fsl_fspi_nand.c 29.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2019 NXP
 *
 */
#include <common.h>
#include <malloc.h>
#include <spi.h>
#include <asm/io.h>
#include <linux/sizes.h>
#include <dm.h>
#include <errno.h>
#include <watchdog.h>
#include <clk.h>
#include "fsl_fspi.h"
#include <spi-mem.h>

DECLARE_GLOBAL_DATA_PTR;

#define FSL_FSPI_NAND_SIZE SZ_4G
#define FSL_FSPI_NAND_NUM 1
#define RX_BUFFER_SIZE		0x200
#define TX_BUFFER_SIZE		0x400
#define AHB_BUFFER_SIZE		0x800

#define FLASH_STATUS_WEL	0x02

#define FSPI_NAND_CAS 12

/* SEQID */
enum fspi_lut_id {
	SEQID_RESET = 0,
	SEQID_WREN = 1,
	SEQID_READID = 2,
	SEQID_SET_FEATURE = 3,
	SEQID_GET_FEATURE = 4,
	SEQID_BLK_ERASE	= 5,
	SEQID_PAGE_READ = 6,
	SEQID_READ_FROM_CACHE_NORMAL = 7,
	SEQID_READ_FROM_CACHE_FAST = 8,
	SEQID_READ_FROM_CACHE_X2 = 9,
	SEQID_READ_FROM_CACHE_X4 = 10,
	SEQID_READ_FROM_CACHE_DUALIO = 11,
	SEQID_READ_FROM_CACHE_QUADIO = 12,
	SEQID_PROG_EXEC = 13,
	SEQID_PROG_LOAD = 14,
	SEQID_PROG_LOAD_RANDOM = 15,
	SEQID_PROG_LOAD_X4 = 16,
	SEQID_PROG_LOAD_RANDOM_X4 = 17,
	SEQID_END,
};

/* SPI NAND CMD */
#define SPINAND_CMD_RESET		0xff
#define SPINAND_CMD_WREN	0x06
#define SPINAND_CMD_READID	0x9f
#define SPINAND_CMD_SET_FEATURE	0x1f
#define SPINAND_CMD_GET_FEATURE	0x0f
#define SPINAND_CMD_BLK_ERASE	0xd8
#define SPINAND_CMD_PAGE_READ	0x13
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_NORMAL	0x03
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_FAST	0x0b
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_X2	0x3b
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_X4	0x6b
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_DUALIO	0xbb
#define SPINAND_CMD_PAGE_READ_FROM_CACHE_QUADIO	0xeb
#define SPINAND_CMD_PROG_EXEC	0x10
#define SPINAND_CMD_PROG_LOAD	0x02
#define SPINAND_CMD_PROG_LOAD_RANDOM	0x84
#define SPINAND_CMD_PROG_LOAD_X4	0x32
#define SPINAND_CMD_PROG_LOAD_RANDOM_X4	0x34

/* fsl_fspi_platdata flags */
#define FSPI_FLAG_REGMAP_ENDIAN_BIG	BIT(0)

/* default SCK frequency, unit: HZ */
#define FSL_FSPI_DEFAULT_SCK_FREQ	50000000

/* FSPI max chipselect signals number */
#define FSL_FSPI_MAX_CHIPSELECT_NUM     4

/**
 * struct fsl_fspi_platdata - platform data for NXP FSPI
 *
 * @flags: Flags for FSPI FSPI_FLAG_...
 * @speed_hz: Default SCK frequency
 * @reg_base: Base address of FSPI registers
 * @amba_base: Base address of FSPI memory mapping
 * @amba_total_size: size of FSPI memory mapping
 * @flash_num: Number of active slave devices
 * @num_chipselect: Number of FSPI chipselect signals
 */
struct fsl_fspi_platdata {
	u32 flags;
	u32 speed_hz;
	u32 reg_base;
	u32 amba_base;
	u32 amba_total_size;
	u32 flash_num;
	u32 num_chipselect;
};

