fsl_i2c.c 16.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
/*
 * Copyright 2006,2009 Freescale Semiconductor, Inc.
 *
 * 2012, Heiko Schocher, DENX Software Engineering, hs@denx.de.
 * Changes for multibus/multiadapter I2C support.
 *
 * SPDX-License-Identifier:	GPL-2.0
 */

#include <common.h>
#include <command.h>
#include <i2c.h>		/* Functional interface */
#include <asm/io.h>
#include <asm/fsl_i2c.h>	/* HW definitions */
#include <dm.h>
#include <mapmem.h>

/* The maximum number of microseconds we will wait until another master has
 * released the bus.  If not defined in the board header file, then use a
 * generic value.
 */
#ifndef CONFIG_I2C_MBB_TIMEOUT
#define CONFIG_I2C_MBB_TIMEOUT	100000
#endif

/* The maximum number of microseconds we will wait for a read or write
 * operation to complete.  If not defined in the board header file, then use a
 * generic value.
 */
#ifndef CONFIG_I2C_TIMEOUT
#define CONFIG_I2C_TIMEOUT	100000
#endif

#define I2C_READ_BIT  1
#define I2C_WRITE_BIT 0

DECLARE_GLOBAL_DATA_PTR;

#ifndef CONFIG_DM_I2C
static const struct fsl_i2c_base *i2c_base[4] = {
	(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C_OFFSET),
#ifdef CONFIG_SYS_FSL_I2C2_OFFSET
	(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C2_OFFSET),
#endif
#ifdef CONFIG_SYS_FSL_I2C3_OFFSET
	(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C3_OFFSET),
#endif
#ifdef CONFIG_SYS_FSL_I2C4_OFFSET
	(struct fsl_i2c_base *)(CONFIG_SYS_IMMR + CONFIG_SYS_FSL_I2C4_OFFSET)
#endif
};
#endif

/* I2C speed map for a DFSR value of 1 */

#ifdef __M68K__
/*
 * Map I2C frequency dividers to FDR and DFSR values
 *
 * This structure is used to define the elements of a table that maps I2C
 * frequency divider (I2C clock rate divided by I2C bus speed) to a value to be
 * programmed into the Frequency Divider Ratio (FDR) and Digital Filter
 * Sampling Rate (DFSR) registers.
 *
 * The actual table should be defined in the board file, and it must be called
 * fsl_i2c_speed_map[].
 *
 * The last entry of the table must have a value of {-1, X}, where X is same
 * FDR/DFSR values as the second-to-last entry.  This guarantees that any
 * search through the array will always find a match.
 *
 * The values of the divider must be in increasing numerical order, i.e.
 * fsl_i2c_speed_map[x+1].divider > fsl_i2c_speed_map[x].divider.
 *
 * For this table, the values are based on a value of 1 for the DFSR
 * register.  See the application note AN2919 "Determining the I2C Frequency
 * Divider Ratio for SCL"
 *
 * ColdFire I2C frequency dividers for FDR values are different from
 * PowerPC. The protocol to use the I2C module is still the same.
 * A different table is defined and are based on MCF5xxx user manual.
 *
 */
static const struct {
	unsigned short divider;
	u8 fdr;
} fsl_i2c_speed_map[] = {
	{20, 32}, {22, 33}, {24, 34}, {26, 35},
	{28, 0}, {28, 36}, {30, 1}, {32, 37},
	{34, 2}, {36, 38}, {40, 3}, {40, 39},
	{44, 4}, {48, 5}, {48, 40}, {56, 6},
	{56, 41}, {64, 42}, {68, 7}, {72, 43},
	{80, 8}, {80, 44}, {88, 9}, {96, 41},
	{104, 10}, {112, 42}, {128, 11}, {128, 43},
	{144, 12}, {160, 13}, {160, 48}, {192, 14},
	{192, 49}, {224, 50}, {240, 15}, {256, 51},
	{288, 16}, {320, 17}, {320, 52}, {384, 18},
	{384, 53}, {448, 54}, {480, 19}, {512, 55},
	{576, 20}, {640, 21}, {640, 56}, {768, 22},
	{768, 57}, {960, 23}, {896, 58}, {1024, 59},
	{1152, 24}, {1280, 25}, {1280, 60}, {1536, 26},
	{1536, 61}, {1792, 62}, {1920, 27}, {2048, 63},
	{2304, 28}, {2560, 29}, {3072, 30}, {3840, 31},
	{-1, 31}
};
#endif

