga_fsinfo, const void *buf, size_t bsize,
			u32 offset)
{
	struct fpga_loadfs_info fpga_loadfs;
	struct udevice *dev;
	int status, ret, size;
	u32 buffer = (uintptr_t)buf;
	size_t buffer_sizebytes = bsize;
	size_t buffer_sizebytes_ori = bsize;
	size_t total_sizeof_image = 0;
	ofnode node;
	const fdt32_t *phandle_p;
	u32 phandle;

	node = get_fpga_mgr_ofnode(ofnode_null());

	if (ofnode_valid(node)) {
		phandle_p = ofnode_get_property(node, "firmware-loader", &size);
		if (!phandle_p) {
			node = ofnode_path("/chosen");
			if (!ofnode_valid(node)) {
				debug("FPGA: /chosen node was not found.\n");
				return -ENOENT;
			}

			phandle_p = ofnode_get_property(node, "firmware-loader",
						       &size);
			if (!phandle_p) {
				debug("FPGA: firmware-loader property was not");
				debug(" found.\n");
				return -ENOENT;
			}
		}
	} else {
		debug("FPGA: FPGA manager node was not found.\n");
		return -ENOENT;
	}

	phandle = fdt32_to_cpu(*phandle_p);
	ret = uclass_get_device_by_phandle_id(UCLASS_FS_FIRMWARE_LOADER,
					     phandle, &dev);
	if (ret)
		return ret;

	memset(&fpga_loadfs, 0, sizeof(fpga_loadfs));

	fpga_loadfs.fpga_fsinfo = fpga_fsinfo;
	fpga_loadfs.offset = offset;

	printf("FPGA: Checking FPGA configuration setting ...\n");

	/*
	 * Note: Both buffer and buffer_sizebytes values can be altered by
	 * function below.
	 */
	ret = first_loading_rbf_to_buffer(dev, &fpga_loadfs, &buffer,
					   &buffer_sizebytes);
	if (ret == 1) {
		printf("FPGA: Skipping configuration ...\n");
		return 0;
	} else if (ret) {
		return ret;
	}

	if (fpga_loadfs.rbfinfo.section == core_section &&
		!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
		debug("FPGA : Must be in Early Release mode to program ");
		debug("core bitstream.\n");
		return -EPERM;
	}

	/* Disable all signals from HPS peripheral controller to FPGA */
	writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);

	/* Disable all axi bridges (hps2fpga, lwhps2fpga & fpga2hps) */
	socfpga_bridges_reset();

	if (fpga_loadfs.rbfinfo.section == periph_section) {
		/* Initialize the FPGA Manager */
		status = fpgamgr_program_init((u32 *)buffer, buffer_sizebytes);
		if (status) {
			debug("FPGA: Init with peripheral bitstream failed.\n");
			return -EPERM;
		}
	}

	/* Transfer bitstream to FPGA Manager */
	fpgamgr_program_write((void *)buffer, buffer_sizebytes);

	total_sizeof_image += buffer_sizebytes;

	while (fpga_loadfs.remaining) {
		ret = subsequent_loading_rbf_to_buffer(dev,
							&fpga_loadfs,
							&buffer,
							&buffer_sizebytes_ori);

		if (ret)
			return ret;

		/* Transfer data to FPGA Manager */
		fpgamgr_program_write((void *)buffer,
					buffer_sizebytes_ori);

		total_sizeof_image += buffer_sizebytes_ori;

		WATCHDOG_RESET();
	}

	if (fpga_loadfs.rbfinfo.section == periph_section) {
		if (fpgamgr_wait_early_user_mode() != -ETIMEDOUT) {
			config_pins(gd->fdt_blob, "shared");
			puts("FPGA: Early Release Succeeded.\n");
		} else {
			debug("FPGA: Failed to see Early Release.\n");
			return -EIO;
		}

		/* For monolithic bitstream */
		if (is_fpgamgr_user_mode()) {
			/* Ensure the FPGA entering config done */
			status = fpgamgr_program_finish();
			if (status)
				return status;

			config_pins(gd->fdt_blob, "fpga");
			puts("FPGA: Enter user mode.\n");
		}
	} else if (fpga_loadfs.rbfinfo.section == core_section) {
		/* Ensure the FPGA entering config done */
		status = fpgamgr_program_finish();
		if (status)
			return status;

		config_pins(gd->fdt_blob, "fpga");
		puts("FPGA: Enter user mode.\n");
	} else {
		debug("FPGA: Config Error: Unsupported bitstream type.\n");
		return -ENOEXEC;
	}

	return (int)total_sizeof_image;
}

void fpgamgr_program(const void *buf, size_t bsize, u32 offset)
{
	fpga_fs_info fpga_fsinfo;

	fpga_fsinfo.filename = get_fpga_filename();

	if (fpga_fsinfo.filename)
		socfpga_loadfs(&fpga_fsinfo, buf, bsize, offset);
}
#endif

/* This function is used to load the core bitstream from the OCRAM. */
int socfpga_load(Altera_desc *desc, const void *rbf_data, size_t rbf_size)
{
	unsigned long status;
	struct rbf_info rbfinfo;

	memset(&rbfinfo, 0, sizeof(rbfinfo));

	/* Disable all signals from hps peripheral controller to fpga */
	writel(0, socfpga_get_sysmgr_addr() + SYSMGR_A10_FPGAINTF_EN_GLOBAL);

	/* Disable all axi bridge (hps2fpga, lwhps2fpga & fpga2hps) */
	socfpga_bridges_reset();

	/* Getting info about bitstream types */
	get_rbf_image_info(&rbfinfo, (u16 *)rbf_data);

	if (rbfinfo.section == periph_section) {
		/* Initialize the FPGA Manager */
		status = fpgamgr_program_init((u32 *)rbf_data, rbf_size);
		if (status)
			return status;
	}

	if (rbfinfo.section == core_section &&
		!(is_fpgamgr_early_user_mode() && !is_fpgamgr_user_mode())) {
		debug("FPGA : Must be in early release mode to program ");
		debug("core bitstream.\n");
		return -EPERM;
	}

	/* Write the bitstream to FPGA Manager */
	fpgamgr_program_write(rbf_data, rbf_size);

	status = fpgamgr_program_finish();
	if (status)
		return status;

	config_pins(gd->fdt_blob, "fpga");
	puts("FPGA: Enter user mode.\n");

	return status;
}