sacsng.c 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
/*
 * (C) Copyright 2002
 * Custom IDEAS, Inc. <www.cideas.com>
 * Gerald Van Baren <vanbaren@cideas.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <asm/u-boot.h>
#include <ioports.h>
#include <mpc8260.h>
#include <i2c.h>
#include <spi.h>
#include <command.h>

#ifdef CONFIG_SHOW_BOOT_PROGRESS
#include <status_led.h>
#endif

#ifdef CONFIG_ETHER_LOOPBACK_TEST
extern void eth_loopback_test(void);
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#include "clkinit.h"
#include "ioconfig.h"		/* I/O configuration table */

/*
 * PBI Page Based Interleaving
 *   PSDMR_PBI page based interleaving
 *   0         bank based interleaving
 * External Address Multiplexing (EAMUX) adds a clock to address cycles
 *   (this can help with marginal board layouts)
 *   PSDMR_EAMUX  adds a clock
 *   0            no extra clock
 * Buffer Command (BUFCMD) adds a clock to command cycles.
 *   PSDMR_BUFCMD adds a clock
 *   0            no extra clock
 */
#define CONFIG_PBI		PSDMR_PBI
#define PESSIMISTIC_SDRAM	0
#define EAMUX			0	/* EST requires EAMUX */
#define BUFCMD			0

/*
 * ADC/DAC Defines:
 */
#define INITIAL_SAMPLE_RATE 10016	/* Initial Daq sample rate */
#define INITIAL_RIGHT_JUST  0	/* Initial DAC right justification */
#define INITIAL_MCLK_DIVIDE 0	/* Initial MCLK Divide */
#define INITIAL_SAMPLE_64X  1	/* Initial  64x clocking mode */
#define INITIAL_SAMPLE_128X 0	/* Initial 128x clocking mode */

/*
 * ADC Defines:
 */
#define I2C_ADC_1_ADDR 0x0E	/* I2C Address of the ADC #1 */
#define I2C_ADC_2_ADDR 0x0F	/* I2C Address of the ADC #2 */

#define ADC_SDATA1_MASK 0x00020000	/* PA14 - CH12SDATA_PU   */
#define ADC_SDATA2_MASK 0x00010000	/* PA15 - CH34SDATA_PU   */

#define ADC_VREF_CAP		100	/* VREF capacitor in uF */
#define ADC_INITIAL_DELAY (10 * ADC_VREF_CAP)	/* 10 usec per uF, in usec */
#define ADC_SDATA_DELAY		100	/* ADC SDATA release delay in usec */
#define ADC_CAL_DELAY (1000000 / INITIAL_SAMPLE_RATE * 4500)
					/* Wait at least 4100 LRCLK's */

#define ADC_REG1_FRAME_START    0x80	/* Frame start */
#define ADC_REG1_GROUND_CAL     0x40	/* Ground calibration enable */
#define ADC_REG1_ANA_MOD_PDOWN  0x20	/* Analog modulator section in power down */
#define ADC_REG1_DIG_MOD_PDOWN  0x10	/* Digital modulator section in power down */

#define ADC_REG2_128x           0x80	/* Oversample at 128x */
#define ADC_REG2_CAL            0x40	/* System calibration enable */
#define ADC_REG2_CHANGE_SIGN    0x20	/* Change sign enable */
#define ADC_REG2_LR_DISABLE     0x10	/* Left/Right output disable */
#define ADC_REG2_HIGH_PASS_DIS  0x08	/* High pass filter disable */
#define ADC_REG2_SLAVE_MODE     0x04	/* Slave mode */
#define ADC_REG2_DFS            0x02	/* Digital format select */
#define ADC_REG2_MUTE           0x01	/* Mute */

#define ADC_REG7_ADDR_ENABLE    0x80	/* Address enable */
#define ADC_REG7_PEAK_ENABLE    0x40	/* Peak enable */
#define ADC_REG7_PEAK_UPDATE    0x20	/* Peak update */
#define ADC_REG7_PEAK_FORMAT    0x10	/* Peak display format */
#define ADC_REG7_DIG_FILT_PDOWN 0x04	/* Digital filter power down enable */
#define ADC_REG7_FIR2_IN_EN     0x02	/* External FIR2 input enable */
#define ADC_REG7_PSYCHO_EN      0x01	/* External pyscho filter input enable */