/**
 * struct fsl_fspi_priv - private data for NXP FSPI
 *
 * @flags: Flags for FSPI FSPI_FLAG_...
 * @bus_clk: FSPI input clk frequency
 * @speed_hz: Default SCK frequency
 * @cur_seqid: current LUT table sequence id
 * @sf_addr: flash access offset
 * @amba_base: Base address of FSPI memory mapping of every CS
 * @amba_total_size: size of FSPI memory mapping
 * @cur_amba_base: Base address of FSPI memory mapping of current CS
 * @flash_num: Number of active slave devices
 * @num_chipselect: Number of FSPI chipselect signals
 * @regs: Point to FSPI register structure for I/O access
 */
struct fsl_fspi_priv {
	u32 flags;
	u32 bus_clk;
	u32 speed_hz;
	u32 cur_seqid;
	u32 sf_addr;
	u32 amba_base[FSL_FSPI_MAX_CHIPSELECT_NUM];
	u32 amba_total_size;
	u32 cur_amba_base;
	u32 flash_num;
	u32 num_chipselect;
	struct fsl_fspi_regs *regs;
};

struct fspi_cmd_func_pair {
	u8 cmd;
	int (*fspi_op_func)(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op);
};

static u32 fspi_read32(u32 flags, u32 *addr)
{
	return flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
		in_be32(addr) : in_le32(addr);
}

static void fspi_write32(u32 flags, u32 *addr, u32 val)
{
	flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ?
		out_be32(addr, val) : out_le32(addr, val);
}

static void fspi_nand_set_lut(struct fsl_fspi_priv *priv)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 lut_base;

	/* Unlock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_UNLOCK);

	/* RESET */
	lut_base = SEQID_RESET * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_RESET) | PAD0(LUT_PAD1) |
		     INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Write Enable */
	lut_base = SEQID_WREN * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(SPINAND_CMD_WREN) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read ID*/
	lut_base = SEQID_READID * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(SPINAND_CMD_READID) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(4) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Set Feature */
	lut_base = SEQID_SET_FEATURE * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(SPINAND_CMD_SET_FEATURE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(0xB0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(1) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Get Feature */
	lut_base = SEQID_GET_FEATURE * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(SPINAND_CMD_GET_FEATURE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(0xC0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_CMD));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(1) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Erase a block */
	lut_base = SEQID_BLK_ERASE * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base], OPRND0(SPINAND_CMD_BLK_ERASE) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Page read */
	lut_base = SEQID_PAGE_READ * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache normal */
	lut_base = SEQID_READ_FROM_CACHE_NORMAL * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_NORMAL) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(8) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], OPRND0(0) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache fast */
	lut_base = SEQID_READ_FROM_CACHE_FAST * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_FAST) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(8) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], OPRND0(0) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache x2 */
	lut_base = SEQID_READ_FROM_CACHE_X2 * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_X2) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(8) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], OPRND0(0) |
		     PAD0(LUT_PAD2) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache x4 */
	lut_base = SEQID_READ_FROM_CACHE_X4 * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_X4) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(8) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], OPRND0(0) |
		     PAD0(LUT_PAD4) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache dual IO */
	lut_base = SEQID_READ_FROM_CACHE_DUALIO * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_DUALIO) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(0) |
		     PAD1(LUT_PAD2) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD2) | INSTR0(LUT_CADDR_SDR) | OPRND1(4) |
		     PAD1(LUT_PAD2) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2],  OPRND0(0) |
		     PAD0(LUT_PAD2) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Read from cache Quad IO */
	lut_base = SEQID_READ_FROM_CACHE_QUADIO * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PAGE_READ_FROM_CACHE_QUADIO) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD) | OPRND1(0) |
		     PAD1(LUT_PAD4) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD4) | INSTR0(LUT_CADDR_SDR) | OPRND1(4) |
		     PAD1(LUT_PAD4) | INSTR1(LUT_DUMMY));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], OPRND0(0) |
		     PAD0(LUT_PAD4) | INSTR0(LUT_READ));
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Program execute */
	lut_base = SEQID_PROG_EXEC * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PROG_EXEC) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(ADDR24BIT) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_ADDR));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Program load */
	lut_base = SEQID_PROG_LOAD * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PROG_LOAD) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Program load random */
	lut_base = SEQID_PROG_LOAD_RANDOM * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PROG_LOAD_RANDOM) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],  OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Program load x4 */
	lut_base = SEQID_PROG_LOAD_X4 * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PROG_LOAD_X4) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1],  OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(0) |
		     PAD1(LUT_PAD4) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Program load random x4 */
	lut_base = SEQID_PROG_LOAD_RANDOM_X4 * 4;
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     OPRND0(SPINAND_CMD_PROG_LOAD_RANDOM_X4) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CMD)  | OPRND1(0) |
		     PAD1(LUT_PAD1) | INSTR1(LUT_MODE4));
	fspi_write32(priv->flags, &regs->lut[lut_base + 1], OPRND0(ADDR12BIT) |
		     PAD0(LUT_PAD1) | INSTR0(LUT_CADDR_SDR) | OPRND1(0) |
		     PAD1(LUT_PAD4) | INSTR1(LUT_WRITE));
	fspi_write32(priv->flags, &regs->lut[lut_base + 2], 0);
	fspi_write32(priv->flags, &regs->lut[lut_base + 3], 0);

