ci_udc.c 24.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
/*
 * Copyright 2011, Marvell Semiconductor Inc.
 * Lei Wen <leiwen@marvell.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 *
 * Back ported to the 8xx platform (from the 8260 platform) by
 * Murray.Jensen@cmst.csiro.au, 27-Jan-01.
 */

#include <common.h>
#include <command.h>
#include <config.h>
#include <net.h>
#include <malloc.h>
#include <asm/byteorder.h>
#include <asm/errno.h>
#include <asm/io.h>
#include <asm/unaligned.h>
#include <linux/types.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <usb/ci_udc.h>
#include "../host/ehci.h"
#include "ci_udc.h"

/*
 * Check if the system has too long cachelines. If the cachelines are
 * longer then 128b, the driver will not be able flush/invalidate data
 * cache over separate QH entries. We use 128b because one QH entry is
 * 64b long and there are always two QH list entries for each endpoint.
 */
#if ARCH_DMA_MINALIGN > 128
#error This driver can not work on systems with caches longer than 128b
#endif

/*
 * Every QTD must be individually aligned, since we can program any
 * QTD's address into HW. Cache flushing requires ARCH_DMA_MINALIGN,
 * and the USB HW requires 32-byte alignment. Align to both:
 */
#define ILIST_ALIGN		roundup(ARCH_DMA_MINALIGN, 32)
/* Each QTD is this size */
#define ILIST_ENT_RAW_SZ	sizeof(struct ept_queue_item)
/*
 * Align the size of the QTD too, so we can add this value to each
 * QTD's address to get another aligned address.
 */
#define ILIST_ENT_SZ		roundup(ILIST_ENT_RAW_SZ, ILIST_ALIGN)
/* For each endpoint, we need 2 QTDs, one for each of IN and OUT */
#define ILIST_SZ		(NUM_ENDPOINTS * 2 * ILIST_ENT_SZ)

#ifndef DEBUG
#define DBG(x...) do {} while (0)
#else
#define DBG(x...) printf(x)
static const char *reqname(unsigned r)
{
	switch (r) {
	case USB_REQ_GET_STATUS: return "GET_STATUS";
	case USB_REQ_CLEAR_FEATURE: return "CLEAR_FEATURE";
	case USB_REQ_SET_FEATURE: return "SET_FEATURE";
	case USB_REQ_SET_ADDRESS: return "SET_ADDRESS";
	case USB_REQ_GET_DESCRIPTOR: return "GET_DESCRIPTOR";
	case USB_REQ_SET_DESCRIPTOR: return "SET_DESCRIPTOR";
	case USB_REQ_GET_CONFIGURATION: return "GET_CONFIGURATION";
	case USB_REQ_SET_CONFIGURATION: return "SET_CONFIGURATION";
	case USB_REQ_GET_INTERFACE: return "GET_INTERFACE";
	case USB_REQ_SET_INTERFACE: return "SET_INTERFACE";
	default: return "*UNKNOWN*";
	}
}
#endif

static struct usb_endpoint_descriptor ep0_desc = {
	.bLength = sizeof(struct usb_endpoint_descriptor),
	.bDescriptorType = USB_DT_ENDPOINT,
	.bEndpointAddress = USB_DIR_IN,
	.bmAttributes =	USB_ENDPOINT_XFER_CONTROL,
};

static int ci_pullup(struct usb_gadget *gadget, int is_on);
static int ci_ep_enable(struct usb_ep *ep,
		const struct usb_endpoint_descriptor *desc);
static int ci_ep_disable(struct usb_ep *ep);
static int ci_ep_queue(struct usb_ep *ep,
		struct usb_request *req, gfp_t gfp_flags);
static struct usb_request *
ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags);
static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *_req);

static struct usb_gadget_ops ci_udc_ops = {
	.pullup = ci_pullup,
};

static struct usb_ep_ops ci_ep_ops = {
	.enable         = ci_ep_enable,
	.disable        = ci_ep_disable,
	.queue          = ci_ep_queue,
	.alloc_request  = ci_ep_alloc_request,
	.free_request   = ci_ep_free_request,
};

/* Init values for USB endpoints. */
static const struct usb_ep ci_ep_init[2] = {
	[0] = {	/* EP 0 */
		.maxpacket	= 64,
		.name		= "ep0",
		.ops		= &ci_ep_ops,
	},
	[1] = {	/* EP 1..n */
		.maxpacket	= 512,
		.name		= "ep-",
		.ops		= &ci_ep_ops,
	},
};

static struct ci_drv controller = {
	.gadget	= {
		.name	= "ci_udc",
		.ops	= &ci_udc_ops,
		.is_dualspeed = 1,
	},
};