/*
 * DAC Defines:
 */

#define I2C_DAC_ADDR 0x11	/* I2C Address of the DAC */

#define DAC_RST_MASK 0x00008000	/* PA16 - DAC_RST*  */
#define DAC_RESET_DELAY    100	/* DAC reset delay in usec */
#define DAC_INITIAL_DELAY 5000	/* DAC initialization delay in usec */

#define DAC_REG1_AMUTE		0x80	/* Auto-mute */

#define DAC_REG1_LEFT_JUST_24_BIT (0 << 4)	/* Fmt 0: Left justified 24 bit  */
#define DAC_REG1_I2S_24_BIT       (1 << 4)	/* Fmt 1: I2S up to 24 bit       */
#define DAC_REG1_RIGHT_JUST_16BIT (2 << 4)	/* Fmt 2: Right justified 16 bit */
#define DAC_REG1_RIGHT_JUST_24BIT (3 << 4)	/* Fmt 3: Right justified 24 bit */
#define DAC_REG1_RIGHT_JUST_20BIT (4 << 4)	/* Fmt 4: Right justified 20 bit */
#define DAC_REG1_RIGHT_JUST_18BIT (5 << 4)	/* Fmt 5: Right justified 18 bit */

#define DAC_REG1_DEM_NO           (0 << 2)	/* No      De-emphasis  */
#define DAC_REG1_DEM_44KHZ        (1 << 2)	/* 44.1KHz De-emphasis  */
#define DAC_REG1_DEM_48KHZ        (2 << 2)	/* 48KHz   De-emphasis  */
#define DAC_REG1_DEM_32KHZ        (3 << 2)	/* 32KHz   De-emphasis  */

#define DAC_REG1_SINGLE 0	/*   4- 50KHz sample rate  */
#define DAC_REG1_DOUBLE 1	/*  50-100KHz sample rate  */
#define DAC_REG1_QUAD   2	/* 100-200KHz sample rate  */
#define DAC_REG1_DSD    3	/* Direct Stream Data, DSD */

#define DAC_REG5_INVERT_A   0x80	/* Invert channel A */
#define DAC_REG5_INVERT_B   0x40	/* Invert channel B */
#define DAC_REG5_I2C_MODE   0x20	/* Control port (I2C) mode */
#define DAC_REG5_POWER_DOWN 0x10	/* Power down mode */
#define DAC_REG5_MUTEC_A_B  0x08	/* Mutec A=B */
#define DAC_REG5_FREEZE     0x04	/* Freeze */
#define DAC_REG5_MCLK_DIV   0x02	/* MCLK divide by 2 */
#define DAC_REG5_RESERVED   0x01	/* Reserved */

/*
 * Check Board Identity:
 */

int checkboard(void)
{
	printf("SACSng\n");

	return 0;
}

phys_size_t initdram(int board_type)
{
	volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR;
	volatile memctl8260_t *memctl = &immap->im_memctl;
	volatile uchar c = 0;
	volatile uchar *ramaddr = (uchar *)(CONFIG_SYS_SDRAM_BASE + 0x8);
	uint psdmr = CONFIG_SYS_PSDMR;
	int i;
	uint psrt = 14;		/* for no SPD */
	uint chipselects = 1;	/* for no SPD */
	uint sdram_size = CONFIG_SYS_SDRAM0_SIZE * 1024 * 1024;	/* for no SPD */
	uint or = CONFIG_SYS_OR2_PRELIM;	/* for no SPD */

#ifdef SDRAM_SPD_ADDR
	uint data_width;
	uint rows;
	uint banks;
	uint cols;
	uint caslatency;
	uint width;
	uint rowst;
	uint sdam;
	uint bsma;
	uint sda10;
	u_char data;
	u_char cksum;
	int j;
#endif

#ifdef SDRAM_SPD_ADDR
	/* Keep the compiler from complaining about potentially uninitialized vars */
	data_width = chipselects = rows = banks = cols = caslatency = psrt =
		0;

