vf610_nfc.c 17.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
/*
 * Copyright 2009-2014 Freescale Semiconductor, Inc. and others
 *
 * Description: MPC5125, VF610, MCF54418 and Kinetis K70 Nand driver.
 * Ported to U-Boot by Stefan Agner
 * Based on RFC driver posted on Kernel Mailing list by Bill Pringlemeir
 * Jason ported to M54418TWR and MVFA5.
 * Authors: Stefan Agner <stefan.agner@toradex.com>
 *          Bill Pringlemeir <bpringlemeir@nbsps.com>
 *          Shaohui Xie <b21989@freescale.com>
 *          Jason Jin <Jason.jin@freescale.com>
 *
 * Based on original driver mpc5121_nfc.c.
 *
 * This is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * Limitations:
 * - Untested on MPC5125 and M54418.
 * - DMA not used.
 * - 2K pages or less.
 * - Only 2K page w. 64+OOB and hardware ECC.
 */

#include <common.h>
#include <malloc.h>

#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>

#include <nand.h>
#include <errno.h>
#include <asm/io.h>

/* Register Offsets */
#define NFC_FLASH_CMD1			0x3F00
#define NFC_FLASH_CMD2			0x3F04
#define NFC_COL_ADDR			0x3F08
#define NFC_ROW_ADDR			0x3F0c
#define NFC_ROW_ADDR_INC		0x3F14
#define NFC_FLASH_STATUS1		0x3F18
#define NFC_FLASH_STATUS2		0x3F1c
#define NFC_CACHE_SWAP			0x3F28
#define NFC_SECTOR_SIZE			0x3F2c
#define NFC_FLASH_CONFIG		0x3F30
#define NFC_IRQ_STATUS			0x3F38

/* Addresses for NFC MAIN RAM BUFFER areas */
#define NFC_MAIN_AREA(n)		((n) *  0x1000)

#define PAGE_2K				0x0800
#define OOB_64				0x0040

/*
 * NFC_CMD2[CODE] values. See section:
 *  - 31.4.7 Flash Command Code Description, Vybrid manual
 *  - 23.8.6 Flash Command Sequencer, MPC5125 manual
 *
 * Briefly these are bitmasks of controller cycles.
 */
#define READ_PAGE_CMD_CODE		0x7EE0
#define PROGRAM_PAGE_CMD_CODE		0x7FC0
#define ERASE_CMD_CODE			0x4EC0
#define READ_ID_CMD_CODE		0x4804
#define RESET_CMD_CODE			0x4040
#define STATUS_READ_CMD_CODE		0x4068

/* NFC ECC mode define */
#define ECC_BYPASS			0
#define ECC_45_BYTE			6

/*** Register Mask and bit definitions */

/* NFC_FLASH_CMD1 Field */
#define CMD_BYTE2_MASK				0xFF000000
#define CMD_BYTE2_SHIFT				24

/* NFC_FLASH_CM2 Field */
#define CMD_BYTE1_MASK				0xFF000000
#define CMD_BYTE1_SHIFT				24
#define CMD_CODE_MASK				0x00FFFF00
#define CMD_CODE_SHIFT				8
#define BUFNO_MASK				0x00000006
#define BUFNO_SHIFT				1
#define START_BIT				(1<<0)

/* NFC_COL_ADDR Field */
#define COL_ADDR_MASK				0x0000FFFF
#define COL_ADDR_SHIFT				0

/* NFC_ROW_ADDR Field */
#define ROW_ADDR_MASK				0x00FFFFFF
#define ROW_ADDR_SHIFT				0
#define ROW_ADDR_CHIP_SEL_RB_MASK		0xF0000000
#define ROW_ADDR_CHIP_SEL_RB_SHIFT		28
#define ROW_ADDR_CHIP_SEL_MASK			0x0F000000
#define ROW_ADDR_CHIP_SEL_SHIFT			24