/**
 * ci_get_qh() - return queue head for endpoint
 * @ep_num:	Endpoint number
 * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
 *
 * This function returns the QH associated with particular endpoint
 * and it's direction.
 */
static struct ept_queue_head *ci_get_qh(int ep_num, int dir_in)
{
	return &controller.epts[(ep_num * 2) + dir_in];
}

/**
 * ci_get_qtd() - return queue item for endpoint
 * @ep_num:	Endpoint number
 * @dir_in:	Direction of the endpoint (IN = 1, OUT = 0)
 *
 * This function returns the QH associated with particular endpoint
 * and it's direction.
 */
static struct ept_queue_item *ci_get_qtd(int ep_num, int dir_in)
{
	int index = (ep_num * 2) + dir_in;
	uint8_t *imem = controller.items_mem + (index * ILIST_ENT_SZ);
	return (struct ept_queue_item *)imem;
}

/**
 * ci_flush_qh - flush cache over queue head
 * @ep_num:	Endpoint number
 *
 * This function flushes cache over QH for particular endpoint.
 */
static void ci_flush_qh(int ep_num)
{
	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
	const uint32_t start = (uint32_t)head;
	const uint32_t end = start + 2 * sizeof(*head);

	flush_dcache_range(start, end);
}

/**
 * ci_invalidate_qh - invalidate cache over queue head
 * @ep_num:	Endpoint number
 *
 * This function invalidates cache over QH for particular endpoint.
 */
static void ci_invalidate_qh(int ep_num)
{
	struct ept_queue_head *head = ci_get_qh(ep_num, 0);
	uint32_t start = (uint32_t)head;
	uint32_t end = start + 2 * sizeof(*head);

	invalidate_dcache_range(start, end);
}

/**
 * ci_flush_qtd - flush cache over queue item
 * @ep_num:	Endpoint number
 *
 * This function flushes cache over qTD pair for particular endpoint.
 */
static void ci_flush_qtd(int ep_num)
{
	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
	const uint32_t start = (uint32_t)item;
	const uint32_t end = start + 2 * ILIST_ENT_SZ;

	flush_dcache_range(start, end);
}

/**
 * ci_invalidate_qtd - invalidate cache over queue item
 * @ep_num:	Endpoint number
 *
 * This function invalidates cache over qTD pair for particular endpoint.
 */
static void ci_invalidate_qtd(int ep_num)
{
	struct ept_queue_item *item = ci_get_qtd(ep_num, 0);
	const uint32_t start = (uint32_t)item;
	const uint32_t end = start + 2 * ILIST_ENT_SZ;

	invalidate_dcache_range(start, end);
}

static struct usb_request *
ci_ep_alloc_request(struct usb_ep *ep, unsigned int gfp_flags)
{
	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
	int num;
	struct ci_req *ci_req;

	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	if (num == 0 && controller.ep0_req)
		return &controller.ep0_req->req;

	ci_req = calloc(1, sizeof(*ci_req));
	if (!ci_req)
		return NULL;

	INIT_LIST_HEAD(&ci_req->queue);

	if (num == 0)
		controller.ep0_req = ci_req;

	return &ci_req->req;
}

static void ci_ep_free_request(struct usb_ep *ep, struct usb_request *req)
{
	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
	struct ci_req *ci_req = container_of(req, struct ci_req, req);
	int num;

	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	if (num == 0) {
		if (!controller.ep0_req)
			return;
		controller.ep0_req = 0;
	}

	if (ci_req->b_buf)
		free(ci_req->b_buf);
	free(ci_req);
}

static void ep_enable(int num, int in, int maxpacket)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	unsigned n;

	n = readl(&udc->epctrl[num]);
	if (in)
		n |= (CTRL_TXE | CTRL_TXR | CTRL_TXT_BULK);
	else
		n |= (CTRL_RXE | CTRL_RXR | CTRL_RXT_BULK);

	if (num != 0) {
		struct ept_queue_head *head = ci_get_qh(num, in);

		head->config = CONFIG_MAX_PKT(maxpacket) | CONFIG_ZLT;
		ci_flush_qh(num);
	}
	writel(n, &udc->epctrl[num]);
}