	/*
	 * Read the SDRAM SPD EEPROM via I2C.
	 */
	i2c_read(SDRAM_SPD_ADDR, 0, 1, &data, 1);
	cksum = data;
	for (j = 1; j < 64; j++) {	/* read only the checksummed bytes */
		/* note: the I2C address autoincrements when alen == 0 */
		i2c_read(SDRAM_SPD_ADDR, 0, 0, &data, 1);
		if (j == 5)
			chipselects = data & 0x0F;
		else if (j == 6)
			data_width = data;
		else if (j == 7)
			data_width |= data << 8;
		else if (j == 3)
			rows = data & 0x0F;
		else if (j == 4)
			cols = data & 0x0F;
		else if (j == 12) {
			/*
			 * Refresh rate: this assumes the prescaler is set to
			 * approximately 1uSec per tick.
			 */
			switch (data & 0x7F) {
			default:
			case 0:
				psrt = 14;	/*  15.625uS */
				break;
			case 1:
				psrt = 2;	/*   3.9uS   */
				break;
			case 2:
				psrt = 6;	/*   7.8uS   */
				break;
			case 3:
				psrt = 29;	/*  31.3uS   */
				break;
			case 4:
				psrt = 60;	/*  62.5uS   */
				break;
			case 5:
				psrt = 120;	/* 125uS     */
				break;
			}
		} else if (j == 17)
			banks = data;
		else if (j == 18) {
			caslatency = 3;	/* default CL */
#if(PESSIMISTIC_SDRAM)
			if ((data & 0x04) != 0)
				caslatency = 3;
			else if ((data & 0x02) != 0)
				caslatency = 2;
			else if ((data & 0x01) != 0)
				caslatency = 1;
#else
			if ((data & 0x01) != 0)
				caslatency = 1;
			else if ((data & 0x02) != 0)
				caslatency = 2;
			else if ((data & 0x04) != 0)
				caslatency = 3;
#endif
			else {
				printf("WARNING: Unknown CAS latency 0x%02X, using 3\n", data);
			}
		} else if (j == 63) {
			if (data != cksum) {
				printf("WARNING: Configuration data checksum failure:" " is 0x%02x, calculated 0x%02x\n", data, cksum);
			}
		}
		cksum += data;
	}

	/* We don't trust CL less than 2 (only saw it on an old 16MByte DIMM) */
	if (caslatency < 2) {
		printf("WARNING: CL was %d, forcing to 2\n", caslatency);
		caslatency = 2;
	}
	if (rows > 14) {
		printf("WARNING: This doesn't look good, rows = %d, should be <= 14\n",
			rows);
		rows = 14;
	}
	if (cols > 11) {
		printf("WARNING: This doesn't look good, columns = %d, should be <= 11\n",
			cols);
		cols = 11;
	}

	if ((data_width != 64) && (data_width != 72)) {
		printf("WARNING: SDRAM width unsupported, is %d, expected 64 or 72.\n",
			data_width);
	}
	width = 3;		/* 2^3 = 8 bytes = 64 bits wide */
	/*
	 * Convert banks into log2(banks)
	 */
	if (banks == 2)
		banks = 1;
	else if (banks == 4)
		banks = 2;
	else if (banks == 8)
		banks = 3;

	sdram_size = 1 << (rows + cols + banks + width);

#if(CONFIG_PBI == 0)		/* bank-based interleaving */
	rowst = ((32 - 6) - (rows + cols + width)) * 2;
#else
	rowst = 32 - (rows + banks + cols + width);
#endif

	or = ~(sdram_size - 1) |	/* SDAM address mask    */
		((banks - 1) << 13) |	/* banks per device     */
		(rowst << 9) |		/* rowst                */
		((rows - 9) << 6);	/* numr                 */

	memctl->memc_or2 = or;

	/*
	 * SDAM specifies the number of columns that are multiplexed
	 * (reference AN2165/D), defined to be (columns - 6) for page
	 * interleave, (columns - 8) for bank interleave.
	 *
	 * BSMA is 14 - max(rows, cols).  The bank select lines come
	 * into play above the highest "address" line going into the
	 * the SDRAM.
	 */
#if(CONFIG_PBI == 0)		/* bank-based interleaving */
	sdam = cols - 8;
	bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
	sda10 = sdam + 2;
#else
	sdam = cols - 6;
	bsma = ((31 - width) - 14) - ((rows > cols) ? rows : cols);
	sda10 = sdam;
#endif
#if(PESSIMISTIC_SDRAM)
	psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_16_CLK |
		PSDMR_PRETOACT_8W | PSDMR_ACTTORW_8W | PSDMR_WRC_4C |
		PSDMR_EAMUX | PSDMR_BUFCMD) | caslatency |
		((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */
		(sdam << 24) | (bsma << 21) | (sda10 << 18);
#else
	psdmr = (CONFIG_PBI | PSDMR_RFEN | PSDMR_RFRC_7_CLK |
		PSDMR_PRETOACT_3W |	/* 1 for 7E parts (fast PC-133) */
		PSDMR_ACTTORW_2W |	/* 1 for 7E parts (fast PC-133) */
		PSDMR_WRC_1C |	/* 1 clock + 7nSec */
		EAMUX | BUFCMD) |
		caslatency | ((caslatency - 1) << 6) |	/* LDOTOPRE is CL - 1 */
		(sdam << 24) | (bsma << 21) | (sda10 << 18);
#endif
#endif