/* NFC_FLASH_STATUS2 Field */
#define STATUS_BYTE1_MASK			0x000000FF

/* NFC_FLASH_CONFIG Field */
#define CONFIG_ECC_SRAM_ADDR_MASK		0x7FC00000
#define CONFIG_ECC_SRAM_ADDR_SHIFT		22
#define CONFIG_ECC_SRAM_REQ_BIT			(1<<21)
#define CONFIG_DMA_REQ_BIT			(1<<20)
#define CONFIG_ECC_MODE_MASK			0x000E0000
#define CONFIG_ECC_MODE_SHIFT			17
#define CONFIG_FAST_FLASH_BIT			(1<<16)
#define CONFIG_16BIT				(1<<7)
#define CONFIG_BOOT_MODE_BIT			(1<<6)
#define CONFIG_ADDR_AUTO_INCR_BIT		(1<<5)
#define CONFIG_BUFNO_AUTO_INCR_BIT		(1<<4)
#define CONFIG_PAGE_CNT_MASK			0xF
#define CONFIG_PAGE_CNT_SHIFT			0

/* NFC_IRQ_STATUS Field */
#define IDLE_IRQ_BIT				(1<<29)
#define IDLE_EN_BIT				(1<<20)
#define CMD_DONE_CLEAR_BIT			(1<<18)
#define IDLE_CLEAR_BIT				(1<<17)

#define NFC_TIMEOUT	(1000)

/* ECC status placed at end of buffers. */
#define ECC_SRAM_ADDR	((PAGE_2K+256-8) >> 3)
#define ECC_STATUS_MASK	0x80
#define ECC_ERR_COUNT	0x3F

/*
 * ECC status is stored at NFC_CFG[ECCADD] +4 for little-endian
 * and +7 for big-endian SOC.
 */
#ifdef CONFIG_VF610
#define ECC_OFFSET	4
#else
#define ECC_OFFSET	7
#endif

struct vf610_nfc {
	struct mtd_info	  *mtd;
	struct nand_chip   chip;
	void __iomem	  *regs;
	uint               column;
	int                spareonly;
	int                page;
	/* Status and ID are in alternate locations. */
	int                alt_buf;
#define ALT_BUF_ID   1
#define ALT_BUF_STAT 2
	struct clk        *clk;
};

#define mtd_to_nfc(_mtd) \
	(struct vf610_nfc *)((struct nand_chip *)_mtd->priv)->priv

static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };

static struct nand_bbt_descr bbt_main_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = bbt_pattern,
};

static struct nand_bbt_descr bbt_mirror_descr = {
	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
		   NAND_BBT_2BIT | NAND_BBT_VERSION,
	.offs =	11,
	.len = 4,
	.veroffs = 15,
	.maxblocks = 4,
	.pattern = mirror_pattern,
};

static struct nand_ecclayout vf610_nfc_ecc45 = {
	.eccbytes = 45,
	.eccpos = {19, 20, 21, 22, 23,
		   24, 25, 26, 27, 28, 29, 30, 31,
		   32, 33, 34, 35, 36, 37, 38, 39,
		   40, 41, 42, 43, 44, 45, 46, 47,
		   48, 49, 50, 51, 52, 53, 54, 55,
		   56, 57, 58, 59, 60, 61, 62, 63},
	.oobfree = {
		{.offset = 8,
		 .length = 11} }
};

static inline u32 vf610_nfc_read(struct mtd_info *mtd, uint reg)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	return readl(nfc->regs + reg);
}

static inline void vf610_nfc_write(struct mtd_info *mtd, uint reg, u32 val)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	writel(val, nfc->regs + reg);
}

static inline void vf610_nfc_set(struct mtd_info *mtd, uint reg, u32 bits)
{
	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) | bits);
}

static inline void vf610_nfc_clear(struct mtd_info *mtd, uint reg, u32 bits)
{
	vf610_nfc_write(mtd, reg, vf610_nfc_read(mtd, reg) & ~bits);
}

static inline void vf610_nfc_set_field(struct mtd_info *mtd, u32 reg,
				       u32 mask, u32 shift, u32 val)
{
	vf610_nfc_write(mtd, reg,
			(vf610_nfc_read(mtd, reg) & (~mask)) | val << shift);
}

static inline void vf610_nfc_memcpy(void *dst, const void *src, size_t n)
{
	/*
	 * Use this accessor for the interal SRAM buffers. On ARM we can
	 * treat the SRAM buffer as if its memory, hence use memcpy
	 */
	memcpy(dst, src, n);
}

