armada100_fec.c 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
// SPDX-License-Identifier: GPL-2.0+
/*
 * (C) Copyright 2011
 * eInfochips Ltd. <www.einfochips.com>
 * Written-by: Ajay Bhargav <contact@8051projects.net>
 *
 * (C) Copyright 2010
 * Marvell Semiconductor <www.marvell.com>
 * Contributor: Mahavir Jain <mjain@marvell.com>
 */

#include <common.h>
#include <net.h>
#include <malloc.h>
#include <miiphy.h>
#include <netdev.h>
#include <asm/types.h>
#include <asm/byteorder.h>
#include <linux/err.h>
#include <linux/mii.h>
#include <asm/io.h>
#include <asm/arch/armada100.h>
#include "armada100_fec.h"

#define  PHY_ADR_REQ     0xFF	/* Magic number to read/write PHY address */

#ifdef DEBUG
static int eth_dump_regs(struct eth_device *dev)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	unsigned int i = 0;

	printf("\noffset: phy_adr, value: 0x%x\n", readl(&regs->phyadr));
	printf("offset: smi, value: 0x%x\n", readl(&regs->smi));
	for (i = 0x400; i <= 0x4e4; i += 4)
		printf("offset: 0x%x, value: 0x%x\n",
			i, readl(ARMD1_FEC_BASE + i));
	return 0;
}
#endif

static int armdfec_phy_timeout(u32 *reg, u32 flag, int cond)
{
	u32 timeout = PHY_WAIT_ITERATIONS;
	u32 reg_val;

	while (--timeout) {
		reg_val = readl(reg);
		if (cond && (reg_val & flag))
			break;
		else if (!cond && !(reg_val & flag))
			break;
		udelay(PHY_WAIT_MICRO_SECONDS);
	}
	return !timeout;
}

static int smi_reg_read(struct mii_dev *bus, int phy_addr, int devad,
			int phy_reg)
{
	u16 value = 0;
	struct eth_device *dev = eth_get_dev_by_name(bus->name);
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	u32 val;

	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
		val = readl(&regs->phyadr);
		value = val & 0x1f;
		return value;
	}

	/* check parameters */
	if (phy_addr > PHY_MASK) {
		printf("ARMD100 FEC: (%s) Invalid phy address: 0x%X\n",
				__func__, phy_addr);
		return -EINVAL;
	}
	if (phy_reg > PHY_MASK) {
		printf("ARMD100 FEC: (%s) Invalid register offset: 0x%X\n",
				__func__, phy_reg);
		return -EINVAL;
	}

	/* wait for the SMI register to become available */
	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
		return -1;
	}

	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_R, &regs->smi);

	/* now wait for the data to be valid */
	if (armdfec_phy_timeout(&regs->smi, SMI_R_VALID, true)) {
		val = readl(&regs->smi);
		printf("ARMD100 FEC: (%s) PHY Read timeout, val=0x%x\n",
				__func__, val);
		return -1;
	}
	val = readl(&regs->smi);
	value = val & 0xffff;

	return value;
}

static int smi_reg_write(struct mii_dev *bus, int phy_addr, int devad,
			 int phy_reg, u16 value)
{
	struct eth_device *dev = eth_get_dev_by_name(bus->name);
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;

	if (phy_addr == PHY_ADR_REQ && phy_reg == PHY_ADR_REQ) {
		clrsetbits_le32(&regs->phyadr, 0x1f, value & 0x1f);
		return 0;
	}

	/* check parameters */
	if (phy_addr > PHY_MASK) {
		printf("ARMD100 FEC: (%s) Invalid phy address\n", __func__);
		return -EINVAL;
	}
	if (phy_reg > PHY_MASK) {
		printf("ARMD100 FEC: (%s) Invalid register offset\n", __func__);
		return -EINVAL;
	}

	/* wait for the SMI register to become available */
	if (armdfec_phy_timeout(&regs->smi, SMI_BUSY, false)) {
		printf("ARMD100 FEC: (%s) PHY busy timeout\n",	__func__);
		return -1;
	}

	writel((phy_addr << 16) | (phy_reg << 21) | SMI_OP_W | (value & 0xffff),
			&regs->smi);
	return 0;
}