	/* Lock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_LOCK);
}

static int fspi_nand_op_cmd(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 addr = priv->cur_amba_base;

	debug("%s seqid=%u, addr_nbytes = %u, addr_val = %llx\n",
	      __func__, seqid, op->addr.nbytes, op->addr.val);

	if (op->addr.nbytes != 0)
		addr = (op->addr.val << FSPI_NAND_CAS) + addr;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, addr);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | 0);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

	return 0;
}

static void fspi_nand_set_oprnd1(struct fsl_fspi_priv *priv,  u32 seqid, u8 oprnd)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 lut_base, val;

	debug("set oprnd1 %u\n", oprnd);

	/* Unlock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_UNLOCK);

	lut_base = seqid * 4;
	val = fspi_read32(priv->flags, &regs->lut[lut_base]);
	val &= ~(OPRND1(0xff));
	fspi_write32(priv->flags, &regs->lut[lut_base],
		     val  | OPRND1(oprnd));

	/* Lock the LUT */
	fspi_write32(priv->flags, &regs->lutkey, FLEXSPI_LUTKEY_VALUE);
	fspi_write32(priv->flags, &regs->lutcr, FLEXSPI_LCKER_LOCK);
}

static int fspi_nand_op_read_reg(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 data, size, len = op->data.nbytes;
	int i;
	u8 *rxbuf = op->data.buf.in;

	debug("%s seqid=%u, data_nbytes = %u, data_buf_in = %lx\n",
	      __func__, seqid, op->data.nbytes, (ulong)rxbuf);

	if (op->addr.nbytes == 1) {
		fspi_nand_set_oprnd1(priv, seqid, (u8)op->addr.val);
	} else if (op->addr.nbytes != 0) {
		printf("Error: %s seqid=%u, reg addr size is %u\n",
		       __func__, seqid, op->addr.nbytes);
		return -EINVAL;
	}

	/* invalid the RXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len);
	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		 & FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	i = 0;
	while ((32 >= len) && (len > 0)) {
		data = fspi_read32(priv->flags, &regs->rfdr[i]);

		debug("rfdr 0x%x\n", data);
		size = (len < 4) ? len : 4;
		memcpy(rxbuf, &data, size);
		len -= size;
		rxbuf += size;
		i++;
	}
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPRXWA_MASK);

	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPCMDDONE_MASK);

	return 0;
}

static int fspi_nand_op_write_reg(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op)
{
	struct fsl_fspi_regs *regs = priv->regs;
	u32 data, size, len = op->data.nbytes;
	int i;
	u8 *txbuf = (u8 *)(op->data.buf.out);

	debug("%s seqid=%u, data_nbytes = %u, data_buf_out = %lx\n",
	      __func__, seqid, op->data.nbytes, (ulong)txbuf);

	if (op->addr.nbytes != 1) {
		printf("Error: fspi_nand_%s seqid=%u, reg addr size is %u\n",
		       __func__, seqid, op->addr.nbytes);
		return -EINVAL;
	}

	fspi_nand_set_oprnd1(priv, seqid, (u8)op->addr.val);

