davinci_nand.c 22.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833
// SPDX-License-Identifier: GPL-2.0+
/*
 * NAND driver for TI DaVinci based boards.
 *
 * Copyright (C) 2007 Sergey Kubushyn <ksi@koi8.net>
 *
 * Based on Linux DaVinci NAND driver by TI. Original copyright follows:
 */

/*
 *
 * linux/drivers/mtd/nand/raw/nand_davinci.c
 *
 * NAND Flash Driver
 *
 * Copyright (C) 2006 Texas Instruments.
 *
 * ----------------------------------------------------------------------------
 *
 * ----------------------------------------------------------------------------
 *
 *  Overview:
 *   This is a device driver for the NAND flash device found on the
 *   DaVinci board which utilizes the Samsung k9k2g08 part.
 *
 Modifications:
 ver. 1.0: Feb 2005, Vinod/Sudhakar
 -
 */

#include <common.h>
#include <asm/io.h>
#include <nand.h>
#include <asm/ti-common/davinci_nand.h>

/* Definitions for 4-bit hardware ECC */
#define NAND_TIMEOUT			10240
#define NAND_ECC_BUSY			0xC
#define NAND_4BITECC_MASK		0x03FF03FF
#define EMIF_NANDFSR_ECC_STATE_MASK  	0x00000F00
#define ECC_STATE_NO_ERR		0x0
#define ECC_STATE_TOO_MANY_ERRS		0x1
#define ECC_STATE_ERR_CORR_COMP_P	0x2
#define ECC_STATE_ERR_CORR_COMP_N	0x3

/*
 * Exploit the little endianness of the ARM to do multi-byte transfers
 * per device read. This can perform over twice as quickly as individual
 * byte transfers when buffer alignment is conducive.
 *
 * NOTE: This only works if the NAND is not connected to the 2 LSBs of
 * the address bus. On Davinci EVM platforms this has always been true.
 */
static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const u32 *nand = chip->IO_ADDR_R;

	/* Make sure that buf is 32 bit aligned */
	if (((int)buf & 0x3) != 0) {
		if (((int)buf & 0x1) != 0) {
			if (len) {
				*buf = readb(nand);
				buf += 1;
				len--;
			}
		}

		if (((int)buf & 0x3) != 0) {
			if (len >= 2) {
				*(u16 *)buf = readw(nand);
				buf += 2;
				len -= 2;
			}
		}
	}

	/* copy aligned data */
	while (len >= 4) {
		*(u32 *)buf = __raw_readl(nand);
		buf += 4;
		len -= 4;
	}

	/* mop up any remaining bytes */
	if (len) {
		if (len >= 2) {
			*(u16 *)buf = readw(nand);
			buf += 2;
			len -= 2;
		}

		if (len)
			*buf = readb(nand);
	}
}

static void nand_davinci_write_buf(struct mtd_info *mtd, const uint8_t *buf,
				   int len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	const u32 *nand = chip->IO_ADDR_W;

	/* Make sure that buf is 32 bit aligned */
	if (((int)buf & 0x3) != 0) {
		if (((int)buf & 0x1) != 0) {
			if (len) {
				writeb(*buf, nand);
				buf += 1;
				len--;
			}
		}

		if (((int)buf & 0x3) != 0) {
			if (len >= 2) {
				writew(*(u16 *)buf, nand);
				buf += 2;
				len -= 2;
			}
		}
	}

	/* copy aligned data */
	while (len >= 4) {
		__raw_writel(*(u32 *)buf, nand);
		buf += 4;
		len -= 4;
	}