/**
 * Set the I2C bus speed for a given I2C device
 *
 * @param base: the I2C device registers
 * @i2c_clk: I2C bus clock frequency
 * @speed: the desired speed of the bus
 *
 * The I2C device must be stopped before calling this function.
 *
 * The return value is the actual bus speed that is set.
 */
static uint set_i2c_bus_speed(const struct fsl_i2c_base *base,
			      uint i2c_clk, uint speed)
{
	ushort divider = min(i2c_clk / speed, (uint)USHRT_MAX);

	/*
	 * We want to choose an FDR/DFSR that generates an I2C bus speed that
	 * is equal to or lower than the requested speed.  That means that we
	 * want the first divider that is equal to or greater than the
	 * calculated divider.
	 */
#ifdef __PPC__
	u8 dfsr, fdr = 0x31; /* Default if no FDR found */
	/* a, b and dfsr matches identifiers A,B and C respectively in AN2919 */
	ushort a, b, ga, gb;
	ulong c_div, est_div;

#ifdef CONFIG_FSL_I2C_CUSTOM_DFSR
	dfsr = CONFIG_FSL_I2C_CUSTOM_DFSR;
#else
	/* Condition 1: dfsr <= 50/T */
	dfsr = (5 * (i2c_clk / 1000)) / 100000;
#endif
#ifdef CONFIG_FSL_I2C_CUSTOM_FDR
	fdr = CONFIG_FSL_I2C_CUSTOM_FDR;
	speed = i2c_clk / divider; /* Fake something */
#else
	debug("Requested speed:%d, i2c_clk:%d\n", speed, i2c_clk);
	if (!dfsr)
		dfsr = 1;

	est_div = ~0;
	for (ga = 0x4, a = 10; a <= 30; ga++, a += 2) {
		for (gb = 0; gb < 8; gb++) {
			b = 16 << gb;
			c_div = b * (a + ((3 * dfsr) / b) * 2);
			if (c_div > divider && c_div < est_div) {
				ushort bin_gb, bin_ga;

				est_div = c_div;
				bin_gb = gb << 2;
				bin_ga = (ga & 0x3) | ((ga & 0x4) << 3);
				fdr = bin_gb | bin_ga;
				speed = i2c_clk / est_div;

				debug("FDR: 0x%.2x, ", fdr);
				debug("div: %ld, ", est_div);
				debug("ga: 0x%x, gb: 0x%x, ", ga, gb);
				debug("a: %d, b: %d, speed: %d\n", a, b, speed);

				/* Condition 2 not accounted for */
				debug("Tr <= %d ns\n",
				      (b - 3 * dfsr) * 1000000 /
				      (i2c_clk / 1000));
			}
		}
		if (a == 20)
			a += 2;
		if (a == 24)
			a += 4;
	}
	debug("divider: %d, est_div: %ld, DFSR: %d\n", divider, est_div, dfsr);
	debug("FDR: 0x%.2x, speed: %d\n", fdr, speed);
#endif
	writeb(dfsr, &base->dfsrr);	/* set default filter */
	writeb(fdr, &base->fdr);	/* set bus speed */
#else
	uint i;

	for (i = 0; i < ARRAY_SIZE(fsl_i2c_speed_map); i++)
		if (fsl_i2c_speed_map[i].divider >= divider) {
			u8 fdr;

			fdr = fsl_i2c_speed_map[i].fdr;
			speed = i2c_clk / fsl_i2c_speed_map[i].divider;
			writeb(fdr, &base->fdr);	/* set bus speed */

			break;
		}
#endif
	return speed;
}

#ifndef CONFIG_DM_I2C
static uint get_i2c_clock(int bus)
{
	if (bus)
		return gd->arch.i2c2_clk;	/* I2C2 clock */
	else
		return gd->arch.i2c1_clk;	/* I2C1 clock */
}
#endif

static int fsl_i2c_fixup(const struct fsl_i2c_base *base)
{
	const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
	unsigned long long timeval = 0;
	int ret = -1;
	uint flags = 0;

#ifdef CONFIG_SYS_FSL_ERRATUM_I2C_A004447
	uint svr = get_svr();

	if ((SVR_SOC_VER(svr) == SVR_8548 && IS_SVR_REV(svr, 3, 1)) ||
	    (SVR_REV(svr) <= CONFIG_SYS_FSL_A004447_SVR_REV))
		flags = I2C_CR_BIT6;
#endif

	writeb(I2C_CR_MEN | I2C_CR_MSTA, &base->cr);

	timeval = get_ticks();
	while (!(readb(&base->sr) & I2C_SR_MBB)) {
		if ((get_ticks() - timeval) > timeout)
			goto err;
	}