static int ci_ep_enable(struct usb_ep *ep,
		const struct usb_endpoint_descriptor *desc)
{
	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
	int num, in;
	num = desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
	ci_ep->desc = desc;

	if (num) {
		int max = get_unaligned_le16(&desc->wMaxPacketSize);

		if ((max > 64) && (controller.gadget.speed == USB_SPEED_FULL))
			max = 64;
		if (ep->maxpacket != max) {
			DBG("%s: from %d to %d\n", __func__,
			    ep->maxpacket, max);
			ep->maxpacket = max;
		}
	}
	ep_enable(num, in, ep->maxpacket);
	DBG("%s: num=%d maxpacket=%d\n", __func__, num, ep->maxpacket);
	return 0;
}

static int ci_ep_disable(struct usb_ep *ep)
{
	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);

	ci_ep->desc = NULL;
	return 0;
}

static int ci_bounce(struct ci_req *ci_req, int in)
{
	struct usb_request *req = &ci_req->req;
	uint32_t addr = (uint32_t)req->buf;
	uint32_t hwaddr;
	uint32_t aligned_used_len;

	/* Input buffer address is not aligned. */
	if (addr & (ARCH_DMA_MINALIGN - 1))
		goto align;

	/* Input buffer length is not aligned. */
	if (req->length & (ARCH_DMA_MINALIGN - 1))
		goto align;

	/* The buffer is well aligned, only flush cache. */
	ci_req->hw_len = req->length;
	ci_req->hw_buf = req->buf;
	goto flush;

align:
	if (ci_req->b_buf && req->length > ci_req->b_len) {
		free(ci_req->b_buf);
		ci_req->b_buf = 0;
	}
	if (!ci_req->b_buf) {
		ci_req->b_len = roundup(req->length, ARCH_DMA_MINALIGN);
		ci_req->b_buf = memalign(ARCH_DMA_MINALIGN, ci_req->b_len);
		if (!ci_req->b_buf)
			return -ENOMEM;
	}
	ci_req->hw_len = ci_req->b_len;
	ci_req->hw_buf = ci_req->b_buf;

	if (in)
		memcpy(ci_req->hw_buf, req->buf, req->length);

flush:
	hwaddr = (uint32_t)ci_req->hw_buf;
	aligned_used_len = roundup(req->length, ARCH_DMA_MINALIGN);
	flush_dcache_range(hwaddr, hwaddr + aligned_used_len);

	return 0;
}

static void ci_debounce(struct ci_req *ci_req, int in)
{
	struct usb_request *req = &ci_req->req;
	uint32_t addr = (uint32_t)req->buf;
	uint32_t hwaddr = (uint32_t)ci_req->hw_buf;
	uint32_t aligned_used_len;

	if (in)
		return;

	aligned_used_len = roundup(req->actual, ARCH_DMA_MINALIGN);
	invalidate_dcache_range(hwaddr, hwaddr + aligned_used_len);

	if (addr == hwaddr)
		return; /* not a bounce */

	memcpy(req->buf, ci_req->hw_buf, req->actual);
}

static void ci_ep_submit_next_request(struct ci_ep *ci_ep)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	struct ept_queue_item *item;
	struct ept_queue_head *head;
	int bit, num, len, in;
	struct ci_req *ci_req;

	ci_ep->req_primed = true;

	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
	item = ci_get_qtd(num, in);
	head = ci_get_qh(num, in);

	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
	len = ci_req->req.length;

	item->info = INFO_BYTES(len) | INFO_ACTIVE;
	item->page0 = (uint32_t)ci_req->hw_buf;
	item->page1 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x1000;
	item->page2 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x2000;
	item->page3 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x3000;
	item->page4 = ((uint32_t)ci_req->hw_buf & 0xfffff000) + 0x4000;

	head->next = (unsigned) item;
	head->info = 0;