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, priv->cur_amba_base);

	i = 0;
	while ((32 >= len) && (len > 0)) {
		data = 0;
		size = (len < 4) ? len : 4;
		memcpy(&data, txbuf, size);
		 fspi_write32(priv->flags, &regs->tfdr[i], data);
		len -= size;
		txbuf += size;
		i++;
	}
	fspi_write32(priv->flags, &regs->intr, FLEXSPI_INTR_IPTXWE_MASK);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | len);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		& FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr,
		     FLEXSPI_IPTXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr,
		     FLEXSPI_INTR_IPCMDDONE_MASK);

	return 0;
}

static int fspi_nand_op_read(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op)
{
	struct fsl_fspi_regs *regs = priv->regs;
	int i, size;
	u32 to_or_from;
	u8 *rxbuf;
	u8 panel;

	to_or_from = op->addr.val + priv->cur_amba_base;
	rxbuf = op->data.buf.in;
	panel = op->addr.val >> FSPI_NAND_CAS;

	/* Update LUT to select plane */
	fspi_nand_set_oprnd1(priv, seqid, panel);

	debug("%s seqid=%u, addr_val = 0x%llx, addr_nbytes = %u, data_buf_in = 0x%lx, data_nbytes = 0x%x\n",
	      __func__, seqid, op->addr.val, op->addr.nbytes,
	      (ulong)rxbuf, op->data.nbytes);

	/* invalid the RXFIFO */
	fspi_write32(priv->flags, &regs->iprxfcr, FLEXSPI_IPRXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, to_or_from);

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) |
		     op->data.nbytes);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	size = op->data.nbytes / 8;
	for (i = 0; i < size; ++i) {
		/* Wait for RXFIFO available*/
		while (!(fspi_read32(priv->flags, &regs->intr)
			 & FLEXSPI_INTR_IPRXWA_MASK))
			;

		memcpy(rxbuf, &regs->rfdr, 8);
		rxbuf += 8;

		/* move the FIFO pointer */
		fspi_write32(priv->flags, &regs->intr,
			     FLEXSPI_INTR_IPRXWA_MASK);
	}

	size = op->data.nbytes % 8;

	if (size) {
		/* Wait for data filled*/
		while (!(fspi_read32(priv->flags, &regs->iprxfsts)
			& FLEXSPI_IPRXFSTS_FILL_MASK))
			;
		memcpy(rxbuf, &regs->rfdr, size);
	}

	/* invalid the RXFIFO */
	fspi_write32(priv->flags, &regs->iprxfcr,
		     FLEXSPI_IPRXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr,
		     FLEXSPI_INTR_IPCMDDONE_MASK);

	return 0;
}

static int fspi_nand_op_write(struct fsl_fspi_priv *priv, u32 seqid, const struct spi_mem_op *op)
{
	struct fsl_fspi_regs *regs = priv->regs;
	int i, size;
	u8 *txbuf;
	u8 panel;
	u32 to_or_from = op->addr.val + priv->cur_amba_base;

	txbuf = (u8 *)(op->data.buf.out);
	panel = op->addr.val >> FSPI_NAND_CAS;

	/* Update LUT to select plane */
	fspi_nand_set_oprnd1(priv, seqid, panel);

	debug("%s seqid=%u, addr_val = 0x%llx, addr_nbytes = %u, data_buf_in = 0x%lx, data_nbytes = 0x%x\n",
	      __func__, seqid, op->addr.val, op->addr.nbytes,
	      (ulong)txbuf, op->data.nbytes);

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr, FLEXSPI_IPTXFCR_CLR_MASK);

	fspi_write32(priv->flags, &regs->ipcr0, to_or_from);

	size = op->data.nbytes / 8;
	for (i = 0; i < size; i++) {
		/* Wait for TXFIFO empty*/
		while (!(fspi_read32(priv->flags, &regs->intr)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(&regs->tfdr, txbuf, 8);
		txbuf += 8;
		fspi_write32(priv->flags, &regs->intr,
			     FLEXSPI_INTR_IPTXWE_MASK);
	}

	size = op->data.nbytes % 8;
	if (size) {
		/* Wait for TXFIFO empty*/
		while (!(fspi_read32(priv->flags, &regs->intr)
			 & FLEXSPI_INTR_IPTXWE_MASK))
			;

		memcpy(&regs->tfdr, txbuf, size);
		fspi_write32(priv->flags, &regs->intr,
			     FLEXSPI_INTR_IPTXWE_MASK);
	}

	fspi_write32(priv->flags, &regs->ipcr1,
		     (seqid << FLEXSPI_IPCR1_SEQID_SHIFT) | op->data.nbytes);