	if (readb(&base->sr) & I2C_SR_MAL) {
		/* SDA is stuck low */
		writeb(0, &base->cr);
		udelay(100);
		writeb(I2C_CR_MSTA | flags, &base->cr);
		writeb(I2C_CR_MEN | I2C_CR_MSTA | flags, &base->cr);
	}

	readb(&base->dr);

	timeval = get_ticks();
	while (!(readb(&base->sr) & I2C_SR_MIF)) {
		if ((get_ticks() - timeval) > timeout)
			goto err;
	}
	ret = 0;

err:
	writeb(I2C_CR_MEN | flags, &base->cr);
	writeb(0, &base->sr);
	udelay(100);

	return ret;
}

static void __i2c_init(const struct fsl_i2c_base *base, int speed, int
		       slaveadd, int i2c_clk, int busnum)
{
	const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);
	unsigned long long timeval;

#ifdef CONFIG_SYS_I2C_INIT_BOARD
	/* Call board specific i2c bus reset routine before accessing the
	 * environment, which might be in a chip on that bus. For details
	 * about this problem see doc/I2C_Edge_Conditions.
	 */
	i2c_init_board();
#endif
	writeb(0, &base->cr);		/* stop I2C controller */
	udelay(5);			/* let it shutdown in peace */
	set_i2c_bus_speed(base, i2c_clk, speed);
	writeb(slaveadd << 1, &base->adr);/* write slave address */
	writeb(0x0, &base->sr);		/* clear status register */
	writeb(I2C_CR_MEN, &base->cr);	/* start I2C controller */

	timeval = get_ticks();
	while (readb(&base->sr) & I2C_SR_MBB) {
		if ((get_ticks() - timeval) < timeout)
			continue;

		if (fsl_i2c_fixup(base))
			debug("i2c_init: BUS#%d failed to init\n",
			      busnum);

		break;
	}
}

static int i2c_wait4bus(const struct fsl_i2c_base *base)
{
	unsigned long long timeval = get_ticks();
	const unsigned long long timeout = usec2ticks(CONFIG_I2C_MBB_TIMEOUT);

	while (readb(&base->sr) & I2C_SR_MBB) {
		if ((get_ticks() - timeval) > timeout)
			return -1;
	}

	return 0;
}

static int i2c_wait(const struct fsl_i2c_base *base, int write)
{
	u32 csr;
	unsigned long long timeval = get_ticks();
	const unsigned long long timeout = usec2ticks(CONFIG_I2C_TIMEOUT);

	do {
		csr = readb(&base->sr);
		if (!(csr & I2C_SR_MIF))
			continue;
		/* Read again to allow register to stabilise */
		csr = readb(&base->sr);

		writeb(0x0, &base->sr);

		if (csr & I2C_SR_MAL) {
			debug("%s: MAL\n", __func__);
			return -1;
		}

		if (!(csr & I2C_SR_MCF))	{
			debug("%s: unfinished\n", __func__);
			return -1;
		}

		if (write == I2C_WRITE_BIT && (csr & I2C_SR_RXAK)) {
			debug("%s: No RXACK\n", __func__);
			return -1;
		}

		return 0;
	} while ((get_ticks() - timeval) < timeout);

	debug("%s: timed out\n", __func__);
	return -1;
}

static int i2c_write_addr(const struct fsl_i2c_base *base, u8 dev,
			  u8 dir, int rsta)
{
	writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX
	       | (rsta ? I2C_CR_RSTA : 0),
	       &base->cr);

	writeb((dev << 1) | dir, &base->dr);

	if (i2c_wait(base, I2C_WRITE_BIT) < 0)
		return 0;

	return 1;
}

static int __i2c_write_data(const struct fsl_i2c_base *base, u8 *data,
			    int length)
{
	int i;

	for (i = 0; i < length; i++) {
		writeb(data[i], &base->dr);

		if (i2c_wait(base, I2C_WRITE_BIT) < 0)
			break;
	}

	return i;
}

static int __i2c_read_data(const struct fsl_i2c_base *base, u8 *data,
			   int length)
{
	int i;

	writeb(I2C_CR_MEN | I2C_CR_MSTA | ((length == 1) ? I2C_CR_TXAK : 0),
	       &base->cr);

	/* dummy read */
	readb(&base->dr);

	for (i = 0; i < length; i++) {
		if (i2c_wait(base, I2C_READ_BIT) < 0)
			break;

		/* Generate ack on last next to last byte */
		if (i == length - 2)
			writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_TXAK,
			       &base->cr);