	/* mop up any remaining bytes */
	if (len) {
		if (len >= 2) {
			writew(*(u16 *)buf, nand);
			buf += 2;
			len -= 2;
		}

		if (len)
			writeb(*buf, nand);
	}
}

static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
		unsigned int ctrl)
{
	struct		nand_chip *this = mtd_to_nand(mtd);
	u_int32_t	IO_ADDR_W = (u_int32_t)this->IO_ADDR_W;

	if (ctrl & NAND_CTRL_CHANGE) {
		IO_ADDR_W &= ~(MASK_ALE|MASK_CLE);

		if (ctrl & NAND_CLE)
			IO_ADDR_W |= MASK_CLE;
		if (ctrl & NAND_ALE)
			IO_ADDR_W |= MASK_ALE;
		this->IO_ADDR_W = (void __iomem *) IO_ADDR_W;
	}

	if (cmd != NAND_CMD_NONE)
		writeb(cmd, IO_ADDR_W);
}

#ifdef CONFIG_SYS_NAND_HW_ECC

static u_int32_t nand_davinci_readecc(struct mtd_info *mtd)
{
	u_int32_t	ecc = 0;

	ecc = __raw_readl(&(davinci_emif_regs->nandfecc[
				CONFIG_SYS_NAND_CS - 2]));

	return ecc;
}

static void nand_davinci_enable_hwecc(struct mtd_info *mtd, int mode)
{
	u_int32_t	val;

	/* reading the ECC result register resets the ECC calculation */
	nand_davinci_readecc(mtd);

	val = __raw_readl(&davinci_emif_regs->nandfcr);
	val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
	val |= DAVINCI_NANDFCR_1BIT_ECC_START(CONFIG_SYS_NAND_CS);
	__raw_writel(val, &davinci_emif_regs->nandfcr);
}

static int nand_davinci_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
		u_char *ecc_code)
{
	u_int32_t		tmp;

	tmp = nand_davinci_readecc(mtd);

	/* Squeeze 4 bytes ECC into 3 bytes by removing RESERVED bits
	 * and shifting. RESERVED bits are 31 to 28 and 15 to 12. */
	tmp = (tmp & 0x00000fff) | ((tmp & 0x0fff0000) >> 4);

	/* Invert so that erased block ECC is correct */
	tmp = ~tmp;

	*ecc_code++ = tmp;
	*ecc_code++ = tmp >>  8;
	*ecc_code++ = tmp >> 16;

	/* NOTE:  the above code matches mainline Linux:
	 *	.PQR.stu ==> ~PQRstu
	 *
	 * MontaVista/TI kernels encode those bytes differently, use
	 * complicated (and allegedly sometimes-wrong) correction code,
	 * and usually shipped with U-Boot that uses software ECC:
	 *	.PQR.stu ==> PsQRtu
	 *
	 * If you need MV/TI compatible NAND I/O in U-Boot, it should
	 * be possible to (a) change the mangling above, (b) reverse
	 * that mangling in nand_davinci_correct_data() below.
	 */

	return 0;
}

static int nand_davinci_correct_data(struct mtd_info *mtd, u_char *dat,
		u_char *read_ecc, u_char *calc_ecc)
{
	struct nand_chip *this = mtd_to_nand(mtd);
	u_int32_t ecc_nand = read_ecc[0] | (read_ecc[1] << 8) |
					  (read_ecc[2] << 16);
	u_int32_t ecc_calc = calc_ecc[0] | (calc_ecc[1] << 8) |
					  (calc_ecc[2] << 16);
	u_int32_t diff = ecc_calc ^ ecc_nand;

	if (diff) {
		if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
			/* Correctable error */
			if ((diff >> (12 + 3)) < this->ecc.size) {
				uint8_t find_bit = 1 << ((diff >> 12) & 7);
				uint32_t find_byte = diff >> (12 + 3);

				dat[find_byte] ^= find_bit;
				pr_debug("Correcting single "
					 "bit ECC error at offset: %d, bit: "
					 "%d\n", find_byte, find_bit);
				return 1;
			} else {
				return -EBADMSG;
			}
		} else if (!(diff & (diff - 1))) {
			/* Single bit ECC error in the ECC itself,
			   nothing to fix */
			pr_debug("Single bit ECC error in " "ECC.\n");
			return 1;
		} else {
			/* Uncorrectable error */
			pr_debug("ECC UNCORRECTED_ERROR 1\n");
			return -EBADMSG;
		}
	}
	return 0;
}
#endif /* CONFIG_SYS_NAND_HW_ECC */