	/*
	 * When sending the data for an IN transaction, the attached host
	 * knows that all data for the IN is sent when one of the following
	 * occurs:
	 * a) A zero-length packet is transmitted.
	 * b) A packet with length that isn't an exact multiple of the ep's
	 *    maxpacket is transmitted.
	 * c) Enough data is sent to exactly fill the host's maximum expected
	 *    IN transaction size.
	 *
	 * One of these conditions MUST apply at the end of an IN transaction,
	 * or the transaction will not be considered complete by the host. If
	 * none of (a)..(c) already applies, then we must force (a) to apply
	 * by explicitly sending an extra zero-length packet.
	 */
	/*  IN    !a     !b                              !c */
	if (in && len && !(len % ci_ep->ep.maxpacket) && ci_req->req.zero) {
		/*
		 * Each endpoint has 2 items allocated, even though typically
		 * only 1 is used at a time since either an IN or an OUT but
		 * not both is queued. For an IN transaction, item currently
		 * points at the second of these items, so we know that we
		 * can use the other to transmit the extra zero-length packet.
		 */
		struct ept_queue_item *other_item = ci_get_qtd(num, 0);
		item->next = (unsigned)other_item;
		item = other_item;
		item->info = INFO_ACTIVE;
	}

	item->next = TERMINATE;
	item->info |= INFO_IOC;

	ci_flush_qtd(num);

	DBG("ept%d %s queue len %x, req %p, buffer %p\n",
	    num, in ? "in" : "out", len, ci_req, ci_req->hw_buf);
	ci_flush_qh(num);

	if (in)
		bit = EPT_TX(num);
	else
		bit = EPT_RX(num);

	writel(bit, &udc->epprime);
}

static int ci_ep_queue(struct usb_ep *ep,
		struct usb_request *req, gfp_t gfp_flags)
{
	struct ci_ep *ci_ep = container_of(ep, struct ci_ep, ep);
	struct ci_req *ci_req = container_of(req, struct ci_req, req);
	int in, ret;
	int __maybe_unused num;

	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;

	if (!num && ci_ep->req_primed) {
		/*
		 * The flipping of ep0 between IN and OUT relies on
		 * ci_ep_queue consuming the current IN/OUT setting
		 * immediately. If this is deferred to a later point when the
		 * req is pulled out of ci_req->queue, then the IN/OUT setting
		 * may have been changed since the req was queued, and state
		 * will get out of sync. This condition doesn't occur today,
		 * but could if bugs were introduced later, and this error
		 * check will save a lot of debugging time.
		 */
		printf("%s: ep0 transaction already in progress\n", __func__);
		return -EPROTO;
	}

	ret = ci_bounce(ci_req, in);
	if (ret)
		return ret;

	DBG("ept%d %s pre-queue req %p, buffer %p\n",
	    num, in ? "in" : "out", ci_req, ci_req->hw_buf);
	list_add_tail(&ci_req->queue, &ci_ep->queue);

	if (!ci_ep->req_primed)
		ci_ep_submit_next_request(ci_ep);

	return 0;
}

static void flip_ep0_direction(void)
{
	if (ep0_desc.bEndpointAddress == USB_DIR_IN) {
		DBG("%s: Flipping ep0 to OUT\n", __func__);
		ep0_desc.bEndpointAddress = 0;
	} else {
		DBG("%s: Flipping ep0 to IN\n", __func__);
		ep0_desc.bEndpointAddress = USB_DIR_IN;
	}
}

static void handle_ep_complete(struct ci_ep *ci_ep)
{
	struct ept_queue_item *item;
	int num, in, len;
	struct ci_req *ci_req;

	num = ci_ep->desc->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK;
	in = (ci_ep->desc->bEndpointAddress & USB_DIR_IN) != 0;
	item = ci_get_qtd(num, in);
	ci_invalidate_qtd(num);

	len = (item->info >> 16) & 0x7fff;
	if (item->info & 0xff)
		printf("EP%d/%s FAIL info=%x pg0=%x\n",
		       num, in ? "in" : "out", item->info, item->page0);

	ci_req = list_first_entry(&ci_ep->queue, struct ci_req, queue);
	list_del_init(&ci_req->queue);
	ci_ep->req_primed = false;

	if (!list_empty(&ci_ep->queue))
		ci_ep_submit_next_request(ci_ep);

	ci_req->req.actual = ci_req->req.length - len;
	ci_debounce(ci_req, in);

	DBG("ept%d %s req %p, complete %x\n",
	    num, in ? "in" : "out", ci_req, len);
	if (num != 0 || controller.ep0_data_phase)
		ci_req->req.complete(&ci_ep->ep, &ci_req->req);
	if (num == 0 && controller.ep0_data_phase) {
		/*
		 * Data Stage is complete, so flip ep0 dir for Status Stage,
		 * which always transfers a packet in the opposite direction.
		 */
		DBG("%s: flip ep0 dir for Status Stage\n", __func__);
		flip_ep0_direction();
		controller.ep0_data_phase = false;
		ci_req->req.length = 0;
		usb_ep_queue(&ci_ep->ep, &ci_req->req, 0);
	}
}