/* Clear flags for upcoming command */
static inline void vf610_nfc_clear_status(void __iomem *regbase)
{
	void __iomem *reg = regbase + NFC_IRQ_STATUS;
	u32 tmp = __raw_readl(reg);
	tmp |= CMD_DONE_CLEAR_BIT | IDLE_CLEAR_BIT;
	__raw_writel(tmp, reg);
}

/* Wait for complete operation */
static inline void vf610_nfc_done(struct mtd_info *mtd)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	uint start;

	/*
	 * Barrier is needed after this write. This write need
	 * to be done before reading the next register the first
	 * time.
	 * vf610_nfc_set implicates such a barrier by using writel
	 * to write to the register.
	 */
	vf610_nfc_set(mtd, NFC_FLASH_CMD2, START_BIT);

	start = get_timer(0);

	while (!(vf610_nfc_read(mtd, NFC_IRQ_STATUS) & IDLE_IRQ_BIT)) {
		if (get_timer(start) > NFC_TIMEOUT) {
			printf("Timeout while waiting for !BUSY.\n");
			return;
		}
	}
	vf610_nfc_clear_status(nfc->regs);
}

static u8 vf610_nfc_get_id(struct mtd_info *mtd, int col)
{
	u32 flash_id;

	if (col < 4) {
		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS1);
		return (flash_id >> (3-col)*8) & 0xff;
	} else {
		flash_id = vf610_nfc_read(mtd, NFC_FLASH_STATUS2);
		return flash_id >> 24;
	}
}

static u8 vf610_nfc_get_status(struct mtd_info *mtd)
{
	return vf610_nfc_read(mtd, NFC_FLASH_STATUS2) & STATUS_BYTE1_MASK;
}

/* Single command */
static void vf610_nfc_send_command(void __iomem *regbase, u32 cmd_byte1,
				   u32 cmd_code)
{
	void __iomem *reg = regbase + NFC_FLASH_CMD2;
	u32 tmp;
	vf610_nfc_clear_status(regbase);

	tmp = __raw_readl(reg);
	tmp &= ~(CMD_BYTE1_MASK | CMD_CODE_MASK | BUFNO_MASK);
	tmp |= cmd_byte1 << CMD_BYTE1_SHIFT;
	tmp |= cmd_code << CMD_CODE_SHIFT;
	__raw_writel(tmp, reg);
}

/* Two commands */
static void vf610_nfc_send_commands(void __iomem *regbase, u32 cmd_byte1,
			      u32 cmd_byte2, u32 cmd_code)
{
	void __iomem *reg = regbase + NFC_FLASH_CMD1;
	u32 tmp;
	vf610_nfc_send_command(regbase, cmd_byte1, cmd_code);

	tmp = __raw_readl(reg);
	tmp &= ~CMD_BYTE2_MASK;
	tmp |= cmd_byte2 << CMD_BYTE2_SHIFT;
	__raw_writel(tmp, reg);
}

static void vf610_nfc_addr_cycle(struct mtd_info *mtd, int column, int page)
{
	if (column != -1) {
		struct vf610_nfc *nfc = mtd_to_nfc(mtd);
		if (nfc->chip.options | NAND_BUSWIDTH_16)
			column = column/2;
		vf610_nfc_set_field(mtd, NFC_COL_ADDR, COL_ADDR_MASK,
				    COL_ADDR_SHIFT, column);
	}
	if (page != -1)
		vf610_nfc_set_field(mtd, NFC_ROW_ADDR, ROW_ADDR_MASK,
				    ROW_ADDR_SHIFT, page);
}