/*
 * Abort any transmit and receive operations and put DMA
 * in idle state. AT and AR bits are cleared upon entering
 * in IDLE state. So poll those bits to verify operation.
 */
static void abortdma(struct eth_device *dev)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	int delay;
	int maxretries = 40;
	u32 tmp;

	while (--maxretries) {
		writel(SDMA_CMD_AR | SDMA_CMD_AT, &regs->sdma_cmd);
		udelay(100);

		delay = 10;
		while (--delay) {
			tmp = readl(&regs->sdma_cmd);
			if (!(tmp & (SDMA_CMD_AR | SDMA_CMD_AT)))
				break;
			udelay(10);
		}
		if (delay)
			break;
	}

	if (!maxretries)
		printf("ARMD100 FEC: (%s) DMA Stuck\n", __func__);
}

static inline u32 nibble_swapping_32_bit(u32 x)
{
	return ((x & 0xf0f0f0f0) >> 4) | ((x & 0x0f0f0f0f) << 4);
}

static inline u32 nibble_swapping_16_bit(u32 x)
{
	return ((x & 0x0000f0f0) >> 4) | ((x & 0x00000f0f) << 4);
}

static inline u32 flip_4_bits(u32 x)
{
	return ((x & 0x01) << 3) | ((x & 0x002) << 1)
		| ((x & 0x04) >> 1) | ((x & 0x008) >> 3);
}

/*
 * This function will calculate the hash function of the address.
 * depends on the hash mode and hash size.
 * Inputs
 * mach             - the 2 most significant bytes of the MAC address.
 * macl             - the 4 least significant bytes of the MAC address.
 * Outputs
 * return the calculated entry.
 */
static u32 hash_function(u32 mach, u32 macl)
{
	u32 hashresult;
	u32 addrh;
	u32 addrl;
	u32 addr0;
	u32 addr1;
	u32 addr2;
	u32 addr3;
	u32 addrhswapped;
	u32 addrlswapped;

	addrh = nibble_swapping_16_bit(mach);
	addrl = nibble_swapping_32_bit(macl);

	addrhswapped = flip_4_bits(addrh & 0xf)
		+ ((flip_4_bits((addrh >> 4) & 0xf)) << 4)
		+ ((flip_4_bits((addrh >> 8) & 0xf)) << 8)
		+ ((flip_4_bits((addrh >> 12) & 0xf)) << 12);

	addrlswapped = flip_4_bits(addrl & 0xf)
		+ ((flip_4_bits((addrl >> 4) & 0xf)) << 4)
		+ ((flip_4_bits((addrl >> 8) & 0xf)) << 8)
		+ ((flip_4_bits((addrl >> 12) & 0xf)) << 12)
		+ ((flip_4_bits((addrl >> 16) & 0xf)) << 16)
		+ ((flip_4_bits((addrl >> 20) & 0xf)) << 20)
		+ ((flip_4_bits((addrl >> 24) & 0xf)) << 24)
		+ ((flip_4_bits((addrl >> 28) & 0xf)) << 28);

	addrh = addrhswapped;
	addrl = addrlswapped;

	addr0 = (addrl >> 2) & 0x03f;
	addr1 = (addrl & 0x003) | (((addrl >> 8) & 0x7f) << 2);
	addr2 = (addrl >> 15) & 0x1ff;
	addr3 = ((addrl >> 24) & 0x0ff) | ((addrh & 1) << 8);

	hashresult = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
	hashresult = hashresult & 0x07ff;
	return hashresult;
}

