cmd_trab.c 20.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
/*
 * (C) Copyright 2003
 * Martin Krause, TQ-Systems GmbH, martin.krause@tqs.de.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

#undef DEBUG

#include <common.h>
#include <command.h>
#include <s3c2400.h>
#include <rtc.h>

/*
 * TRAB board specific commands. Especially commands for burn-in and function
 * test.
 */
#if (CONFIG_COMMANDS & CFG_CMD_BSP)

/* limits for valid range of VCC5V in mV  */
#define VCC5V_MIN       4500
#define VCC5V_MAX       5500

/*
 * Test strings for EEPROM test. Length of string 2 must not exceed length of
 * string 1. Otherwise a buffer overrun could occur!
 */
#define EEPROM_TEST_STRING_1    "0987654321 :tset a si siht"
#define EEPROM_TEST_STRING_2    "this is a test: 1234567890"

/*
 * min/max limits for valid contact temperature during burn in test (in
 * degree Centigrade * 100)
 */
#define MIN_CONTACT_TEMP        -1000
#define MAX_CONTACT_TEMP        +9000

/* blinking frequency of status LED */
#define LED_BLINK_FREQ          5

/* delay time between burn in cycles in seconds */
#ifndef BURN_IN_CYCLE_DELAY     /* if not defined in include/configs/trab.h */
#define BURN_IN_CYCLE_DELAY     5
#endif

/* physical SRAM parameters */
#define SRAM_ADDR       0x02000000 /* GCS1 */
#define SRAM_SIZE       0x40000 /* 256 kByte */

/* CPLD-Register for controlling TRAB hardware functions */
#define CPLD_BUTTONS            ((volatile unsigned long *)0x04020000)
#define CPLD_FILL_LEVEL         ((volatile unsigned long *)0x04008000)
#define CPLD_ROTARY_SWITCH      ((volatile unsigned long *)0x04018000)
#define CPLD_RS485_RE           ((volatile unsigned long *)0x04028000)

/* I2C EEPROM device address */
#define I2C_EEPROM_DEV_ADDR     0x54

/* EEPROM address map */
#define EE_ADDR_TEST                    192
#define EE_ADDR_MAX_CYCLES              256
#define EE_ADDR_STATUS                  258
#define EE_ADDR_PASS_CYCLES             259
#define EE_ADDR_FIRST_ERROR_CYCLE       261
#define EE_ADDR_FIRST_ERROR_NUM         263
#define EE_ADDR_FIRST_ERROR_NAME        264
#define EE_ADDR_ACT_CYCLE               280

/* Bit definitions for ADCCON */
#define ADC_ENABLE_START     0x1
#define ADC_READ_START       0x2
#define ADC_STDBM            0x4
#define ADC_INP_AIN0         (0x0 << 3)
#define ADC_INP_AIN1         (0x1 << 3)
#define ADC_INP_AIN2         (0x2 << 3)
#define ADC_INP_AIN3         (0x3 << 3)
#define ADC_INP_AIN4         (0x4 << 3)
#define ADC_INP_AIN5         (0x5 << 3)
#define ADC_INP_AIN6         (0x6 << 3)
#define ADC_INP_AIN7         (0x7 << 3)
#define ADC_PRSCEN           0x4000
#define ADC_ECFLG            0x800

/* misc */

/* externals */
extern int memory_post_tests (unsigned long start, unsigned long size);
extern int i2c_write (uchar, uint, int , uchar* , int);
extern int i2c_read (uchar, uint, int , uchar* , int);
extern void tsc2000_reg_init (void);
extern s32 tsc2000_contact_temp (void);
extern void spi_init(void);

/* function declarations */
int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);
int i2c_write_multiple (uchar chip, uint addr, int alen,
			uchar *buffer, int len);
int i2c_read_multiple (uchar chip, uint addr, int alen,
			uchar *buffer, int len);
int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]);

/* helper functions */
static void adc_init (void);
static int adc_read (unsigned int channel);
static int read_dip (void);
static int read_vcc5v (void);
static int test_dip (void);
static int test_vcc5v (void);
static int test_rotary_switch (void);
static int test_sram (void);
static int test_eeprom (void);
static int test_contact_temp (void);
static void led_set (unsigned int);
static void led_blink (void);
static void led_init (void);
static void sdelay (unsigned long seconds); /* delay in seconds */
static int dummy (void);
static int read_max_cycles(void);
static void test_function_table_init (void);
static void global_vars_init (void);
static int global_vars_write_to_eeprom (void);