		/* Do not generate stop on last byte */
		if (i == length - 1)
			writeb(I2C_CR_MEN | I2C_CR_MSTA | I2C_CR_MTX,
			       &base->cr);

		data[i] = readb(&base->dr);
	}

	return i;
}

static int __i2c_read(const struct fsl_i2c_base *base, u8 chip_addr, u8 *offset,
		      int olen, u8 *data, int dlen)
{
	int ret = -1; /* signal error */

	if (i2c_wait4bus(base) < 0)
		return -1;

	/* Some drivers use offset lengths in excess of 4 bytes. These drivers
	 * adhere to the following convention:
	 * - the offset length is passed as negative (that is, the absolute
	 *   value of olen is the actual offset length)
	 * - the offset itself is passed in data, which is overwritten by the
	 *   subsequent read operation
	 */
	if (olen < 0) {
		if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0)
			ret = __i2c_write_data(base, data, -olen);

		if (ret != -olen)
			return -1;

		if (dlen && i2c_write_addr(base, chip_addr,
					   I2C_READ_BIT, 1) != 0)
			ret = __i2c_read_data(base, data, dlen);
	} else {
		if ((!dlen || olen > 0) &&
		    i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0  &&
		    __i2c_write_data(base, offset, olen) == olen)
			ret = 0; /* No error so far */

		if (dlen && i2c_write_addr(base, chip_addr, I2C_READ_BIT,
					   olen ? 1 : 0) != 0)
			ret = __i2c_read_data(base, data, dlen);
	}

	writeb(I2C_CR_MEN, &base->cr);

	if (i2c_wait4bus(base)) /* Wait until STOP */
		debug("i2c_read: wait4bus timed out\n");

	if (ret == dlen)
		return 0;

	return -1;
}

static int __i2c_write(const struct fsl_i2c_base *base, u8 chip_addr,
		       u8 *offset, int olen, u8 *data, int dlen)
{
	int ret = -1; /* signal error */

	if (i2c_wait4bus(base) < 0)
		return -1;

	if (i2c_write_addr(base, chip_addr, I2C_WRITE_BIT, 0) != 0 &&
	    __i2c_write_data(base, offset, olen) == olen) {
		ret = __i2c_write_data(base, data, dlen);
	}

	writeb(I2C_CR_MEN, &base->cr);
	if (i2c_wait4bus(base)) /* Wait until STOP */
		debug("i2c_write: wait4bus timed out\n");

	if (ret == dlen)
		return 0;

	return -1;
}

static int __i2c_probe_chip(const struct fsl_i2c_base *base, uchar chip)
{
	/* For unknown reason the controller will ACK when
	 * probing for a slave with the same address, so skip
	 * it.
	 */
	if (chip == (readb(&base->adr) >> 1))
		return -1;

	return __i2c_read(base, chip, 0, 0, NULL, 0);
}

static uint __i2c_set_bus_speed(const struct fsl_i2c_base *base,
				uint speed, int i2c_clk)
{
	writeb(0, &base->cr);		/* stop controller */
	set_i2c_bus_speed(base, i2c_clk, speed);
	writeb(I2C_CR_MEN, &base->cr);	/* start controller */

	return 0;
}

#ifndef CONFIG_DM_I2C
static void fsl_i2c_init(struct i2c_adapter *adap, int speed, int slaveadd)
{
	__i2c_init(i2c_base[adap->hwadapnr], speed, slaveadd,
		   get_i2c_clock(adap->hwadapnr), adap->hwadapnr);
}

static int fsl_i2c_probe_chip(struct i2c_adapter *adap, uchar chip)
{
	return __i2c_probe_chip(i2c_base[adap->hwadapnr], chip);
}

static int fsl_i2c_read(struct i2c_adapter *adap, u8 chip_addr, uint offset,
			int olen, u8 *data, int dlen)
{
	u8 *o = (u8 *)&offset;

	return __i2c_read(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
			  olen, data, dlen);
}

static int fsl_i2c_write(struct i2c_adapter *adap, u8 chip_addr, uint offset,
			 int olen, u8 *data, int dlen)
{
	u8 *o = (u8 *)&offset;

	return __i2c_write(i2c_base[adap->hwadapnr], chip_addr, &o[4 - olen],
			   olen, data, dlen);
}

static uint fsl_i2c_set_bus_speed(struct i2c_adapter *adap, uint speed)
{
	return __i2c_set_bus_speed(i2c_base[adap->hwadapnr], speed,
				   get_i2c_clock(adap->hwadapnr));
}