/*
 * This function will add an entry to the address table.
 * depends on the hash mode and hash size that was initialized.
 * Inputs
 * mach - the 2 most significant bytes of the MAC address.
 * macl - the 4 least significant bytes of the MAC address.
 * skip - if 1, skip this address.
 * rd   - the RD field in the address table.
 * Outputs
 * address table entry is added.
 * 0 if success.
 * -ENOSPC if table full
 */
static int add_del_hash_entry(struct armdfec_device *darmdfec, u32 mach,
			      u32 macl, u32 rd, u32 skip, int del)
{
	struct addr_table_entry_t *entry, *start;
	u32 newhi;
	u32 newlo;
	u32 i;

	newlo = (((mach >> 4) & 0xf) << 15)
		| (((mach >> 0) & 0xf) << 11)
		| (((mach >> 12) & 0xf) << 7)
		| (((mach >> 8) & 0xf) << 3)
		| (((macl >> 20) & 0x1) << 31)
		| (((macl >> 16) & 0xf) << 27)
		| (((macl >> 28) & 0xf) << 23)
		| (((macl >> 24) & 0xf) << 19)
		| (skip << HTESKIP) | (rd << HTERDBIT)
		| HTEVALID;

	newhi = (((macl >> 4) & 0xf) << 15)
		| (((macl >> 0) & 0xf) << 11)
		| (((macl >> 12) & 0xf) << 7)
		| (((macl >> 8) & 0xf) << 3)
		| (((macl >> 21) & 0x7) << 0);

	/*
	 * Pick the appropriate table, start scanning for free/reusable
	 * entries at the index obtained by hashing the specified MAC address
	 */
	start = (struct addr_table_entry_t *)(darmdfec->htpr);
	entry = start + hash_function(mach, macl);
	for (i = 0; i < HOP_NUMBER; i++) {
		if (!(entry->lo & HTEVALID)) {
			break;
		} else {
			/* if same address put in same position */
			if (((entry->lo & 0xfffffff8) == (newlo & 0xfffffff8))
					&& (entry->hi == newhi))
				break;
		}
		if (entry == start + 0x7ff)
			entry = start;
		else
			entry++;
	}

	if (((entry->lo & 0xfffffff8) != (newlo & 0xfffffff8)) &&
		(entry->hi != newhi) && del)
		return 0;

	if (i == HOP_NUMBER) {
		if (!del) {
			printf("ARMD100 FEC: (%s) table section is full\n",
					__func__);
			return -ENOSPC;
		} else {
			return 0;
		}
	}

	/*
	 * Update the selected entry
	 */
	if (del) {
		entry->hi = 0;
		entry->lo = 0;
	} else {
		entry->hi = newhi;
		entry->lo = newlo;
	}

	return 0;
}

/*
 *  Create an addressTable entry from MAC address info
 *  found in the specifed net_device struct
 *
 *  Input : pointer to ethernet interface network device structure
 *  Output : N/A
 */
static void update_hash_table_mac_address(struct armdfec_device *darmdfec,
					  u8 *oaddr, u8 *addr)
{
	u32 mach;
	u32 macl;

	/* Delete old entry */
	if (oaddr) {
		mach = (oaddr[0] << 8) | oaddr[1];
		macl = (oaddr[2] << 24) | (oaddr[3] << 16) |
			(oaddr[4] << 8) | oaddr[5];
		add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_DELETE);
	}

	/* Add new entry */
	mach = (addr[0] << 8) | addr[1];
	macl = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5];
	add_del_hash_entry(darmdfec, mach, macl, 1, 0, HASH_ADD);
}

/* Address Table Initialization */
static void init_hashtable(struct eth_device *dev)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	memset(darmdfec->htpr, 0, HASH_ADDR_TABLE_SIZE);
	writel((u32)darmdfec->htpr, &regs->htpr);
}

/*
 * This detects PHY chip from address 0-31 by reading PHY status
 * registers. PHY chip can be connected at any of this address.
 */
static int ethernet_phy_detect(struct eth_device *dev)
{
	u32 val;
	u16 tmp, mii_status;
	u8 addr;

	for (addr = 0; addr < 32; addr++) {
		if (miiphy_read(dev->name, addr, MII_BMSR, &mii_status)	!= 0)
			/* try next phy */
			continue;

		/* invalid MII status. More validation required here... */
		if (mii_status == 0 || mii_status == 0xffff)
			/* try next phy */
			continue;

		if (miiphy_read(dev->name, addr, MII_PHYSID1, &tmp) != 0)
			/* try next phy */
			continue;

		val = tmp << 16;
		if (miiphy_read(dev->name, addr, MII_PHYSID2, &tmp) != 0)
			/* try next phy */
			continue;

		val |= tmp;

		if ((val & 0xfffffff0) != 0)
			return addr;
	}
	return -1;
}

static void armdfec_init_rx_desc_ring(struct armdfec_device *darmdfec)
{
	struct rx_desc *p_rx_desc;
	int i;