/* globals */
u16 max_cycles;
u8 status;
u16 pass_cycles;
u16 first_error_cycle;
u8 first_error_num;
unsigned char first_error_name[16];
u16 act_cycle;

typedef struct test_function_s {
	unsigned char *name;
	int (*pf)(void);
} test_function_t;

/* max number of Burn In Functions */
#define BIF_MAX 6

/* table with burn in functions */
test_function_t test_function[BIF_MAX];


int do_burn_in (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int i;
	int cycle_status;

	if (argc > 1) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	led_init ();
	global_vars_init ();
	test_function_table_init ();
	spi_init ();

	if (global_vars_write_to_eeprom () != 0) {
		printf ("%s: error writing global_vars to eeprom\n",
			__FUNCTION__);
		return (1);
	}

	if (read_max_cycles () != 0) {
		printf ("%s: error reading max_cycles from eeprom\n",
			__FUNCTION__);
		return (1);
	}

	if (max_cycles == 0) {
		printf ("%s: error, burn in max_cycles = 0\n", __FUNCTION__);
		return (1);
	}

	status = 0;
	for (act_cycle = 1; act_cycle <= max_cycles; act_cycle++) {

		cycle_status = 0;

		/*
		 * avoid timestamp overflow problem after about 68 minutes of
		 * udelay() time.
		 */
		reset_timer_masked ();
		for (i = 0; i < BIF_MAX; i++) {

			/* call test function */
			if ((*test_function[i].pf)() != 0) {
				printf ("error in %s test\n",
					test_function[i].name);

				/* is it the first error? */
				if (status == 0) {
					status = 1;
					first_error_cycle = act_cycle;

					/* do not use error_num 0 */
					first_error_num = i+1;
					strncpy (first_error_name,
						 test_function[i].name,
						 sizeof (first_error_name));
					led_set (0);
				}
				cycle_status = 1;
			}
		}
		/* were all tests of actual cycle OK? */
		if (cycle_status == 0)
			pass_cycles++;

		/* set status LED if no error is occoured since yet */
		if (status == 0)
			led_set (1);

		printf ("%s: cycle %d finished\n", __FUNCTION__, act_cycle);

		/* pause between cycles */
		sdelay (BURN_IN_CYCLE_DELAY);
	}

	if (global_vars_write_to_eeprom () != 0) {
		led_set (0);
		printf ("%s: error writing global_vars to eeprom\n",
			__FUNCTION__);
		status = 1;
	}

	if (status == 0) {
		led_blink ();   /* endless loop!! */
		return (0);
	} else {
		led_set (0);
		return (1);
	}
}

U_BOOT_CMD(
	burn_in,	1,	1,	do_burn_in,
	"burn_in - start burn-in test application on TRAB\n",
	"\n"
	"    -  start burn-in test application\n"
	"       The burn-in test could took a while to finish!\n"
	"       The content of the onboard EEPROM is modified!\n"
);


int do_dip (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int i, dip;

	if (argc > 1) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	if ((dip = read_dip ()) == -1) {
		return 1;
	}

	for (i = 0; i < 4; i++) {
		if ((dip & (1 << i)) == 0)
			printf("0");
		else
			printf("1");
	}
	printf("\n");

	return 0;
}

U_BOOT_CMD(
	dip,	1,	1,	do_dip,
	"dip     - read dip switch on TRAB\n",
	"\n"
	"    - read state of dip switch (S1) on TRAB board\n"
	"      read sequence: 1-2-3-4; ON=1; OFF=0; e.g.: \"0100\"\n"
);


int do_vcc5v (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int vcc5v;

	if (argc > 1) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	if ((vcc5v = read_vcc5v ()) == -1) {
		return (1);
	}

	printf ("%d", (vcc5v / 1000));
	printf (".%d", (vcc5v % 1000) / 100);
	printf ("%d V\n", (vcc5v % 100) / 10) ;

	return 0;
}

U_BOOT_CMD(
	vcc5v,	1,	1,	do_vcc5v,
	"vcc5v   - read VCC5V on TRAB\n",
	"\n"
	"    - read actual value of voltage VCC5V\n"
);


int do_contact_temp (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int contact_temp;

	if (argc > 1) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	spi_init ();

	contact_temp = tsc2000_contact_temp();
	printf ("%d degree C * 100\n", contact_temp) ;

	return 0;
}

U_BOOT_CMD(
	c_temp,	1,	1,	do_contact_temp,
	"c_temp  - read contact temperature on TRAB\n",
	"\n"
	"    -  reads the onboard temperature (=contact temperature)\n"
);