/*
 * Register fsl i2c adapters
 */
U_BOOT_I2C_ADAP_COMPLETE(fsl_0, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
			 fsl_i2c_write, fsl_i2c_set_bus_speed,
			 CONFIG_SYS_FSL_I2C_SPEED, CONFIG_SYS_FSL_I2C_SLAVE,
			 0)
#ifdef CONFIG_SYS_FSL_I2C2_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_1, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
			 fsl_i2c_write, fsl_i2c_set_bus_speed,
			 CONFIG_SYS_FSL_I2C2_SPEED, CONFIG_SYS_FSL_I2C2_SLAVE,
			 1)
#endif
#ifdef CONFIG_SYS_FSL_I2C3_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_2, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
			 fsl_i2c_write, fsl_i2c_set_bus_speed,
			 CONFIG_SYS_FSL_I2C3_SPEED, CONFIG_SYS_FSL_I2C3_SLAVE,
			 2)
#endif
#ifdef CONFIG_SYS_FSL_I2C4_OFFSET
U_BOOT_I2C_ADAP_COMPLETE(fsl_3, fsl_i2c_init, fsl_i2c_probe_chip, fsl_i2c_read,
			 fsl_i2c_write, fsl_i2c_set_bus_speed,
			 CONFIG_SYS_FSL_I2C4_SPEED, CONFIG_SYS_FSL_I2C4_SLAVE,
			 3)
#endif
#else /* CONFIG_DM_I2C */
static int fsl_i2c_probe_chip(struct udevice *bus, u32 chip_addr,
			      u32 chip_flags)
{
	struct fsl_i2c_dev *dev = dev_get_priv(bus);

	return __i2c_probe_chip(dev->base, chip_addr);
}

static int fsl_i2c_set_bus_speed(struct udevice *bus, uint speed)
{
	struct fsl_i2c_dev *dev = dev_get_priv(bus);

	return __i2c_set_bus_speed(dev->base, speed, dev->i2c_clk);
}

static int fsl_i2c_ofdata_to_platdata(struct udevice *bus)
{
	struct fsl_i2c_dev *dev = dev_get_priv(bus);
	fdt_addr_t addr;

	addr = dev_read_u32_default(bus, "reg", -1);

	dev->base = map_sysmem(CONFIG_SYS_IMMR + addr, sizeof(struct fsl_i2c_base));

	if (!dev->base)
		return -ENOMEM;

	dev->index = dev_read_u32_default(bus, "cell-index", -1);
	dev->slaveadd = dev_read_u32_default(bus, "u-boot,i2c-slave-addr",
					     0x7f);
	dev->speed = dev_read_u32_default(bus, "clock-frequency", 400000);

	dev->i2c_clk = dev->index ? gd->arch.i2c2_clk : gd->arch.i2c1_clk;

	return 0;
}

static int fsl_i2c_probe(struct udevice *bus)
{
	struct fsl_i2c_dev *dev = dev_get_priv(bus);

	__i2c_init(dev->base, dev->speed, dev->slaveadd, dev->i2c_clk,
		   dev->index);
	return 0;
}

static int fsl_i2c_xfer(struct udevice *bus, struct i2c_msg *msg, int nmsgs)
{
	struct fsl_i2c_dev *dev = dev_get_priv(bus);
	struct i2c_msg *dmsg, *omsg, dummy;

	memset(&dummy, 0, sizeof(struct i2c_msg));

	/* We expect either two messages (one with an offset and one with the
	 * actual data) or one message (just data)
	 */
	if (nmsgs > 2 || nmsgs == 0) {
		debug("%s: Only one or two messages are supported.", __func__);
		return -1;
	}

	omsg = nmsgs == 1 ? &dummy : msg;
	dmsg = nmsgs == 1 ? msg : msg + 1;

	if (dmsg->flags & I2C_M_RD)
		return __i2c_read(dev->base, dmsg->addr, omsg->buf, omsg->len,
				  dmsg->buf, dmsg->len);
	else
		return __i2c_write(dev->base, dmsg->addr, omsg->buf, omsg->len,
				   dmsg->buf, dmsg->len);
}

static const struct dm_i2c_ops fsl_i2c_ops = {
	.xfer           = fsl_i2c_xfer,
	.probe_chip     = fsl_i2c_probe_chip,
	.set_bus_speed  = fsl_i2c_set_bus_speed,
};

static const struct udevice_id fsl_i2c_ids[] = {
	{ .compatible = "fsl-i2c", },
	{ /* sentinel */ }
};

U_BOOT_DRIVER(i2c_fsl) = {
	.name = "i2c_fsl",
	.id = UCLASS_I2C,
	.of_match = fsl_i2c_ids,
	.probe = fsl_i2c_probe,
	.ofdata_to_platdata = fsl_i2c_ofdata_to_platdata,
	.priv_auto_alloc_size = sizeof(struct fsl_i2c_dev),
	.ops = &fsl_i2c_ops,
};

#endif /* CONFIG_DM_I2C */