	/* initialize the Rx descriptors ring */
	p_rx_desc = darmdfec->p_rxdesc;
	for (i = 0; i < RINGSZ; i++) {
		p_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
		p_rx_desc->buf_size = PKTSIZE_ALIGN;
		p_rx_desc->byte_cnt = 0;
		p_rx_desc->buf_ptr = darmdfec->p_rxbuf + i * PKTSIZE_ALIGN;
		if (i == (RINGSZ - 1)) {
			p_rx_desc->nxtdesc_p = darmdfec->p_rxdesc;
		} else {
			p_rx_desc->nxtdesc_p = (struct rx_desc *)
			    ((u32)p_rx_desc + ARMDFEC_RXQ_DESC_ALIGNED_SIZE);
			p_rx_desc = p_rx_desc->nxtdesc_p;
		}
	}
	darmdfec->p_rxdesc_curr = darmdfec->p_rxdesc;
}

static int armdfec_init(struct eth_device *dev, bd_t *bd)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	int phy_adr;
	u32 temp;

	armdfec_init_rx_desc_ring(darmdfec);

	/* Disable interrupts */
	writel(0, &regs->im);
	writel(0, &regs->ic);
	/* Write to ICR to clear interrupts. */
	writel(0, &regs->iwc);

	/*
	 * Abort any transmit and receive operations and put DMA
	 * in idle state.
	 */
	abortdma(dev);

	/* Initialize address hash table */
	init_hashtable(dev);

	/* SDMA configuration */
	writel(SDCR_BSZ8 |	/* Burst size = 32 bytes */
		SDCR_RIFB |	/* Rx interrupt on frame */
		SDCR_BLMT |	/* Little endian transmit */
		SDCR_BLMR |	/* Little endian receive */
		SDCR_RC_MAX_RETRANS,	/* Max retransmit count */
		&regs->sdma_conf);
	/* Port Configuration */
	writel(PCR_HS, &regs->pconf);	/* Hash size is 1/2kb */

	/* Set extended port configuration */
	writel(PCXR_2BSM |		/* Two byte suffix aligns IP hdr */
		PCXR_DSCP_EN |		/* Enable DSCP in IP */
		PCXR_MFL_1536 |		/* Set MTU = 1536 */
		PCXR_FLP |		/* do not force link pass */
		PCXR_TX_HIGH_PRI,	/* Transmit - high priority queue */
		&regs->pconf_ext);

	update_hash_table_mac_address(darmdfec, NULL, dev->enetaddr);

	/* Update TX and RX queue descriptor register */
	temp = (u32)&regs->txcdp[TXQ];
	writel((u32)darmdfec->p_txdesc, temp);
	temp = (u32)&regs->rxfdp[RXQ];
	writel((u32)darmdfec->p_rxdesc, temp);
	temp = (u32)&regs->rxcdp[RXQ];
	writel((u32)darmdfec->p_rxdesc_curr, temp);

	/* Enable Interrupts */
	writel(ALL_INTS, &regs->im);

	/* Enable Ethernet Port */
	setbits_le32(&regs->pconf, PCR_EN);

	/* Enable RX DMA engine */
	setbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);

#ifdef DEBUG
	eth_dump_regs(dev);
#endif

#if (defined(CONFIG_MII) || defined(CONFIG_CMD_MII))

#if defined(CONFIG_PHY_BASE_ADR)
	miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, CONFIG_PHY_BASE_ADR);
#else
	/* Search phy address from range 0-31 */
	phy_adr = ethernet_phy_detect(dev);
	if (phy_adr < 0) {
		printf("ARMD100 FEC: PHY not detected at address range 0-31\n");
		return -1;
	} else {
		debug("ARMD100 FEC: PHY detected at addr %d\n", phy_adr);
		miiphy_write(dev->name, PHY_ADR_REQ, PHY_ADR_REQ, phy_adr);
	}
#endif