/* Send command to NAND chip */
static void vf610_nfc_command(struct mtd_info *mtd, unsigned command,
			      int column, int page)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	nfc->column     = max(column, 0);
	nfc->spareonly	= 0;
	nfc->alt_buf	= 0;

	switch (command) {
	case NAND_CMD_PAGEPROG:
		nfc->page = -1;
		vf610_nfc_send_commands(nfc->regs, NAND_CMD_SEQIN,
					command, PROGRAM_PAGE_CMD_CODE);
		vf610_nfc_addr_cycle(mtd, column, page);
		break;

	case NAND_CMD_RESET:
		vf610_nfc_send_command(nfc->regs, command, RESET_CMD_CODE);
		break;
	/*
	 * NFC does not support sub-page reads and writes,
	 * so emulate them using full page transfers.
	 */
	case NAND_CMD_READOOB:
		nfc->spareonly = 1;
	case NAND_CMD_SEQIN: /* Pre-read for partial writes. */
	case NAND_CMD_READ0:
		column = 0;
		/* Already read? */
		if (nfc->page == page)
			return;
		nfc->page = page;
		vf610_nfc_send_commands(nfc->regs, NAND_CMD_READ0,
					NAND_CMD_READSTART, READ_PAGE_CMD_CODE);
		vf610_nfc_addr_cycle(mtd, column, page);
		break;

	case NAND_CMD_ERASE1:
		nfc->page = -1;
		vf610_nfc_send_commands(nfc->regs, command,
					NAND_CMD_ERASE2, ERASE_CMD_CODE);
		vf610_nfc_addr_cycle(mtd, column, page);
		break;

	case NAND_CMD_READID:
		nfc->alt_buf = ALT_BUF_ID;
		vf610_nfc_send_command(nfc->regs, command, READ_ID_CMD_CODE);
		break;

	case NAND_CMD_STATUS:
		nfc->alt_buf = ALT_BUF_STAT;
		vf610_nfc_send_command(nfc->regs, command,
				       STATUS_READ_CMD_CODE);
		break;
	default:
		return;
	}

	vf610_nfc_done(mtd);
}

static inline void vf610_nfc_read_spare(struct mtd_info *mtd, void *buf,
					int len)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);

	len = min(mtd->oobsize, (uint)len);
	if (len > 0)
		vf610_nfc_memcpy(buf, nfc->regs + mtd->writesize, len);
}

/* Read data from NFC buffers */
static void vf610_nfc_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	uint c = nfc->column;
	uint l;

	/* Handle main area */
	if (!nfc->spareonly) {
		l = min((uint)len, mtd->writesize - c);
		nfc->column += l;

		if (!nfc->alt_buf)
			vf610_nfc_memcpy(buf, nfc->regs + NFC_MAIN_AREA(0) + c,
					 l);
		else
			if (nfc->alt_buf & ALT_BUF_ID)
				*buf = vf610_nfc_get_id(mtd, c);
			else
				*buf = vf610_nfc_get_status(mtd);

		buf += l;
		len -= l;
	}

	/* Handle spare area access */
	if (len) {
		nfc->column += len;
		vf610_nfc_read_spare(mtd, buf, len);
	}
}

/* Write data to NFC buffers */
static void vf610_nfc_write_buf(struct mtd_info *mtd, const u_char *buf,
				int len)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	uint c = nfc->column;
	uint l;

	l = min((uint)len, mtd->writesize + mtd->oobsize - c);
	nfc->column += l;
	vf610_nfc_memcpy(nfc->regs + NFC_MAIN_AREA(0) + c, buf, l);
}

/* Read byte from NFC buffers */
static u8 vf610_nfc_read_byte(struct mtd_info *mtd)
{
	u8 tmp;
	vf610_nfc_read_buf(mtd, &tmp, sizeof(tmp));
	return tmp;
}

/* Read word from NFC buffers */
static u16 vf610_nfc_read_word(struct mtd_info *mtd)
{
	u16 tmp;
	vf610_nfc_read_buf(mtd, (u_char *)&tmp, sizeof(tmp));
	return tmp;
}

/* If not provided, upper layers apply a fixed delay. */
static int vf610_nfc_dev_ready(struct mtd_info *mtd)
{
	/* NFC handles R/B internally; always ready.  */
	return 1;
}