	/*
	 * Quote from 8260 UM (10.4.2 SDRAM Power-On Initialization, 10-35):
	 *
	 * "At system reset, initialization software must set up the
	 *  programmable parameters in the memory controller banks registers
	 *  (ORx, BRx, P/LSDMR). After all memory parameters are configured,
	 *  system software should execute the following initialization sequence
	 *  for each SDRAM device.
	 *
	 *  1. Issue a PRECHARGE-ALL-BANKS command
	 *  2. Issue eight CBR REFRESH commands
	 *  3. Issue a MODE-SET command to initialize the mode register
	 *
	 * Quote from Micron MT48LC8M16A2 data sheet:
	 *
	 *  "...the SDRAM requires a 100uS delay prior to issuing any
	 *  command other than a COMMAND INHIBIT or NOP.  Starting at some
	 *  point during this 100uS period and continuing at least through
	 *  the end of this period, COMMAND INHIBIT or NOP commands should
	 *  be applied."
	 *
	 *  "Once the 100uS delay has been satisfied with at least one COMMAND
	 *  INHIBIT or NOP command having been applied, a /PRECHARGE command/
	 *  should be applied.  All banks must then be precharged, thereby
	 *  placing the device in the all banks idle state."
	 *
	 *  "Once in the idle state, /two/ AUTO REFRESH cycles must be
	 *  performed.  After the AUTO REFRESH cycles are complete, the
	 *  SDRAM is ready for mode register programming."
	 *
	 *  (/emphasis/ mine, gvb)
	 *
	 *  The way I interpret this, Micron start up sequence is:
	 *  1. Issue a PRECHARGE-BANK command (initial precharge)
	 *  2. Issue a PRECHARGE-ALL-BANKS command ("all banks ... precharged")
	 *  3. Issue two (presumably, doing eight is OK) CBR REFRESH commands
	 *  4. Issue a MODE-SET command to initialize the mode register
	 *
	 *  --------
	 *
	 *  The initial commands are executed by setting P/LSDMR[OP] and
	 *  accessing the SDRAM with a single-byte transaction."
	 *
	 * The appropriate BRx/ORx registers have already been set when we
	 * get here. The SDRAM can be accessed at the address CONFIG_SYS_SDRAM_BASE.
	 */

	memctl->memc_mptpr = CONFIG_SYS_MPTPR;
	memctl->memc_psrt = psrt;

	memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
	for (i = 0; i < 8; i++)
		*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
	*ramaddr = c;

	memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
	*ramaddr = c;

	/*
	 * Do it a second time for the second set of chips if the DIMM has
	 * two chip selects (double sided).
	 */
	if (chipselects > 1) {
		ramaddr += sdram_size;

		memctl->memc_br3 = CONFIG_SYS_BR3_PRELIM + sdram_size;
		memctl->memc_or3 = or;

		memctl->memc_psdmr = psdmr | PSDMR_OP_PREA;
		*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_CBRR;
		for (i = 0; i < 8; i++)
			*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_MRW;
		*ramaddr = c;

		memctl->memc_psdmr = psdmr | PSDMR_OP_NORM | PSDMR_RFEN;
		*ramaddr = c;
	}

	/* return total ram size */
	return (sdram_size * chipselects);
}

/*-----------------------------------------------------------------------
 * Board Control Functions
 */
void board_poweroff(void)
{
	while (1);		/* hang forever */
}