#if defined(CONFIG_SYS_FAULT_ECHO_LINK_DOWN)
	/* Wait up to 5s for the link status */
	for (i = 0; i < 5; i++) {
		u16 phy_adr;

		miiphy_read(dev->name, 0xFF, 0xFF, &phy_adr);
		/* Return if we get link up */
		if (miiphy_link(dev->name, phy_adr))
			return 0;
		udelay(1000000);
	}

	printf("ARMD100 FEC: No link on %s\n", dev->name);
	return -1;
#endif
#endif
	return 0;
}

static void armdfec_halt(struct eth_device *dev)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;

	/* Stop RX DMA */
	clrbits_le32(&regs->sdma_cmd, SDMA_CMD_ERD);

	/*
	 * Abort any transmit and receive operations and put DMA
	 * in idle state.
	 */
	abortdma(dev);

	/* Disable interrupts */
	writel(0, &regs->im);
	writel(0, &regs->ic);
	writel(0, &regs->iwc);

	/* Disable Port */
	clrbits_le32(&regs->pconf, PCR_EN);
}

static int armdfec_send(struct eth_device *dev, void *dataptr, int datasize)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct armdfec_reg *regs = darmdfec->regs;
	struct tx_desc *p_txdesc = darmdfec->p_txdesc;
	void *p = (void *)dataptr;
	int retry = PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS;
	u32 cmd_sts, temp;

	/* Copy buffer if it's misaligned */
	if ((u32)dataptr & 0x07) {
		if (datasize > PKTSIZE_ALIGN) {
			printf("ARMD100 FEC: Non-aligned data too large (%d)\n",
					datasize);
			return -1;
		}
		memcpy(darmdfec->p_aligned_txbuf, p, datasize);
		p = darmdfec->p_aligned_txbuf;
	}

	p_txdesc->cmd_sts = TX_ZERO_PADDING | TX_GEN_CRC;
	p_txdesc->cmd_sts |= TX_FIRST_DESC | TX_LAST_DESC;
	p_txdesc->cmd_sts |= BUF_OWNED_BY_DMA;
	p_txdesc->cmd_sts |= TX_EN_INT;
	p_txdesc->buf_ptr = p;
	p_txdesc->byte_cnt = datasize;

	/* Apply send command using high priority TX queue */
	temp = (u32)&regs->txcdp[TXQ];
	writel((u32)p_txdesc, temp);
	writel(SDMA_CMD_TXDL | SDMA_CMD_TXDH | SDMA_CMD_ERD, &regs->sdma_cmd);

	/*
	 * wait for packet xmit completion
	 */
	cmd_sts = readl(&p_txdesc->cmd_sts);
	while (cmd_sts & BUF_OWNED_BY_DMA) {
		/* return fail if error is detected */
		if ((cmd_sts & (TX_ERROR | TX_LAST_DESC)) ==
			(TX_ERROR | TX_LAST_DESC)) {
			printf("ARMD100 FEC: (%s) in xmit packet\n", __func__);
			return -1;
		}
		cmd_sts = readl(&p_txdesc->cmd_sts);
		if (!(retry--)) {
			printf("ARMD100 FEC: (%s) xmit packet timeout!\n",
					__func__);
			return -1;
		}
	}

	return 0;
}

static int armdfec_recv(struct eth_device *dev)
{
	struct armdfec_device *darmdfec = to_darmdfec(dev);
	struct rx_desc *p_rxdesc_curr = darmdfec->p_rxdesc_curr;
	u32 cmd_sts;
	u32 timeout = 0;
	u32 temp;

	/* wait untill rx packet available or timeout */
	do {
		if (timeout < PHY_WAIT_ITERATIONS * PHY_WAIT_MICRO_SECONDS) {
			timeout++;
		} else {
			debug("ARMD100 FEC: %s time out...\n", __func__);
			return -1;
		}
	} while (readl(&p_rxdesc_curr->cmd_sts) & BUF_OWNED_BY_DMA);

	if (p_rxdesc_curr->byte_cnt != 0) {
		debug("ARMD100 FEC: %s: Received %d byte Packet @ 0x%x"
				"(cmd_sts= %08x)\n", __func__,
				(u32)p_rxdesc_curr->byte_cnt,
				(u32)p_rxdesc_curr->buf_ptr,
				(u32)p_rxdesc_curr->cmd_sts);
	}