#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
static struct nand_ecclayout nand_davinci_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
	.eccbytes = 40,
#ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC
	.eccpos = {
		6,   7,  8,  9, 10,	11, 12, 13, 14, 15,
		22, 23, 24, 25, 26,	27, 28, 29, 30, 31,
		38, 39, 40, 41, 42,	43, 44, 45, 46, 47,
		54, 55, 56, 57, 58,	59, 60, 61, 62, 63,
	},
	.oobfree = {
		{2, 4}, {16, 6}, {32, 6}, {48, 6},
	},
#else
	.eccpos = {
		24, 25, 26, 27, 28,
		29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
		39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
		49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
		59, 60, 61, 62, 63,
		},
	.oobfree = {
		{.offset = 2, .length = 22, },
	},
#endif	/* #ifdef CONFIG_NAND_6BYTES_OOB_FREE_10BYTES_ECC */
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
	.eccbytes = 80,
	.eccpos = {
		48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
		58, 59, 60, 61, 62, 63,	64, 65, 66, 67,
		68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
		78, 79,	80, 81, 82, 83,	84, 85, 86, 87,
		88, 89, 90, 91, 92, 93,	94, 95, 96, 97,
		98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
		108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
		},
	.oobfree = {
		{.offset = 2, .length = 46, },
	},
#endif
};

#if defined CONFIG_KEYSTONE_RBL_NAND
static struct nand_ecclayout nand_keystone_rbl_4bit_layout_oobfirst = {
#if defined(CONFIG_SYS_NAND_PAGE_2K)
	.eccbytes = 40,
	.eccpos = {
		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
	},
	.oobfree = {
		{.offset = 2, .length = 4, },
		{.offset = 16, .length = 6, },
		{.offset = 32, .length = 6, },
		{.offset = 48, .length = 6, },
	},
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
	.eccbytes = 80,
	.eccpos = {
		6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
		54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
		70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
		86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
		102, 103, 104, 105, 106, 107, 108, 109, 110, 111,
		118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
	},
	.oobfree = {
		{.offset = 2, .length = 4, },
		{.offset = 16, .length = 6, },
		{.offset = 32, .length = 6, },
		{.offset = 48, .length = 6, },
		{.offset = 64, .length = 6, },
		{.offset = 80, .length = 6, },
		{.offset = 96, .length = 6, },
		{.offset = 112, .length = 6, },
	},
#endif
};

#ifdef CONFIG_SYS_NAND_PAGE_2K
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 11
#elif defined(CONFIG_SYS_NAND_PAGE_4K)
#define CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE	CONFIG_KEYSTONE_NAND_MAX_RBL_SIZE >> 12
#endif

/**
 * nand_davinci_write_page - write one page
 * @mtd: MTD device structure
 * @chip: NAND chip descriptor
 * @buf: the data to write
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 * @raw: use _raw version of write_page
 */
static int nand_davinci_write_page(struct mtd_info *mtd, struct nand_chip *chip,
				   uint32_t offset, int data_len,
				   const uint8_t *buf, int oob_required,
				   int page, int raw)
{
	int status;
	int ret = 0;
	struct nand_ecclayout *saved_ecc_layout;

	/* save current ECC layout and assign Keystone RBL ECC layout */
	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
		saved_ecc_layout = chip->ecc.layout;
		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
		mtd->oobavail = chip->ecc.layout->oobavail;
	}

	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);

	if (unlikely(raw)) {
		status = chip->ecc.write_page_raw(mtd, chip, buf,
						  oob_required, page);
	} else {
		status = chip->ecc.write_page(mtd, chip, buf,
					      oob_required, page);
	}

	if (status < 0) {
		ret = status;
		goto err;
	}

	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
	status = chip->waitfunc(mtd, chip);

	if (status & NAND_STATUS_FAIL) {
		ret = -EIO;
		goto err;
	}

err:
	/* restore ECC layout */
	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
		chip->ecc.layout = saved_ecc_layout;
		mtd->oobavail = saved_ecc_layout->oobavail;
	}

	return ret;
}

/**
 * nand_davinci_read_page_hwecc - hardware ECC based page read function
 * @mtd: mtd info structure
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Not for syndrome calculating ECC controllers which need a special oob layout.
 */
static int nand_davinci_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
				uint8_t *buf, int oob_required, int page)
{
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint32_t *eccpos;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->buffers->ecccode;
	uint8_t *ecc_calc = chip->buffers->ecccalc;
	struct nand_ecclayout *saved_ecc_layout = chip->ecc.layout;