#ifdef CONFIG_MISC_INIT_R
/* ------------------------------------------------------------------------- */
int misc_init_r(void)
{
	/*
	 * Note: iop is used by the I2C macros, and iopa by the ADC/DAC initialization.
	 */
	volatile ioport_t *iopa =
		ioport_addr((immap_t *)CONFIG_SYS_IMMR, 0 /* port A */ );
	volatile ioport_t *iop =
		ioport_addr((immap_t *)CONFIG_SYS_IMMR, I2C_PORT);

	int reg;		/* I2C register value */
	char *ep;		/* Environment pointer */
	char str_buf[12];	/* sprintf output buffer */
	int sample_rate;	/* ADC/DAC sample rate */
	int sample_64x;		/* Use  64/4 clocking for the ADC/DAC */
	int sample_128x;	/* Use 128/4 clocking for the ADC/DAC */
	int right_just;		/* Is the data to the DAC right justified? */
	int mclk_divide;	/* MCLK Divide */
	int quiet;		/* Quiet or minimal output mode */

	quiet = 0;

	if ((ep = getenv("quiet")) != NULL)
		quiet = simple_strtol(ep, NULL, 10);
	else
		setenv("quiet", "0");

	/*
	 * SACSng custom initialization:
	 *    Start the ADC and DAC clocks, since the Crystal parts do not
	 *    work on the I2C bus until the clocks are running.
	 */

	sample_rate = INITIAL_SAMPLE_RATE;
	if ((ep = getenv("DaqSampleRate")) != NULL)
		sample_rate = simple_strtol(ep, NULL, 10);

	sample_64x = INITIAL_SAMPLE_64X;
	sample_128x = INITIAL_SAMPLE_128X;
	if ((ep = getenv("Daq64xSampling")) != NULL) {
		sample_64x = simple_strtol(ep, NULL, 10);
		if (sample_64x)
			sample_128x = 0;
		else
			sample_128x = 1;
	} else {
		if ((ep = getenv("Daq128xSampling")) != NULL) {
			sample_128x = simple_strtol(ep, NULL, 10);
			if (sample_128x)
				sample_64x = 0;
			else
				sample_64x = 1;
		}
	}

	/*
	 * Stop the clocks and wait for at least 1 LRCLK period
	 * to make sure the clocking has really stopped.
	 */
	Daq_Stop_Clocks();
	udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

	/*
	 * Initialize the clocks with the new rates
	 */
	Daq_Init_Clocks(sample_rate, sample_64x);
	sample_rate = Daq_Get_SampleRate();

	/*
	 * Start the clocks and wait for at least 1 LRCLK period
	 * to make sure the clocking has become stable.
	 */
	Daq_Start_Clocks(sample_rate);
	udelay((1000000 / sample_rate) * NUM_LRCLKS_TO_STABILIZE);

	sprintf(str_buf, "%d", sample_rate);
	setenv("DaqSampleRate", str_buf);

	if (sample_64x) {
		setenv("Daq64xSampling", "1");
		setenv("Daq128xSampling", NULL);
	} else {
		setenv("Daq64xSampling", NULL);
		setenv("Daq128xSampling", "1");
	}

	/*
	 * Display the ADC/DAC clocking information
	 */
	if (!quiet)
		Daq_Display_Clocks();

	/*
	 * Determine the DAC data justification
	 */

	right_just = INITIAL_RIGHT_JUST;
	if ((ep = getenv("DaqDACRightJustified")) != NULL)
		right_just = simple_strtol(ep, NULL, 10);

	sprintf(str_buf, "%d", right_just);
	setenv("DaqDACRightJustified", str_buf);

	/*
	 * Determine the DAC MCLK Divide
	 */

	mclk_divide = INITIAL_MCLK_DIVIDE;
	if ((ep = getenv("DaqDACMClockDivide")) != NULL)
		mclk_divide = simple_strtol(ep, NULL, 10);

	sprintf(str_buf, "%d", mclk_divide);
	setenv("DaqDACMClockDivide", str_buf);

	/*
	 * Initializing the I2C address in the Crystal A/Ds:
	 *
	 * 1) Wait for VREF cap to settle (10uSec per uF)
	 * 2) Release pullup on SDATA
	 * 3) Write the I2C address to register 6
	 * 4) Enable address matching by setting the MSB in register 7
	 */

	if (!quiet)
		printf("Initializing the ADC...\n");

	udelay(ADC_INITIAL_DELAY);	/* 10uSec per uF of VREF cap */

	iopa->pdat &= ~ADC_SDATA1_MASK;	/* release SDATA1 */
	udelay(ADC_SDATA_DELAY);	/* arbitrary settling time */

	i2c_reg_write(0x00, 0x06, I2C_ADC_1_ADDR);	/* set address */
	i2c_reg_write(I2C_ADC_1_ADDR, 0x07,	/* turn on ADDREN */
		      ADC_REG7_ADDR_ENABLE);