#define SETUP(type, request) (((type) << 8) | (request))

static void handle_setup(void)
{
	struct ci_ep *ci_ep = &controller.ep[0];
	struct ci_req *ci_req;
	struct usb_request *req;
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	struct ept_queue_head *head;
	struct usb_ctrlrequest r;
	int status = 0;
	int num, in, _num, _in, i;
	char *buf;

	ci_req = controller.ep0_req;
	req = &ci_req->req;
	head = ci_get_qh(0, 0);	/* EP0 OUT */

	ci_invalidate_qh(0);
	memcpy(&r, head->setup_data, sizeof(struct usb_ctrlrequest));
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
	writel(EPT_RX(0), &udc->epsetupstat);
#else
	writel(EPT_RX(0), &udc->epstat);
#endif
	DBG("handle setup %s, %x, %x index %x value %x length %x\n",
	    reqname(r.bRequest), r.bRequestType, r.bRequest, r.wIndex,
	    r.wValue, r.wLength);

	/* Set EP0 dir for Data Stage based on Setup Stage data */
	if (r.bRequestType & USB_DIR_IN) {
		DBG("%s: Set ep0 to IN for Data Stage\n", __func__);
		ep0_desc.bEndpointAddress = USB_DIR_IN;
	} else {
		DBG("%s: Set ep0 to OUT for Data Stage\n", __func__);
		ep0_desc.bEndpointAddress = 0;
	}
	if (r.wLength) {
		controller.ep0_data_phase = true;
	} else {
		/* 0 length -> no Data Stage. Flip dir for Status Stage */
		DBG("%s: 0 length: flip ep0 dir for Status Stage\n", __func__);
		flip_ep0_direction();
		controller.ep0_data_phase = false;
	}

	list_del_init(&ci_req->queue);
	ci_ep->req_primed = false;

	switch (SETUP(r.bRequestType, r.bRequest)) {
	case SETUP(USB_RECIP_ENDPOINT, USB_REQ_CLEAR_FEATURE):
		_num = r.wIndex & 15;
		_in = !!(r.wIndex & 0x80);

		if ((r.wValue == 0) && (r.wLength == 0)) {
			req->length = 0;
			for (i = 0; i < NUM_ENDPOINTS; i++) {
				struct ci_ep *ep = &controller.ep[i];

				if (!ep->desc)
					continue;
				num = ep->desc->bEndpointAddress
						& USB_ENDPOINT_NUMBER_MASK;
				in = (ep->desc->bEndpointAddress
						& USB_DIR_IN) != 0;
				if ((num == _num) && (in == _in)) {
					ep_enable(num, in, ep->ep.maxpacket);
					usb_ep_queue(controller.gadget.ep0,
							req, 0);
					break;
				}
			}
		}
		return;

	case SETUP(USB_RECIP_DEVICE, USB_REQ_SET_ADDRESS):
		/*
		 * write address delayed (will take effect
		 * after the next IN txn)
		 */
		writel((r.wValue << 25) | (1 << 24), &udc->devaddr);
		req->length = 0;
		usb_ep_queue(controller.gadget.ep0, req, 0);
		return;

	case SETUP(USB_DIR_IN | USB_RECIP_DEVICE, USB_REQ_GET_STATUS):
		req->length = 2;
		buf = (char *)req->buf;
		buf[0] = 1 << USB_DEVICE_SELF_POWERED;
		buf[1] = 0;
		usb_ep_queue(controller.gadget.ep0, req, 0);
		return;
	}
	/* pass request up to the gadget driver */
	if (controller.driver)
		status = controller.driver->setup(&controller.gadget, &r);
	else
		status = -ENODEV;

	if (!status)
		return;
	DBG("STALL reqname %s type %x value %x, index %x\n",
	    reqname(r.bRequest), r.bRequestType, r.wValue, r.wIndex);
	writel((1<<16) | (1 << 0), &udc->epctrl[0]);
}

static void stop_activity(void)
{
	int i, num, in;
	struct ept_queue_head *head;
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	writel(readl(&udc->epcomp), &udc->epcomp);
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
	writel(readl(&udc->epsetupstat), &udc->epsetupstat);
#endif
	writel(readl(&udc->epstat), &udc->epstat);
	writel(0xffffffff, &udc->epflush);