int do_burn_in_status (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	if (argc > 1) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
				(unsigned char*) &status, 1)) {
		return (1);
	}
	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
				(unsigned char*) &pass_cycles, 2)) {
		return (1);
	}
	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
				1, (unsigned char*) &first_error_cycle, 2)) {
		return (1);
	}
	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
				1, (unsigned char*) &first_error_num, 1)) {
		return (1);
	}
	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
			       1, first_error_name,
			       sizeof (first_error_name))) {
		return (1);
	}

	if (read_max_cycles () != 0) {
		return (1);
	}

	printf ("max_cycles = %d\n", max_cycles);
	printf ("status = %d\n", status);
	printf ("pass_cycles = %d\n", pass_cycles);
	printf ("first_error_cycle = %d\n", first_error_cycle);
	printf ("first_error_num = %d\n", first_error_num);
	printf ("first_error_name = %.*s\n",(int) sizeof(first_error_name),
		first_error_name);

	return 0;
}

U_BOOT_CMD(
	bis,	1,	1,	do_burn_in_status,
	"bis     - print burn in status on TRAB\n",
	"\n"
	"    -  prints the status variables of the last burn in test\n"
	"       stored in the onboard EEPROM on TRAB board\n"
);

static int read_dip (void)
{
	unsigned int result = 0;
	int adc_val;
	int i;

	/***********************************************************
	 DIP switch connection (according to wa4-cpu.sp.301.pdf, page 3):
	   SW1 - AIN4
	   SW2 - AIN5
	   SW3 - AIN6
	   SW4 - AIN7

	   "On" DIP switch position short-circuits the voltage from
	   the input channel (i.e. '0' conversion result means "on").
	*************************************************************/

	for (i = 7; i > 3; i--) {

		if ((adc_val = adc_read (i)) == -1) {
			printf ("%s: Channel %d could not be read\n",
				 __FUNCTION__, i);
			return (-1);
		}

		/*
		 * Input voltage (switch open) is 1.8 V.
		 * (Vin_High/VRef)*adc_res = (1,8V/2,5V)*1023) = 736
		 * Set trigger at halve that value.
		 */
		if (adc_val < 368)
			result |= (1 << (i-4));
	}
	return (result);
}


static int read_vcc5v (void)
{
	s32 result;

	/* VCC5V is connected to channel 2 */

	if ((result = adc_read (2)) == -1) {
		printf ("%s: VCC5V could not be read\n", __FUNCTION__);
		return (-1);
	}
	/*
	 * Calculate voltage value. Split in two parts because there is no
	 * floating point support.  VCC5V is connected over an resistor divider:
	 * VCC5V=ADCval*2,5V/1023*(10K+30K)/10K.
	 */
	result = result * 10 * 1000 / 1023; /* result in mV */

	return (result);
}


static int test_dip (void)
{
	static int first_run = 1;
	static int first_dip;

	if (first_run) {
		if ((first_dip = read_dip ()) == -1) {
			return (1);
		}
		first_run = 0;
		debug ("%s: first_dip=%d\n", __FUNCTION__, first_dip);
	}
	if (first_dip != read_dip ()) {
		return (1);
	} else {
		return (0);
	}
}


static int test_vcc5v (void)
{
	int vcc5v;

	if ((vcc5v = read_vcc5v ()) == -1) {
		return (1);
	}

	if ((vcc5v > VCC5V_MAX) || (vcc5v < VCC5V_MIN)) {
		printf ("%s: vcc5v[V/100]=%d\n", __FUNCTION__, vcc5v);
		return (1);
	} else {
		return (0);
	}
}


static int test_rotary_switch (void)
{
	static int first_run = 1;
	static int first_rs;

	if (first_run) {
		/*
		 * clear bits in CPLD, because they have random values after
		 * power-up or reset.
		 */
		*CPLD_ROTARY_SWITCH |= (1 << 16) | (1 << 17);

		first_rs = ((*CPLD_ROTARY_SWITCH >> 16) & 0x7);
		first_run = 0;
		debug ("%s: first_rs=%d\n", __FUNCTION__, first_rs);
	}

	if (first_rs != ((*CPLD_ROTARY_SWITCH >> 16) & 0x7)) {
		return (1);
	} else {
		return (0);
	}
}


static int test_sram (void)
{
	return (memory_post_tests (SRAM_ADDR, SRAM_SIZE));
}


static int test_eeprom (void)
{
	unsigned char temp[sizeof (EEPROM_TEST_STRING_1)];
	int result = 0;