	/* save current ECC layout and assign Keystone RBL ECC layout */
	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
		chip->ecc.layout = &nand_keystone_rbl_4bit_layout_oobfirst;
		mtd->oobavail = chip->ecc.layout->oobavail;
	}

	eccpos = chip->ecc.layout->eccpos;

	/* Read the OOB area first */
	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);

	for (i = 0; i < chip->ecc.total; i++)
		ecc_code[i] = chip->oob_poi[eccpos[i]];

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(mtd, NAND_ECC_READ);
		chip->read_buf(mtd, p, eccsize);
		chip->ecc.calculate(mtd, p, &ecc_calc[i]);

		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
		if (stat < 0)
			mtd->ecc_stats.failed++;
		else
			mtd->ecc_stats.corrected += stat;
	}

	/* restore ECC layout */
	if (page < CONFIG_KEYSTONE_NAND_MAX_RBL_PAGE) {
		chip->ecc.layout = saved_ecc_layout;
		mtd->oobavail = saved_ecc_layout->oobavail;
	}

	return 0;
}
#endif /* CONFIG_KEYSTONE_RBL_NAND */

static void nand_davinci_4bit_enable_hwecc(struct mtd_info *mtd, int mode)
{
	u32 val;

	switch (mode) {
	case NAND_ECC_WRITE:
	case NAND_ECC_READ:
		/*
		 * Start a new ECC calculation for reading or writing 512 bytes
		 * of data.
		 */
		val = __raw_readl(&davinci_emif_regs->nandfcr);
		val &= ~DAVINCI_NANDFCR_4BIT_ECC_SEL_MASK;
		val |= DAVINCI_NANDFCR_NAND_ENABLE(CONFIG_SYS_NAND_CS);
		val |= DAVINCI_NANDFCR_4BIT_ECC_SEL(CONFIG_SYS_NAND_CS);
		val |= DAVINCI_NANDFCR_4BIT_ECC_START;
		__raw_writel(val, &davinci_emif_regs->nandfcr);
		break;
	case NAND_ECC_READSYN:
		val = __raw_readl(&davinci_emif_regs->nand4bitecc[0]);
		break;
	default:
		break;
	}
}

static u32 nand_davinci_4bit_readecc(struct mtd_info *mtd, unsigned int ecc[4])
{
	int i;

	for (i = 0; i < 4; i++) {
		ecc[i] = __raw_readl(&davinci_emif_regs->nand4bitecc[i]) &
			NAND_4BITECC_MASK;
	}

	return 0;
}

static int nand_davinci_4bit_calculate_ecc(struct mtd_info *mtd,
					   const uint8_t *dat,
					   uint8_t *ecc_code)
{
	unsigned int hw_4ecc[4];
	unsigned int i;

	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	/*Convert 10 bit ecc value to 8 bit */
	for (i = 0; i < 2; i++) {
		unsigned int hw_ecc_low = hw_4ecc[i * 2];
		unsigned int hw_ecc_hi = hw_4ecc[(i * 2) + 1];

		/* Take first 8 bits from val1 (count1=0) or val5 (count1=1) */
		*ecc_code++ = hw_ecc_low & 0xFF;

		/*
		 * Take 2 bits as LSB bits from val1 (count1=0) or val5
		 * (count1=1) and 6 bits from val2 (count1=0) or
		 * val5 (count1=1)
		 */
		*ecc_code++ =
		    ((hw_ecc_low >> 8) & 0x3) | ((hw_ecc_low >> 14) & 0xFC);

		/*
		 * Take 4 bits from val2 (count1=0) or val5 (count1=1) and
		 * 4 bits from val3 (count1=0) or val6 (count1=1)
		 */
		*ecc_code++ =
		    ((hw_ecc_low >> 22) & 0xF) | ((hw_ecc_hi << 4) & 0xF0);