/*
 * This function supports Vybrid only (MPC5125 would have full RB and four CS)
 */
static void vf610_nfc_select_chip(struct mtd_info *mtd, int chip)
{
#ifdef CONFIG_VF610
	u32 tmp = vf610_nfc_read(mtd, NFC_ROW_ADDR);
	tmp &= ~(ROW_ADDR_CHIP_SEL_RB_MASK | ROW_ADDR_CHIP_SEL_MASK);
	tmp |= 1 << ROW_ADDR_CHIP_SEL_RB_SHIFT;

	if (chip == 0)
		tmp |= 1 << ROW_ADDR_CHIP_SEL_SHIFT;
	else if (chip == 1)
		tmp |= 2 << ROW_ADDR_CHIP_SEL_SHIFT;

	vf610_nfc_write(mtd, NFC_ROW_ADDR, tmp);
#endif
}

/* Count the number of 0's in buff upto max_bits */
static inline int count_written_bits(uint8_t *buff, int size, int max_bits)
{
	uint32_t *buff32 = (uint32_t *)buff;
	int k, written_bits = 0;

	for (k = 0; k < (size / 4); k++) {
		written_bits += hweight32(~buff32[k]);
		if (written_bits > max_bits)
			break;
	}

	return written_bits;
}

static inline int vf610_nfc_correct_data(struct mtd_info *mtd, u_char *dat)
{
	struct vf610_nfc *nfc = mtd_to_nfc(mtd);
	u8 ecc_status;
	u8 ecc_count;
	int flip;

	ecc_status = __raw_readb(nfc->regs + ECC_SRAM_ADDR * 8 + ECC_OFFSET);
	ecc_count = ecc_status & ECC_ERR_COUNT;
	if (!(ecc_status & ECC_STATUS_MASK))
		return ecc_count;

	/* If 'ecc_count' zero or less then buffer is all 0xff or erased. */
	flip = count_written_bits(dat, nfc->chip.ecc.size, ecc_count);

	/* ECC failed. */
	if (flip > ecc_count) {
		nfc->page = -1;
		return -1;
	}

	/* Erased page. */
	memset(dat, 0xff, nfc->chip.ecc.size);
	return 0;
}


static int vf610_nfc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	int eccsize = chip->ecc.size;
	int stat;
	uint8_t *p = buf;


	vf610_nfc_read_buf(mtd, p, eccsize);

	if (oob_required)
		vf610_nfc_read_buf(mtd, chip->oob_poi, mtd->oobsize);

	stat = vf610_nfc_correct_data(mtd, p);

	if (stat < 0)
		mtd->ecc_stats.failed++;
	else
		mtd->ecc_stats.corrected += stat;

	return 0;
}

/*
 * ECC will be calculated automatically
 */
static int vf610_nfc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
			       const uint8_t *buf, int oob_required)
{
	vf610_nfc_write_buf(mtd, buf, mtd->writesize);
	if (oob_required)
		vf610_nfc_write_buf(mtd, chip->oob_poi, mtd->oobsize);

	return 0;
}

struct vf610_nfc_config {
	int hardware_ecc;
	int width;
	int flash_bbt;
};

static int vf610_nfc_nand_init(int devnum, void __iomem *addr)
{
	struct mtd_info *mtd = &nand_info[devnum];
	struct nand_chip *chip;
	struct vf610_nfc *nfc;
	int err = 0;
	int page_sz;
	struct vf610_nfc_config cfg = {
		.hardware_ecc = 1,
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
		.width = 16,
#else
		.width = 8,
#endif
		.flash_bbt = 1,
	};

	nfc = malloc(sizeof(*nfc));
	if (!nfc) {
		printf(KERN_ERR "%s: Memory exhausted!\n", __func__);
		return -ENOMEM;
	}

	chip = &nfc->chip;
	nfc->regs = addr;

	mtd->priv = chip;
	chip->priv = nfc;

	if (cfg.width == 16) {
		chip->options |= NAND_BUSWIDTH_16;
		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
	} else {
		chip->options &= ~NAND_BUSWIDTH_16;
		vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_16BIT);
	}

	/* Disable subpage writes as we do not provide ecc->hwctl */
	chip->options |= NAND_NO_SUBPAGE_WRITE;

	chip->dev_ready = vf610_nfc_dev_ready;
	chip->cmdfunc = vf610_nfc_command;
	chip->read_byte = vf610_nfc_read_byte;
	chip->read_word = vf610_nfc_read_word;
	chip->read_buf = vf610_nfc_read_buf;
	chip->write_buf = vf610_nfc_write_buf;
	chip->select_chip = vf610_nfc_select_chip;