	/* Trigger the command */
	fspi_write32(priv->flags, &regs->ipcmd, 1);

	/* Wait for command done */
	while (!(fspi_read32(priv->flags, &regs->intr)
		& FLEXSPI_INTR_IPCMDDONE_MASK))
		;

	/* invalid the TXFIFO first */
	fspi_write32(priv->flags, &regs->iptxfcr,
		     FLEXSPI_IPTXFCR_CLR_MASK);
	fspi_write32(priv->flags, &regs->intr,
		     FLEXSPI_INTR_IPCMDDONE_MASK);

	return 0;
}

void fspi_nand_module_disable(struct fsl_fspi_priv *priv, u8 disable)
{
	u32 mcr_val;

	mcr_val = fspi_read32(priv->flags, &priv->regs->mcr0);
	if (disable)
		mcr_val |= FLEXSPI_MCR0_MDIS_MASK;
	else
		mcr_val &= ~FLEXSPI_MCR0_MDIS_MASK;
	fspi_write32(priv->flags, &priv->regs->mcr0, mcr_val);
}

__weak void init_clk_fspi(int index)
{
}

static int fsl_fspi_nand_child_pre_probe(struct udevice *dev)
{
	struct spi_slave *slave = dev_get_parent_priv(dev);

	slave->max_write_size = TX_BUFFER_SIZE;
	slave->max_read_size = RX_BUFFER_SIZE;

	return 0;
}

static int fsl_fspi_nand_probe(struct udevice *bus)
{
	u32 total_size;
	struct fsl_fspi_platdata *plat = dev_get_platdata(bus);
	struct fsl_fspi_priv *priv = dev_get_priv(bus);
	struct dm_spi_bus *dm_spi_bus;
	u32 val;

	if (CONFIG_IS_ENABLED(CLK)) {
		/* Assigned clock already set clock */
		struct clk fspi_clk;
		int ret;

		ret = clk_get_by_name(bus, "fspi", &fspi_clk);
		if (ret < 0) {
			printf("Can't get fspi clk: %d\n", ret);
			return ret;
		}

		ret = clk_enable(&fspi_clk);
		if (ret < 0) {
			printf("Can't enable fspi clk: %d\n", ret);
			return ret;
		}
	} else {
		init_clk_fspi(bus->seq);
	}
	dm_spi_bus = bus->uclass_priv;

	dm_spi_bus->max_hz = plat->speed_hz;

	priv->regs = (struct fsl_fspi_regs *)(uintptr_t)plat->reg_base;
	priv->flags = plat->flags;

	priv->speed_hz = plat->speed_hz;
	priv->amba_base[0] = plat->amba_base;
	priv->amba_total_size = plat->amba_total_size;
	priv->flash_num = plat->flash_num;
	priv->num_chipselect = plat->num_chipselect;

	fspi_write32(priv->flags, &priv->regs->mcr0,
		     FLEXSPI_MCR0_SWRST_MASK);
	do {
		udelay(1);
	} while (0x1 & fspi_read32(priv->flags, &priv->regs->mcr0));

	/* Disable the module */
	fspi_nand_module_disable(priv, 1);

	/* Enable the module and set to proper value*/
	fspi_write32(priv->flags, &priv->regs->mcr0,
		     0xFFFF0000);

	/* Reset the DLL register to default value */
	fspi_write32(priv->flags, &priv->regs->dllacr, 0x0100);
	fspi_write32(priv->flags, &priv->regs->dllbcr, 0x0100);

	/* Flash Size in KByte */
	total_size = FSL_FSPI_NAND_SIZE * FSL_FSPI_NAND_NUM >> 10;

	/*
	 * Any read access to non-implemented addresses will provide
	 * undefined results.
	 *
	 * In case single die flash devices, TOP_ADDR_MEMA2 and
	 * TOP_ADDR_MEMB2 should be initialized/programmed to
	 * TOP_ADDR_MEMA1 and TOP_ADDR_MEMB1 respectively - in effect,
	 * setting the size of these devices to 0.  This would ensure
	 * that the complete memory map is assigned to only one flash device.
	 */

	fspi_write32(priv->flags, &priv->regs->flsha1cr0,
		     total_size);
	fspi_write32(priv->flags, &priv->regs->flsha2cr0,
		     0);
	fspi_write32(priv->flags, &priv->regs->flshb1cr0,
		     0);
	fspi_write32(priv->flags, &priv->regs->flshb2cr0,
		     0);