	i2c_reg_write(I2C_ADC_1_ADDR, 0x02,	/* 128x, slave mode, !HPEN */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	reg = i2c_reg_read(I2C_ADC_1_ADDR, 0x06) & 0x7F;
	if (reg != I2C_ADC_1_ADDR) {
		printf("Init of ADC U10 failed: address is 0x%02X should be 0x%02X\n",
			reg, I2C_ADC_1_ADDR);
	}

	iopa->pdat &= ~ADC_SDATA2_MASK;	/* release SDATA2 */
	udelay(ADC_SDATA_DELAY);	/* arbitrary settling time */

	/* set address (do not set ADDREN yet) */
	i2c_reg_write(0x00, 0x06, I2C_ADC_2_ADDR);

	i2c_reg_write(I2C_ADC_2_ADDR, 0x02,	/* 64x, slave mode, !HPEN */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	reg = i2c_reg_read(I2C_ADC_2_ADDR, 0x06) & 0x7F;
	if (reg != I2C_ADC_2_ADDR) {
		printf("Init of ADC U15 failed: address is 0x%02X should be 0x%02X\n",
			reg, I2C_ADC_2_ADDR);
	}

	i2c_reg_write(I2C_ADC_1_ADDR, 0x01,	/* set FSTART and GNDCAL */
		      ADC_REG1_FRAME_START | ADC_REG1_GROUND_CAL);

	i2c_reg_write(I2C_ADC_1_ADDR, 0x02,	/* Start calibration */
		      (sample_64x ? 0 : ADC_REG2_128x) |
		      ADC_REG2_CAL |
		      ADC_REG2_HIGH_PASS_DIS | ADC_REG2_SLAVE_MODE);

	udelay(ADC_CAL_DELAY);	/* a minimum of 4100 LRCLKs */
	i2c_reg_write(I2C_ADC_1_ADDR, 0x01, 0x00);	/* remove GNDCAL */

	/*
	 * Now that we have synchronized the ADC's, enable address
	 * selection on the second ADC as well as the first.
	 */
	i2c_reg_write(I2C_ADC_2_ADDR, 0x07, ADC_REG7_ADDR_ENABLE);

	/*
	 * Initialize the Crystal DAC
	 *
	 * Two of the config lines are used for I2C so we have to set them
	 * to the proper initialization state without inadvertantly
	 * sending an I2C "start" sequence.  When we bring the I2C back to
	 * the normal state, we send an I2C "stop" sequence.
	 */
	if (!quiet)
		printf("Initializing the DAC...\n");

	/*
	 * Bring the I2C clock and data lines low for initialization
	 */
	I2C_SCL(0);
	I2C_DELAY;
	I2C_SDA(0);
	I2C_ACTIVE;
	I2C_DELAY;

	/* Reset the DAC */
	iopa->pdat &= ~DAC_RST_MASK;
	udelay(DAC_RESET_DELAY);

	/* Release the DAC reset */
	iopa->pdat |= DAC_RST_MASK;
	udelay(DAC_INITIAL_DELAY);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Going into power down
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE | DAC_REG5_POWER_DOWN);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Going into power down
	 *         . MCLK divide by 1
	 *         . MCLK divide by 2
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE |
		      DAC_REG5_POWER_DOWN |
		      (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

	/*
	 * Cause the DAC to:
	 *     Auto-mute disabled
	 *         . Format 0, left  justified 24 bits
	 *         . Format 3, right justified 24 bits
	 *     No de-emphasis
	 *         . Single speed mode
	 *         . Double speed mode
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x01,
		      (right_just ? DAC_REG1_RIGHT_JUST_24BIT :
		       DAC_REG1_LEFT_JUST_24_BIT) |
		      DAC_REG1_DEM_NO |
		      (sample_rate >=
		       50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE));

	sprintf(str_buf, "%d",
		sample_rate >= 50000 ? DAC_REG1_DOUBLE : DAC_REG1_SINGLE);
	setenv("DaqDACFunctionalMode", str_buf);

	/*
	 * Cause the DAC to:
	 *     Enable control port (I2C mode)
	 *     Remove power down
	 *         . MCLK divide by 1
	 *         . MCLK divide by 2
	 */
	i2c_reg_write(I2C_DAC_ADDR, 0x05,
		      DAC_REG5_I2C_MODE |
		      (mclk_divide ? DAC_REG5_MCLK_DIV : 0));