	/* Bad block options. */
	if (cfg.flash_bbt)
		chip->bbt_options = NAND_BBT_USE_FLASH | NAND_BBT_CREATE;

	/* Default to software ECC until flash ID. */
	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
			    CONFIG_ECC_MODE_MASK,
			    CONFIG_ECC_MODE_SHIFT, ECC_BYPASS);

	chip->bbt_td = &bbt_main_descr;
	chip->bbt_md = &bbt_mirror_descr;

	page_sz = PAGE_2K + OOB_64;
	page_sz += cfg.width == 16 ? 1 : 0;
	vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);

	/* Set configuration register. */
	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_ADDR_AUTO_INCR_BIT);
	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BUFNO_AUTO_INCR_BIT);
	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_BOOT_MODE_BIT);
	vf610_nfc_clear(mtd, NFC_FLASH_CONFIG, CONFIG_DMA_REQ_BIT);
	vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_FAST_FLASH_BIT);

	/* Enable Idle IRQ */
	vf610_nfc_set(mtd, NFC_IRQ_STATUS, IDLE_EN_BIT);

	/* PAGE_CNT = 1 */
	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG, CONFIG_PAGE_CNT_MASK,
			    CONFIG_PAGE_CNT_SHIFT, 1);

	/* Set ECC_STATUS offset */
	vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
			    CONFIG_ECC_SRAM_ADDR_MASK,
			    CONFIG_ECC_SRAM_ADDR_SHIFT, ECC_SRAM_ADDR);

	/* first scan to find the device and get the page size */
	if (nand_scan_ident(mtd, CONFIG_SYS_MAX_NAND_DEVICE, NULL)) {
		err = -ENXIO;
		goto error;
	}

	chip->ecc.mode = NAND_ECC_SOFT; /* default */

	page_sz = mtd->writesize + mtd->oobsize;

	/* Single buffer only, max 256 OOB minus ECC status */
	if (page_sz > PAGE_2K + 256 - 8) {
		dev_err(nfc->dev, "Unsupported flash size\n");
		err = -ENXIO;
		goto error;
	}
	page_sz += cfg.width == 16 ? 1 : 0;
	vf610_nfc_write(mtd, NFC_SECTOR_SIZE, page_sz);

	if (cfg.hardware_ecc) {
		if (mtd->writesize != PAGE_2K && mtd->oobsize < 64) {
			dev_err(nfc->dev, "Unsupported flash with hwecc\n");
			err = -ENXIO;
			goto error;
		}

		chip->ecc.layout = &vf610_nfc_ecc45;

		/* propagate ecc.layout to mtd_info */
		mtd->ecclayout = chip->ecc.layout;
		chip->ecc.read_page = vf610_nfc_read_page;
		chip->ecc.write_page = vf610_nfc_write_page;
		chip->ecc.mode = NAND_ECC_HW;

		chip->ecc.bytes = 45;
		chip->ecc.size = PAGE_2K;
		chip->ecc.strength = 24;

		/* set ECC mode to 45 bytes OOB with 24 bits correction */
		vf610_nfc_set_field(mtd, NFC_FLASH_CONFIG,
				    CONFIG_ECC_MODE_MASK,
				    CONFIG_ECC_MODE_SHIFT, ECC_45_BYTE);

		/* Enable ECC_STATUS */
		vf610_nfc_set(mtd, NFC_FLASH_CONFIG, CONFIG_ECC_SRAM_REQ_BIT);
	}

	/* second phase scan */
	err = nand_scan_tail(mtd);
	if (err)
		return err;

	err = nand_register(devnum);
	if (err)
		return err;

	return 0;

error:
	return err;
}

void board_nand_init(void)
{
	int err = vf610_nfc_nand_init(0, (void __iomem *)CONFIG_SYS_NAND_BASE);
	if (err)
		printf("VF610 NAND init failed (err %d)\n", err);
}