	val = fspi_read32(priv->flags, &priv->regs->flsha1cr1);
	val &= ~FLEXSPI_FLSHXCR1_CAS_MASK;
	val |= FSPI_NAND_CAS << FLEXSPI_FLSHXCR1_CAS_SHIFT;
	fspi_write32(priv->flags, &priv->regs->flsha1cr1,
		     val);
	fspi_nand_module_disable(priv, 0);

	fspi_nand_set_lut(priv);

	return 0;
}

static int fsl_fspi_nand_ofdata_to_platdata(struct udevice *bus)
{
	struct fdt_resource res_regs, res_mem;
	struct fsl_fspi_platdata *plat = bus->platdata;
	const void *blob = gd->fdt_blob;
	int node = ofnode_to_offset(bus->node);
	int ret, flash_num = 0, subnode;

	if (fdtdec_get_bool(blob, node, "big-endian"))
		plat->flags |= FSPI_FLAG_REGMAP_ENDIAN_BIG;

	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
				     "FlexSPI", &res_regs);
	if (ret) {
		debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
		return -ENOMEM;
	}
	ret = fdt_get_named_resource(blob, node, "reg", "reg-names",
				     "FlexSPI-memory", &res_mem);
	if (ret) {
		debug("Error: can't get AMBA base addresses(ret = %d)!\n", ret);
		return -ENOMEM;
	}

	/* Count flash numbers */
	fdt_for_each_subnode(subnode, blob, node)
		++flash_num;

	if (flash_num == 0) {
		debug("Error: Missing flashes!\n");
		return -ENODEV;
	}

	plat->speed_hz = fdtdec_get_int(blob, node, "spi-max-frequency",
					FSL_FSPI_DEFAULT_SCK_FREQ);
	plat->num_chipselect = fdtdec_get_int(blob, node, "num-cs",
					      FSL_FSPI_MAX_CHIPSELECT_NUM);

	plat->reg_base = res_regs.start;
	plat->amba_base = 0;
	plat->amba_total_size = res_mem.end - res_mem.start + 1;
	plat->flash_num = flash_num;

	debug("%s: regs=<0x%x> <0x%x, 0x%x>, max-frequency=%d, endianness=%s\n",
	      __func__,
	      plat->reg_base,
	      plat->amba_base,
	      plat->amba_total_size,
	      plat->speed_hz,
	      plat->flags & FSPI_FLAG_REGMAP_ENDIAN_BIG ? "be" : "le"
	      );

	return 0;
}

static int fsl_fspi_nand_claim_bus(struct udevice *dev)
{
	struct fsl_fspi_priv *priv;
	struct udevice *bus;
	struct dm_spi_slave_platdata *slave_plat = dev_get_parent_platdata(dev);

	bus = dev->parent;
	priv = dev_get_priv(bus);

	priv->cur_amba_base =
		priv->amba_base[0] + FSL_FSPI_NAND_SIZE * slave_plat->cs;

	return 0;
}

static int fsl_fspi_nand_release_bus(struct udevice *dev)
{
	return 0;
}

static int fsl_fspi_nand_set_speed(struct udevice *bus, uint speed)
{
	/* Nothing to do */
	return 0;
}

static int fsl_fspi_nand_set_mode(struct udevice *bus, uint mode)
{
	/* Nothing to do */
	return 0;
}

struct fspi_cmd_func_pair fspi_supported_cmds[SEQID_END] = {
	{SPINAND_CMD_RESET, &fspi_nand_op_cmd},
	{SPINAND_CMD_WREN, &fspi_nand_op_cmd},
	{SPINAND_CMD_READID, &fspi_nand_op_read_reg},
	{SPINAND_CMD_SET_FEATURE, &fspi_nand_op_write_reg},
	{SPINAND_CMD_GET_FEATURE, &fspi_nand_op_read_reg},
	{SPINAND_CMD_BLK_ERASE, &fspi_nand_op_cmd},
	{SPINAND_CMD_PAGE_READ, &fspi_nand_op_cmd},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_NORMAL, &fspi_nand_op_read},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_FAST, &fspi_nand_op_read},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_X2, &fspi_nand_op_read},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_X4, &fspi_nand_op_read},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_DUALIO, &fspi_nand_op_read},
	{SPINAND_CMD_PAGE_READ_FROM_CACHE_QUADIO, &fspi_nand_op_read},
	{SPINAND_CMD_PROG_EXEC, &fspi_nand_op_cmd},
	{SPINAND_CMD_PROG_LOAD, &fspi_nand_op_write},
	{SPINAND_CMD_PROG_LOAD_RANDOM, &fspi_nand_op_write},
	{SPINAND_CMD_PROG_LOAD_X4, &fspi_nand_op_write},
	{SPINAND_CMD_PROG_LOAD_RANDOM_X4, &fspi_nand_op_write},
};