	/* write test string 1, read back and verify */
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
				EEPROM_TEST_STRING_1,
				sizeof (EEPROM_TEST_STRING_1))) {
		return (1);
	}

	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
			       temp, sizeof (EEPROM_TEST_STRING_1))) {
		return (1);
	}

	if (strcmp (temp, EEPROM_TEST_STRING_1) != 0) {
		result = 1;
		printf ("%s: error; read_str = \"%s\"\n", __FUNCTION__, temp);
	}

	/* write test string 2, read back and verify */
	if (result == 0) {
		if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
					EEPROM_TEST_STRING_2,
					sizeof (EEPROM_TEST_STRING_2))) {
			return (1);
		}

		if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_TEST, 1,
				       temp, sizeof (EEPROM_TEST_STRING_2))) {
			return (1);
		}

		if (strcmp (temp, EEPROM_TEST_STRING_2) != 0) {
			result = 1;
			printf ("%s: error; read str = \"%s\"\n",
				__FUNCTION__, temp);
		}
	}
	return (result);
}


static int test_contact_temp (void)
{
	int contact_temp;

	contact_temp = tsc2000_contact_temp ();

	if ((contact_temp < MIN_CONTACT_TEMP)
	    || (contact_temp > MAX_CONTACT_TEMP))
		return (1);
	else
		return (0);
}


int i2c_write_multiple (uchar chip, uint addr, int alen,
			uchar *buffer, int len)
{
	int i;

	if (alen != 1) {
		printf ("%s: addr len other than 1 not supported\n",
			 __FUNCTION__);
		return (1);
	}

	for (i = 0; i < len; i++) {
		if (i2c_write (chip, addr+i, alen, buffer+i, 1)) {
			printf ("%s: could not write to i2c device %d"
				 ", addr %d\n", __FUNCTION__, chip, addr);
			return (1);
		}
#if 0
		printf ("chip=%#x, addr+i=%#x+%d=%p, alen=%d, *buffer+i="
			"%#x+%d=%p=\"%.1s\"\n", chip, addr, i, addr+i,
			alen, buffer, i, buffer+i, buffer+i);
#endif

		udelay (30000);
	}
	return (0);
}


int i2c_read_multiple ( uchar chip, uint addr, int alen,
			uchar *buffer, int len)
{
	int i;

	if (alen != 1) {
		printf ("%s: addr len other than 1 not supported\n",
			 __FUNCTION__);
		return (1);
	}

	for (i = 0; i < len; i++) {
		if (i2c_read (chip, addr+i, alen, buffer+i, 1)) {
			printf ("%s: could not read from i2c device %#x"
				 ", addr %d\n", __FUNCTION__, chip, addr);
			return (1);
		}
	}
	return (0);
}


static int adc_read (unsigned int channel)
{
	int j = 1000; /* timeout value for wait loop in us */
	int result;
	S3C2400_ADC *padc;

	padc = S3C2400_GetBase_ADC();
	channel &= 0x7;

	adc_init ();

	padc->ADCCON &= ~ADC_STDBM; /* select normal mode */
	padc->ADCCON &= ~(0x7 << 3); /* clear the channel bits */
	padc->ADCCON |= ((channel << 3) | ADC_ENABLE_START);

	while (j--) {
		if ((padc->ADCCON & ADC_ENABLE_START) == 0)
			break;
		udelay (1);
	}

	if (j == 0) {
		printf("%s: ADC timeout\n", __FUNCTION__);
		padc->ADCCON |= ADC_STDBM; /* select standby mode */
		return -1;
	}

	result = padc->ADCDAT & 0x3FF;

	padc->ADCCON |= ADC_STDBM; /* select standby mode */

	debug ("%s: channel %d, result[DIGIT]=%d\n", __FUNCTION__,
	       (padc->ADCCON >> 3) & 0x7, result);

	/*
	 * Wait for ADC to be ready for next conversion. This delay value was
	 * estimated, because the datasheet does not specify a value.
	 */
	udelay (1000);

	return (result);
}


static void adc_init (void)
{
	S3C2400_ADC *padc;

	padc = S3C2400_GetBase_ADC();

	padc->ADCCON &= ~(0xff << 6); /* clear prescaler bits */
	padc->ADCCON |= ((65 << 6) | ADC_PRSCEN); /* set prescaler */