		/*
		 * Take 6 bits from val3(count1=0) or val6 (count1=1) and
		 * 2 bits from val4 (count1=0) or  val7 (count1=1)
		 */
		*ecc_code++ =
		    ((hw_ecc_hi >> 4) & 0x3F) | ((hw_ecc_hi >> 10) & 0xC0);

		/* Take 8 bits from val4 (count1=0) or val7 (count1=1) */
		*ecc_code++ = (hw_ecc_hi >> 18) & 0xFF;
	}

	return 0;
}

static int nand_davinci_4bit_correct_data(struct mtd_info *mtd, uint8_t *dat,
					  uint8_t *read_ecc, uint8_t *calc_ecc)
{
	int i;
	unsigned int hw_4ecc[4];
	unsigned int iserror;
	unsigned short *ecc16;
	unsigned int numerrors, erroraddress, errorvalue;
	u32 val;

	/*
	 * Check for an ECC where all bytes are 0xFF.  If this is the case, we
	 * will assume we are looking at an erased page and we should ignore
	 * the ECC.
	 */
	for (i = 0; i < 10; i++) {
		if (read_ecc[i] != 0xFF)
			break;
	}
	if (i == 10)
		return 0;

	/* Convert 8 bit in to 10 bit */
	ecc16 = (unsigned short *)&read_ecc[0];

	/*
	 * Write the parity values in the NAND Flash 4-bit ECC Load register.
	 * Write each parity value one at a time starting from 4bit_ecc_val8
	 * to 4bit_ecc_val1.
	 */

	/*Take 2 bits from 8th byte and 8 bits from 9th byte */
	__raw_writel(((ecc16[4]) >> 6) & 0x3FF,
			&davinci_emif_regs->nand4biteccload);

	/* Take 4 bits from 7th byte and 6 bits from 8th byte */
	__raw_writel((((ecc16[3]) >> 12) & 0xF) | ((((ecc16[4])) << 4) & 0x3F0),
			&davinci_emif_regs->nand4biteccload);

	/* Take 6 bits from 6th byte and 4 bits from 7th byte */
	__raw_writel((ecc16[3] >> 2) & 0x3FF,
			&davinci_emif_regs->nand4biteccload);

	/* Take 8 bits from 5th byte and 2 bits from 6th byte */
	__raw_writel(((ecc16[2]) >> 8) | ((((ecc16[3])) << 8) & 0x300),
			&davinci_emif_regs->nand4biteccload);

	/*Take 2 bits from 3rd byte and 8 bits from 4th byte */
	__raw_writel((((ecc16[1]) >> 14) & 0x3) | ((((ecc16[2])) << 2) & 0x3FC),
			&davinci_emif_regs->nand4biteccload);

	/* Take 4 bits form 2nd bytes and 6 bits from 3rd bytes */
	__raw_writel(((ecc16[1]) >> 4) & 0x3FF,
			&davinci_emif_regs->nand4biteccload);

	/* Take 6 bits from 1st byte and 4 bits from 2nd byte */
	__raw_writel((((ecc16[0]) >> 10) & 0x3F) | (((ecc16[1]) << 6) & 0x3C0),
			&davinci_emif_regs->nand4biteccload);

	/* Take 10 bits from 0th and 1st bytes */
	__raw_writel((ecc16[0]) & 0x3FF,
			&davinci_emif_regs->nand4biteccload);

	/*
	 * Perform a dummy read to the EMIF Revision Code and Status register.
	 * This is required to ensure time for syndrome calculation after
	 * writing the ECC values in previous step.
	 */

	val = __raw_readl(&davinci_emif_regs->nandfsr);

	/*
	 * Read the syndrome from the NAND Flash 4-Bit ECC 1-4 registers.
	 * A syndrome value of 0 means no bit errors. If the syndrome is
	 * non-zero then go further otherwise return.
	 */
	nand_davinci_4bit_readecc(mtd, hw_4ecc);

	if (!(hw_4ecc[0] | hw_4ecc[1] | hw_4ecc[2] | hw_4ecc[3]))
		return 0;