	/* error out any pending reqs */
	for (i = 0; i < NUM_ENDPOINTS; i++) {
		if (i != 0)
			writel(0, &udc->epctrl[i]);
		if (controller.ep[i].desc) {
			num = controller.ep[i].desc->bEndpointAddress
				& USB_ENDPOINT_NUMBER_MASK;
			in = (controller.ep[i].desc->bEndpointAddress
				& USB_DIR_IN) != 0;
			head = ci_get_qh(num, in);
			head->info = INFO_ACTIVE;
			ci_flush_qh(num);
		}
	}
}

void udc_irq(void)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	unsigned n = readl(&udc->usbsts);
	writel(n, &udc->usbsts);
	int bit, i, num, in;

	n &= (STS_SLI | STS_URI | STS_PCI | STS_UI | STS_UEI);
	if (n == 0)
		return;

	if (n & STS_URI) {
		DBG("-- reset --\n");
		stop_activity();
	}
	if (n & STS_SLI)
		DBG("-- suspend --\n");

	if (n & STS_PCI) {
		int max = 64;
		int speed = USB_SPEED_FULL;

#ifdef CONFIG_CI_UDC_HAS_HOSTPC
		bit = (readl(&udc->hostpc1_devlc) >> 25) & 3;
#else
		bit = (readl(&udc->portsc) >> 26) & 3;
#endif
		DBG("-- portchange %x %s\n", bit, (bit == 2) ? "High" : "Full");
		if (bit == 2) {
			speed = USB_SPEED_HIGH;
			max = 512;
		}
		controller.gadget.speed = speed;
		for (i = 1; i < NUM_ENDPOINTS; i++) {
			if (controller.ep[i].ep.maxpacket > max)
				controller.ep[i].ep.maxpacket = max;
		}
	}

	if (n & STS_UEI)
		printf("<UEI %x>\n", readl(&udc->epcomp));

	if ((n & STS_UI) || (n & STS_UEI)) {
#ifdef CONFIG_CI_UDC_HAS_HOSTPC
		n = readl(&udc->epsetupstat);
#else
		n = readl(&udc->epstat);
#endif
		if (n & EPT_RX(0))
			handle_setup();

		n = readl(&udc->epcomp);
		if (n != 0)
			writel(n, &udc->epcomp);

		for (i = 0; i < NUM_ENDPOINTS && n; i++) {
			if (controller.ep[i].desc) {
				num = controller.ep[i].desc->bEndpointAddress
					& USB_ENDPOINT_NUMBER_MASK;
				in = (controller.ep[i].desc->bEndpointAddress
						& USB_DIR_IN) != 0;
				bit = (in) ? EPT_TX(num) : EPT_RX(num);
				if (n & bit)
					handle_ep_complete(&controller.ep[i]);
			}
		}
	}
}

int usb_gadget_handle_interrupts(void)
{
	u32 value;
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;

	value = readl(&udc->usbsts);
	if (value)
		udc_irq();

	return value;
}

void udc_disconnect(void)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	/* disable pullup */
	stop_activity();
	writel(USBCMD_FS2, &udc->usbcmd);
	udelay(800);
	if (controller.driver)
		controller.driver->disconnect(&controller.gadget);
}

static int ci_pullup(struct usb_gadget *gadget, int is_on)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;
	if (is_on) {
		/* RESET */
		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RST, &udc->usbcmd);
		udelay(200);

		writel((unsigned)controller.epts, &udc->epinitaddr);

		/* select DEVICE mode */
		writel(USBMODE_DEVICE, &udc->usbmode);

#if !defined(CONFIG_USB_GADGET_DUALSPEED)
		/* Port force Full-Speed Connect */
		setbits_le32(&udc->portsc, PFSC);
#endif

		writel(0xffffffff, &udc->epflush);

		/* Turn on the USB connection by enabling the pullup resistor */
		writel(USBCMD_ITC(MICRO_8FRAME) | USBCMD_RUN, &udc->usbcmd);
	} else {
		udc_disconnect();
	}

	return 0;
}

static int ci_udc_probe(void)
{
	struct ept_queue_head *head;
	int i;

	const int num = 2 * NUM_ENDPOINTS;

	const int eplist_min_align = 4096;
	const int eplist_align = roundup(eplist_min_align, ARCH_DMA_MINALIGN);
	const int eplist_raw_sz = num * sizeof(struct ept_queue_head);
	const int eplist_sz = roundup(eplist_raw_sz, ARCH_DMA_MINALIGN);