	/*
	 * Wait some time to avoid problem with very first call of
	 * adc_read(). Without this delay, sometimes the first read
	 * adc value is 0. Perhaps because the adjustment of prescaler
	 * takes some clock cycles?
	 */
	udelay (1000);

	return;
}


static void led_set (unsigned int state)
{
	S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();

	led_init ();

	switch (state) {
	case 0: /* turn LED off */
		gpio->PADAT |= (1 << 12);
		break;
	case 1: /* turn LED on */
		gpio->PADAT &= ~(1 << 12);
		break;
	default:
		break;
	}
}

static void led_blink (void)
{
	led_init ();

	/* blink LED. This function does not return! */
	while (1) {
		reset_timer_masked ();
		led_set (1);
		udelay (1000000 / LED_BLINK_FREQ / 2);
		led_set (0);
		udelay (1000000 / LED_BLINK_FREQ / 2);
	}
}


static void led_init (void)
{
	S3C24X0_GPIO * const gpio = S3C24X0_GetBase_GPIO();

	/* configure GPA12 as output and set to High -> LED off */
	gpio->PACON &= ~(1 << 12);
	gpio->PADAT |= (1 << 12);
}


static void sdelay (unsigned long seconds)
{
	unsigned long i;

	for (i = 0; i < seconds; i++) {
		udelay (1000000);
	}
}


static int global_vars_write_to_eeprom (void)
{
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_STATUS, 1,
				(unsigned char*) &status, 1)) {
		return (1);
	}
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_PASS_CYCLES, 1,
				(unsigned char*) &pass_cycles, 2)) {
		return (1);
	}
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_CYCLE,
				1, (unsigned char*) &first_error_cycle, 2)) {
		return (1);
	}
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NUM,
				1, (unsigned char*) &first_error_num, 1)) {
		return (1);
	}
	if (i2c_write_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_FIRST_ERROR_NAME,
				1, first_error_name,
				sizeof(first_error_name))) {
		return (1);
	}
	return (0);
}

static void global_vars_init (void)
{
	status                  = 1; /* error */
	pass_cycles             = 0;
	first_error_cycle       = 0;
	first_error_num         = 0;
	first_error_name[0]     = '\0';
	act_cycle               = 0;
	max_cycles              = 0;
}


static void test_function_table_init (void)
{
	int i;

	for (i = 0; i < BIF_MAX; i++)
		test_function[i].pf = dummy;

	/*
	 * the length of "name" must not exceed 16, including the '\0'
	 * termination. See also the EEPROM address map.
	 */
	test_function[0].pf = test_dip;
	test_function[0].name = "dip";

	test_function[1].pf = test_vcc5v;
	test_function[1].name = "vcc5v";

	test_function[2].pf = test_rotary_switch;
	test_function[2].name = "rotary_switch";

	test_function[3].pf = test_sram;
	test_function[3].name = "sram";

	test_function[4].pf = test_eeprom;
	test_function[4].name = "eeprom";

	test_function[5].pf = test_contact_temp;
	test_function[5].name = "contact_temp";
}


static int read_max_cycles (void)
{
	if (i2c_read_multiple (I2C_EEPROM_DEV_ADDR, EE_ADDR_MAX_CYCLES, 1,
			       (unsigned char *) &max_cycles, 2) != 0) {
		return (1);
	}

	return (0);
}

static int dummy(void)
{
	return (0);
}

int do_temp_log (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int contact_temp;
	int delay = 0;
#if (CONFIG_COMMANDS & CFG_CMD_DATE)
	struct rtc_time tm;
#endif

	if (argc > 2) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	if (argc > 1) {
		delay = simple_strtoul(argv[1], NULL, 10);
	}

	spi_init ();
	while (1) {

#if (CONFIG_COMMANDS & CFG_CMD_DATE)
		rtc_get (&tm);
		printf ("%4d-%02d-%02d %2d:%02d:%02d - ",
			tm.tm_year, tm.tm_mon, tm.tm_mday,
			tm.tm_hour, tm.tm_min, tm.tm_sec);
#endif

		contact_temp = tsc2000_contact_temp();
		printf ("%d\n", contact_temp) ;

		if (delay != 0)
			/*
			 * reset timer to avoid timestamp overflow problem
			 * after about 68 minutes of udelay() time.
			 */
			reset_timer_masked ();
			sdelay (delay);
	}

	return 0;
}

U_BOOT_CMD(
	tlog,	2,	1,	do_temp_log,
	"tlog    - log contact temperature [1/100 C] to console (endlessly)\n",
	"delay\n"
	"    - contact temperature [1/100 C] is printed endlessly to console\n"
	"      <delay> specifies the seconds to wait between two measurements\n"
	"      For each measurment a timestamp is printeted\n"
);

#endif	/* CFG_CMD_BSP */