	/*
	 * In case received a packet without first/last bits on
	 * OR the error summary bit is on,
	 * the packets needs to be dropeed.
	 */
	cmd_sts = readl(&p_rxdesc_curr->cmd_sts);

	if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
			(RX_FIRST_DESC | RX_LAST_DESC)) {
		printf("ARMD100 FEC: (%s) Dropping packet spread on"
			" multiple descriptors\n", __func__);
	} else if (cmd_sts & RX_ERROR) {
		printf("ARMD100 FEC: (%s) Dropping packet with errors\n",
				__func__);
	} else {
		/* !!! call higher layer processing */
		debug("ARMD100 FEC: (%s) Sending Received packet to"
		      " upper layer (net_process_received_packet)\n", __func__);

		/*
		 * let the upper layer handle the packet, subtract offset
		 * as two dummy bytes are added in received buffer see
		 * PORT_CONFIG_EXT register bit TWO_Byte_Stuff_Mode bit.
		 */
		net_process_received_packet(
			p_rxdesc_curr->buf_ptr + RX_BUF_OFFSET,
			(int)(p_rxdesc_curr->byte_cnt - RX_BUF_OFFSET));
	}
	/*
	 * free these descriptors and point next in the ring
	 */
	p_rxdesc_curr->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
	p_rxdesc_curr->buf_size = PKTSIZE_ALIGN;
	p_rxdesc_curr->byte_cnt = 0;

	temp = (u32)&darmdfec->p_rxdesc_curr;
	writel((u32)p_rxdesc_curr->nxtdesc_p, temp);

	return 0;
}

int armada100_fec_register(unsigned long base_addr)
{
	struct armdfec_device *darmdfec;
	struct eth_device *dev;

	darmdfec = malloc(sizeof(struct armdfec_device));
	if (!darmdfec)
		goto error;

	memset(darmdfec, 0, sizeof(struct armdfec_device));

	darmdfec->htpr = memalign(8, HASH_ADDR_TABLE_SIZE);
	if (!darmdfec->htpr)
		goto error1;

	darmdfec->p_rxdesc = memalign(PKTALIGN,
			ARMDFEC_RXQ_DESC_ALIGNED_SIZE * RINGSZ + 1);

	if (!darmdfec->p_rxdesc)
		goto error1;

	darmdfec->p_rxbuf = memalign(PKTALIGN, RINGSZ * PKTSIZE_ALIGN + 1);
	if (!darmdfec->p_rxbuf)
		goto error1;

	darmdfec->p_aligned_txbuf = memalign(8, PKTSIZE_ALIGN);
	if (!darmdfec->p_aligned_txbuf)
		goto error1;

	darmdfec->p_txdesc = memalign(PKTALIGN, sizeof(struct tx_desc) + 1);
	if (!darmdfec->p_txdesc)
		goto error1;

	dev = &darmdfec->dev;
	/* Assign ARMADA100 Fast Ethernet Controller Base Address */
	darmdfec->regs = (void *)base_addr;

	/* must be less than sizeof(dev->name) */
	strcpy(dev->name, "armd-fec0");

	dev->init = armdfec_init;
	dev->halt = armdfec_halt;
	dev->send = armdfec_send;
	dev->recv = armdfec_recv;

	eth_register(dev);

#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
	int retval;
	struct mii_dev *mdiodev = mdio_alloc();
	if (!mdiodev)
		return -ENOMEM;
	strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
	mdiodev->read = smi_reg_read;
	mdiodev->write = smi_reg_write;

	retval = mdio_register(mdiodev);
	if (retval < 0)
		return retval;
#endif
	return 0;

error1:
	free(darmdfec->p_aligned_txbuf);
	free(darmdfec->p_rxbuf);
	free(darmdfec->p_rxdesc);
	free(darmdfec->htpr);
error:
	free(darmdfec);
	printf("AMD100 FEC: (%s) Failed to allocate memory\n", __func__);
	return -1;
}