	/* The QH list must be aligned to 4096 bytes. */
	controller.epts = memalign(eplist_align, eplist_sz);
	if (!controller.epts)
		return -ENOMEM;
	memset(controller.epts, 0, eplist_sz);

	controller.items_mem = memalign(ILIST_ALIGN, ILIST_SZ);
	if (!controller.items_mem) {
		free(controller.epts);
		return -ENOMEM;
	}
	memset(controller.items_mem, 0, ILIST_SZ);

	for (i = 0; i < 2 * NUM_ENDPOINTS; i++) {
		/*
		 * Configure QH for each endpoint. The structure of the QH list
		 * is such that each two subsequent fields, N and N+1 where N is
		 * even, in the QH list represent QH for one endpoint. The Nth
		 * entry represents OUT configuration and the N+1th entry does
		 * represent IN configuration of the endpoint.
		 */
		head = controller.epts + i;
		if (i < 2)
			head->config = CONFIG_MAX_PKT(EP0_MAX_PACKET_SIZE)
				| CONFIG_ZLT | CONFIG_IOS;
		else
			head->config = CONFIG_MAX_PKT(EP_MAX_PACKET_SIZE)
				| CONFIG_ZLT;
		head->next = TERMINATE;
		head->info = 0;

		if (i & 1) {
			ci_flush_qh(i / 2);
			ci_flush_qtd(i / 2);
		}
	}

	INIT_LIST_HEAD(&controller.gadget.ep_list);

	/* Init EP 0 */
	memcpy(&controller.ep[0].ep, &ci_ep_init[0], sizeof(*ci_ep_init));
	controller.ep[0].desc = &ep0_desc;
	INIT_LIST_HEAD(&controller.ep[0].queue);
	controller.ep[0].req_primed = false;
	controller.gadget.ep0 = &controller.ep[0].ep;
	INIT_LIST_HEAD(&controller.gadget.ep0->ep_list);

	/* Init EP 1..n */
	for (i = 1; i < NUM_ENDPOINTS; i++) {
		memcpy(&controller.ep[i].ep, &ci_ep_init[1],
		       sizeof(*ci_ep_init));
		INIT_LIST_HEAD(&controller.ep[i].queue);
		controller.ep[i].req_primed = false;
		list_add_tail(&controller.ep[i].ep.ep_list,
			      &controller.gadget.ep_list);
	}

	ci_ep_alloc_request(&controller.ep[0].ep, 0);
	if (!controller.ep0_req) {
		free(controller.items_mem);
		free(controller.epts);
		return -ENOMEM;
	}

	return 0;
}

int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
	int ret;

	if (!driver)
		return -EINVAL;
	if (!driver->bind || !driver->setup || !driver->disconnect)
		return -EINVAL;
	if (driver->speed != USB_SPEED_FULL && driver->speed != USB_SPEED_HIGH)
		return -EINVAL;

	ret = usb_lowlevel_init(0, USB_INIT_DEVICE, (void **)&controller.ctrl);
	if (ret)
		return ret;

	ret = ci_udc_probe();
#if defined(CONFIG_USB_EHCI_MX6) || defined(CONFIG_USB_EHCI_MXS)
	/*
	 * FIXME: usb_lowlevel_init()->ehci_hcd_init() should be doing all
	 * HW-specific initialization, e.g. ULPI-vs-UTMI PHY selection
	 */
	if (!ret) {
		struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;

		/* select ULPI phy */
		writel(PTS(PTS_ENABLE) | PFSC, &udc->portsc);
	}
#endif

	ret = driver->bind(&controller.gadget);
	if (ret) {
		DBG("driver->bind() returned %d\n", ret);
		return ret;
	}
	controller.driver = driver;

	return 0;
}

int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
	udc_disconnect();

	driver->unbind(&controller.gadget);
	controller.driver = NULL;

	ci_ep_free_request(&controller.ep[0].ep, &controller.ep0_req->req);
	free(controller.items_mem);
	free(controller.epts);

	return 0;
}

bool dfu_usb_get_reset(void)
{
	struct ci_udc *udc = (struct ci_udc *)controller.ctrl->hcor;

	return !!(readl(&udc->usbsts) & STS_URI);
}