	/*
	 * Clear any previous address calculation by doing a dummy read of an
	 * error address register.
	 */
	val = __raw_readl(&davinci_emif_regs->nanderradd1);

	/*
	 * Set the addr_calc_st bit(bit no 13) in the NAND Flash Control
	 * register to 1.
	 */
	__raw_writel(DAVINCI_NANDFCR_4BIT_CALC_START,
			&davinci_emif_regs->nandfcr);

	/*
	 * Wait for the corr_state field (bits 8 to 11) in the
	 * NAND Flash Status register to be not equal to 0x0, 0x1, 0x2, or 0x3.
	 * Otherwise ECC calculation has not even begun and the next loop might
	 * fail because of a false positive!
	 */
	i = NAND_TIMEOUT;
	do {
		val = __raw_readl(&davinci_emif_regs->nandfsr);
		val &= 0xc00;
		i--;
	} while ((i > 0) && !val);

	/*
	 * Wait for the corr_state field (bits 8 to 11) in the
	 * NAND Flash Status register to be equal to 0x0, 0x1, 0x2, or 0x3.
	 */
	i = NAND_TIMEOUT;
	do {
		val = __raw_readl(&davinci_emif_regs->nandfsr);
		val &= 0xc00;
		i--;
	} while ((i > 0) && val);

	iserror = __raw_readl(&davinci_emif_regs->nandfsr);
	iserror &= EMIF_NANDFSR_ECC_STATE_MASK;
	iserror = iserror >> 8;

	/*
	 * ECC_STATE_TOO_MANY_ERRS (0x1) means errors cannot be
	 * corrected (five or more errors).  The number of errors
	 * calculated (err_num field) differs from the number of errors
	 * searched.  ECC_STATE_ERR_CORR_COMP_P (0x2) means error
	 * correction complete (errors on bit 8 or 9).
	 * ECC_STATE_ERR_CORR_COMP_N (0x3) means error correction
	 * complete (error exists).
	 */

	if (iserror == ECC_STATE_NO_ERR) {
		val = __raw_readl(&davinci_emif_regs->nanderrval1);
		return 0;
	} else if (iserror == ECC_STATE_TOO_MANY_ERRS) {
		val = __raw_readl(&davinci_emif_regs->nanderrval1);
		return -EBADMSG;
	}

	numerrors = ((__raw_readl(&davinci_emif_regs->nandfsr) >> 16)
			& 0x3) + 1;

	/* Read the error address, error value and correct */
	for (i = 0; i < numerrors; i++) {
		if (i > 1) {
			erroraddress =
			    ((__raw_readl(&davinci_emif_regs->nanderradd2) >>
			      (16 * (i & 1))) & 0x3FF);
			erroraddress = ((512 + 7) - erroraddress);
			errorvalue =
			    ((__raw_readl(&davinci_emif_regs->nanderrval2) >>
			      (16 * (i & 1))) & 0xFF);
		} else {
			erroraddress =
			    ((__raw_readl(&davinci_emif_regs->nanderradd1) >>
			      (16 * (i & 1))) & 0x3FF);
			erroraddress = ((512 + 7) - erroraddress);
			errorvalue =
			    ((__raw_readl(&davinci_emif_regs->nanderrval1) >>
			      (16 * (i & 1))) & 0xFF);
		}
		/* xor the corrupt data with error value */
		if (erroraddress < 512)
			dat[erroraddress] ^= errorvalue;
	}

	return numerrors;
}
#endif /* CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST */

static int nand_davinci_dev_ready(struct mtd_info *mtd)
{
	return __raw_readl(&davinci_emif_regs->nandfsr) & 0x1;
}

static void nand_flash_init(void)
{
	/* This is for DM6446 EVM and *very* similar.  DO NOT GROW THIS!
	 * Instead, have your board_init() set EMIF timings, based on its
	 * knowledge of the clocks and what devices are hooked up ... and
	 * don't even do that unless no UBL handled it.
	 */
#ifdef CONFIG_SOC_DM644X
	u_int32_t	acfg1 = 0x3ffffffc;