static int fsl_fspi_nand_get_lut_index(const struct spi_mem_op *op)
{
	int i;

	for (i = 0; i < SEQID_END; i++) {
		if (fspi_supported_cmds[i].cmd == op->cmd.opcode)
			break;
	}

	return i;
}

bool fsl_fspi_nand_supports_op(struct spi_slave *slave, const struct spi_mem_op *op)
{
	int i;

	if (!op || !slave)
		return false;

	i = fsl_fspi_nand_get_lut_index(op);
	if (i == SEQID_END) {
		printf("fsl_fspi_nand: fail to find cmd %u from lut\n", op->cmd.opcode);
		return false;
	}

	debug("fsl_fspi_nand: find seqid %d for cmd %u from lut\n", i, op->cmd.opcode);

	return true;
}

int fsl_fspi_nand_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
{
	int i;
	struct fsl_fspi_priv *priv;
	struct udevice *bus;

	bus = slave->dev->parent;
	priv = dev_get_priv(bus);

	if (!op || !slave)
		return -EINVAL;

	i = fsl_fspi_nand_get_lut_index(op);
	if (i == SEQID_END) {
		printf("fsl_fspi_nand: fail to find cmd %u from lut\n", op->cmd.opcode);
		return -EPERM;
	}

	return fspi_supported_cmds[i].fspi_op_func(priv, i, op);
}

int fsl_fspi_nand_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
{
	switch (op->cmd.opcode) {
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_NORMAL:
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_FAST:
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_X2:
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_X4:
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_DUALIO:
	case SPINAND_CMD_PAGE_READ_FROM_CACHE_QUADIO:
		if (op->data.nbytes > RX_BUFFER_SIZE)
			op->data.nbytes = RX_BUFFER_SIZE;
		break;
	case SPINAND_CMD_PROG_LOAD:
	case SPINAND_CMD_PROG_LOAD_RANDOM:
	case SPINAND_CMD_PROG_LOAD_X4:
	case SPINAND_CMD_PROG_LOAD_RANDOM_X4:
		if (op->data.nbytes > TX_BUFFER_SIZE)
			op->data.nbytes = TX_BUFFER_SIZE;
		break;
	}

	return 0;
}

static struct spi_controller_mem_ops fspi_nand_mem_ops = {
	.adjust_op_size = fsl_fspi_nand_adjust_op_size,
	.supports_op = fsl_fspi_nand_supports_op,
	.exec_op = fsl_fspi_nand_exec_op,
};

static const struct dm_spi_ops fsl_fspi_nand_ops = {
	.claim_bus	= fsl_fspi_nand_claim_bus,
	.release_bus	= fsl_fspi_nand_release_bus,
	.set_speed	= fsl_fspi_nand_set_speed,
	.set_mode	= fsl_fspi_nand_set_mode,
	.mem_ops	= &fspi_nand_mem_ops,
};

static const struct udevice_id fsl_fspi_nand_ids[] = {
	{ .compatible = "fsl,imx8-fspi-nand" },
	{ }
};

U_BOOT_DRIVER(fsl_fspi_nand) = {
	.name	= "fsl_fspi_nand",
	.id	= UCLASS_SPI,
	.of_match = fsl_fspi_nand_ids,
	.ops	= &fsl_fspi_nand_ops,
	.ofdata_to_platdata = fsl_fspi_nand_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct fsl_fspi_platdata),
	.priv_auto_alloc_size = sizeof(struct fsl_fspi_priv),
	.probe	= fsl_fspi_nand_probe,
	.child_pre_probe = fsl_fspi_nand_child_pre_probe,
};