	/*
	 * Create a I2C stop condition:
	 *     low->high on data while clock is high.
	 */
	I2C_SCL(1);
	I2C_DELAY;
	I2C_SDA(1);
	I2C_DELAY;
	I2C_TRISTATE;

	if (!quiet)
		printf("\n");
#ifdef CONFIG_ETHER_LOOPBACK_TEST
	/*
	 * Run the Ethernet loopback test
	 */
	eth_loopback_test();
#endif /* CONFIG_ETHER_LOOPBACK_TEST */

#ifdef CONFIG_SHOW_BOOT_PROGRESS
	/*
	 * Turn off the RED fail LED now that we are up and running.
	 */
	status_led_set(STATUS_LED_RED, STATUS_LED_OFF);
#endif

	return 0;
}

#ifdef CONFIG_SHOW_BOOT_PROGRESS
/*
 * Show boot status: flash the LED if something goes wrong, indicating
 * that last thing that worked and thus, by implication, what is broken.
 *
 * This stores the last OK value in RAM so this will not work properly
 * before RAM is initialized.  Since it is being used for indicating
 * boot status (i.e. after RAM is initialized), that is OK.
 */
static void flash_code(uchar number, uchar modulo, uchar digits)
{
	int j;

	/*
	 * Recursively do upper digits.
	 */
	if (digits > 1)
		flash_code(number / modulo, modulo, digits - 1);

	number = number % modulo;

	/*
	 * Zero is indicated by one long flash (dash).
	 */
	if (number == 0) {
		status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
		udelay(1000000);
		status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
		udelay(200000);
	} else {
		/*
		 * Non-zero is indicated by short flashes, one per count.
		 */
		for (j = 0; j < number; j++) {
			status_led_set(STATUS_LED_BOOT, STATUS_LED_ON);
			udelay(100000);
			status_led_set(STATUS_LED_BOOT, STATUS_LED_OFF);
			udelay(200000);
		}
	}
	/*
	 * Inter-digit pause: we've already waited 200 mSec, wait 1 sec total
	 */
	udelay(700000);
}

static int last_boot_progress;

void show_boot_progress(int status)
{
	int i, j;

	if (status > 0) {
		last_boot_progress = status;
	} else {
		/*
		 * If a specific failure code is given, flash this code
		 * else just use the last success code we've seen
		 */
		if (status < -1)
			last_boot_progress = -status;

		/*
		 * Flash this code 5 times
		 */
		for (j = 0; j < 5; j++) {
			/*
			 * Houston, we have a problem.
			 * Blink the last OK status which indicates where things failed.
			 */
			status_led_set(STATUS_LED_RED, STATUS_LED_ON);
			flash_code(last_boot_progress, 5, 3);

			/*
			 * Delay 5 seconds between repetitions,
			 * with the fault LED blinking
			 */
			for (i = 0; i < 5; i++) {
				status_led_set(STATUS_LED_RED,
					       STATUS_LED_OFF);
				udelay(500000);
				status_led_set(STATUS_LED_RED, STATUS_LED_ON);
				udelay(500000);
			}
		}

		/*
		 * Reset the board to retry initialization.
		 */
		do_reset(NULL, 0, 0, NULL);
	}
}
#endif /* CONFIG_SHOW_BOOT_PROGRESS */


/*
 * The following are used to control the SPI chip selects for the SPI command.
 */
#if defined(CONFIG_CMD_SPI)

#define SPI_ADC_CS_MASK	0x00000800
#define SPI_DAC_CS_MASK	0x00001000

static const u32 cs_mask[] = {
	SPI_ADC_CS_MASK,
	SPI_DAC_CS_MASK,
};

int spi_cs_is_valid(unsigned int bus, unsigned int cs)
{
	return bus == 0 && cs < sizeof(cs_mask) / sizeof(cs_mask[0]);
}

void spi_cs_activate(struct spi_slave *slave)
{
	volatile ioport_t *iopd =
		ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );

	iopd->pdat &= ~cs_mask[slave->cs];
}

void spi_cs_deactivate(struct spi_slave *slave)
{
	volatile ioport_t *iopd =
		ioport_addr((immap_t *) CONFIG_SYS_IMMR, 3 /* port D */ );

	iopd->pdat |= cs_mask[slave->cs];
}

#endif

#endif /* CONFIG_MISC_INIT_R */