	/*------------------------------------------------------------------*
	 *  NAND FLASH CHIP TIMEOUT @ 459 MHz                               *
	 *                                                                  *
	 *  AEMIF.CLK freq   = PLL1/6 = 459/6 = 76.5 MHz                    *
	 *  AEMIF.CLK period = 1/76.5 MHz = 13.1 ns                         *
	 *                                                                  *
	 *------------------------------------------------------------------*/
	 acfg1 = 0
		| (0 << 31)	/* selectStrobe */
		| (0 << 30)	/* extWait */
		| (1 << 26)	/* writeSetup	10 ns */
		| (3 << 20)	/* writeStrobe	40 ns */
		| (1 << 17)	/* writeHold	10 ns */
		| (1 << 13)	/* readSetup	10 ns */
		| (5 << 7)	/* readStrobe	60 ns */
		| (1 << 4)	/* readHold	10 ns */
		| (3 << 2)	/* turnAround	?? ns */
		| (0 << 0)	/* asyncSize	8-bit bus */
		;

	__raw_writel(acfg1, &davinci_emif_regs->ab1cr); /* CS2 */

	/* NAND flash on CS2 */
	__raw_writel(0x00000101, &davinci_emif_regs->nandfcr);
#endif
}

void davinci_nand_init(struct nand_chip *nand)
{
#if defined CONFIG_KEYSTONE_RBL_NAND
	int i;
	struct nand_ecclayout *layout;

	layout = &nand_keystone_rbl_4bit_layout_oobfirst;
	layout->oobavail = 0;
	for (i = 0; layout->oobfree[i].length &&
	     i < ARRAY_SIZE(layout->oobfree); i++)
		layout->oobavail += layout->oobfree[i].length;

	nand->write_page = nand_davinci_write_page;
	nand->ecc.read_page = nand_davinci_read_page_hwecc;
#endif
	nand->chip_delay  = 0;
#ifdef CONFIG_SYS_NAND_USE_FLASH_BBT
	nand->bbt_options	  |= NAND_BBT_USE_FLASH;
#endif
#ifdef CONFIG_SYS_NAND_NO_SUBPAGE_WRITE
	nand->options	  |= NAND_NO_SUBPAGE_WRITE;
#endif
#ifdef CONFIG_SYS_NAND_BUSWIDTH_16BIT
	nand->options	  |= NAND_BUSWIDTH_16;
#endif
#ifdef CONFIG_SYS_NAND_HW_ECC
	nand->ecc.mode = NAND_ECC_HW;
	nand->ecc.size = 512;
	nand->ecc.bytes = 3;
	nand->ecc.strength = 1;
	nand->ecc.calculate = nand_davinci_calculate_ecc;
	nand->ecc.correct  = nand_davinci_correct_data;
	nand->ecc.hwctl  = nand_davinci_enable_hwecc;
#else
	nand->ecc.mode = NAND_ECC_SOFT;
#endif /* CONFIG_SYS_NAND_HW_ECC */
#ifdef CONFIG_SYS_NAND_4BIT_HW_ECC_OOBFIRST
	nand->ecc.mode = NAND_ECC_HW_OOB_FIRST;
	nand->ecc.size = 512;
	nand->ecc.bytes = 10;
	nand->ecc.strength = 4;
	nand->ecc.calculate = nand_davinci_4bit_calculate_ecc;
	nand->ecc.correct = nand_davinci_4bit_correct_data;
	nand->ecc.hwctl = nand_davinci_4bit_enable_hwecc;
	nand->ecc.layout = &nand_davinci_4bit_layout_oobfirst;
#endif
	/* Set address of hardware control function */
	nand->cmd_ctrl = nand_davinci_hwcontrol;

	nand->read_buf = nand_davinci_read_buf;
	nand->write_buf = nand_davinci_write_buf;

	nand->dev_ready = nand_davinci_dev_ready;

	nand_flash_init();
}

int board_nand_init(struct nand_chip *chip) __attribute__((weak));

int board_nand_init(struct nand_chip *chip)
{
	davinci_nand_init(chip);
	return 0;
}