clock.c 18 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/*
 * Copyright (c) 2010-2014, NVIDIA CORPORATION.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/* Tegra SoC common clock control functions */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/ap.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/timer.h>
#include <div64.h>
#include <fdtdec.h>

/*
 * This is our record of the current clock rate of each clock. We don't
 * fill all of these in since we are only really interested in clocks which
 * we use as parents.
 */
static unsigned pll_rate[CLOCK_ID_COUNT];

/*
 * The oscillator frequency is fixed to one of four set values. Based on this
 * the other clocks are set up appropriately.
 */
static unsigned osc_freq[CLOCK_OSC_FREQ_COUNT] = {
	13000000,
	19200000,
	12000000,
	26000000,
};

/* return 1 if a peripheral ID is in range */
#define clock_type_id_isvalid(id) ((id) >= 0 && \
		(id) < CLOCK_TYPE_COUNT)

char pllp_valid = 1;	/* PLLP is set up correctly */

/* return 1 if a periphc_internal_id is in range */
#define periphc_internal_id_isvalid(id) ((id) >= 0 && \
		(id) < PERIPHC_COUNT)

/* number of clock outputs of a PLL */
static const u8 pll_num_clkouts[] = {
	1,	/* PLLC */
	1,	/* PLLM */
	4,	/* PLLP */
	1,	/* PLLA */
	0,	/* PLLU */
	0,	/* PLLD */
};

int clock_get_osc_bypass(void)
{
	struct clk_rst_ctlr *clkrst =
			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
	u32 reg;

	reg = readl(&clkrst->crc_osc_ctrl);
	return (reg & OSC_XOBP_MASK) >> OSC_XOBP_SHIFT;
}

/* Returns a pointer to the registers of the given pll */
static struct clk_pll *get_pll(enum clock_id clkid)
{
	struct clk_rst_ctlr *clkrst =
			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;

	assert(clock_id_is_pll(clkid));
	return &clkrst->crc_pll[clkid];
}

int clock_ll_read_pll(enum clock_id clkid, u32 *divm, u32 *divn,
		u32 *divp, u32 *cpcon, u32 *lfcon)
{
	struct clk_pll *pll = get_pll(clkid);
	u32 data;

	assert(clkid != CLOCK_ID_USB);

	/* Safety check, adds to code size but is small */
	if (!clock_id_is_pll(clkid) || clkid == CLOCK_ID_USB)
		return -1;
	data = readl(&pll->pll_base);
	*divm = (data & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
	*divn = (data & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT;
	*divp = (data & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
	data = readl(&pll->pll_misc);
	*cpcon = (data & PLL_CPCON_MASK) >> PLL_CPCON_SHIFT;
	*lfcon = (data & PLL_LFCON_MASK) >> PLL_LFCON_SHIFT;

	return 0;
}

unsigned long clock_start_pll(enum clock_id clkid, u32 divm, u32 divn,
		u32 divp, u32 cpcon, u32 lfcon)
{
	struct clk_pll *pll = get_pll(clkid);
	u32 data;

	/*
	 * We cheat by treating all PLL (except PLLU) in the same fashion.
	 * This works only because:
	 * - same fields are always mapped at same offsets, except DCCON
	 * - DCCON is always 0, doesn't conflict
	 * - M,N, P of PLLP values are ignored for PLLP
	 */
	data = (cpcon << PLL_CPCON_SHIFT) | (lfcon << PLL_LFCON_SHIFT);
	writel(data, &pll->pll_misc);

	data = (divm << PLL_DIVM_SHIFT) | (divn << PLL_DIVN_SHIFT) |
			(0 << PLL_BYPASS_SHIFT) | (1 << PLL_ENABLE_SHIFT);

	if (clkid == CLOCK_ID_USB)
		data |= divp << PLLU_VCO_FREQ_SHIFT;
	else
		data |= divp << PLL_DIVP_SHIFT;
	writel(data, &pll->pll_base);

	/* calculate the stable time */
	return timer_get_us() + CLOCK_PLL_STABLE_DELAY_US;
}

void clock_ll_set_source_divisor(enum periph_id periph_id, unsigned source,
			unsigned divisor)
{
	u32 *reg = get_periph_source_reg(periph_id);
	u32 value;

	value = readl(reg);

	value &= ~OUT_CLK_SOURCE_31_30_MASK;
	value |= source << OUT_CLK_SOURCE_31_30_SHIFT;

	value &= ~OUT_CLK_DIVISOR_MASK;
	value |= divisor << OUT_CLK_DIVISOR_SHIFT;

	writel(value, reg);
}

void clock_ll_set_source(enum periph_id periph_id, unsigned source)
{
	u32 *reg = get_periph_source_reg(periph_id);

	clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
			source << OUT_CLK_SOURCE_31_30_SHIFT);
}

/**
 * Given the parent's rate and the required rate for the children, this works
 * out the peripheral clock divider to use, in 7.1 binary format.
 *
 * @param divider_bits	number of divider bits (8 or 16)
 * @param parent_rate	clock rate of parent clock in Hz
 * @param rate		required clock rate for this clock
 * @return divider which should be used
 */
static int clk_get_divider(unsigned divider_bits, unsigned long parent_rate,
			   unsigned long rate)
{
	u64 divider = parent_rate * 2;
	unsigned max_divider = 1 << divider_bits;

	divider += rate - 1;
	do_div(divider, rate);

	if ((s64)divider - 2 < 0)
		return 0;

	if ((s64)divider - 2 >= max_divider)
		return -1;

	return divider - 2;
}

int clock_set_pllout(enum clock_id clkid, enum pll_out_id pllout, unsigned rate)
{
	struct clk_pll *pll = get_pll(clkid);
	int data = 0, div = 0, offset = 0;

	if (!clock_id_is_pll(clkid))
		return -1;

	if (pllout + 1 > pll_num_clkouts[clkid])
		return -1;

	div = clk_get_divider(8, pll_rate[clkid], rate);

	if (div < 0)
		return -1;

	/* out2 and out4 are in the high part of the register */
	if (pllout == PLL_OUT2 || pllout == PLL_OUT4)
		offset = 16;

	data = (div << PLL_OUT_RATIO_SHIFT) |
			PLL_OUT_OVRRIDE | PLL_OUT_CLKEN | PLL_OUT_RSTN;
	clrsetbits_le32(&pll->pll_out[pllout >> 1],
			PLL_OUT_RATIO_MASK << offset, data << offset);

	return 0;
}

/**
 * Given the parent's rate and the divider in 7.1 format, this works out the
 * resulting peripheral clock rate.
 *
 * @param parent_rate	clock rate of parent clock in Hz
 * @param divider which should be used in 7.1 format
 * @return effective clock rate of peripheral
 */
static unsigned long get_rate_from_divider(unsigned long parent_rate,
					   int divider)
{
	u64 rate;

	rate = (u64)parent_rate * 2;
	do_div(rate, divider + 2);
	return rate;
}

unsigned long clock_get_periph_rate(enum periph_id periph_id,
		enum clock_id parent)
{
	u32 *reg = get_periph_source_reg(periph_id);

	return get_rate_from_divider(pll_rate[parent],
		(readl(reg) & OUT_CLK_DIVISOR_MASK) >> OUT_CLK_DIVISOR_SHIFT);
}

/**
 * Find the best available 7.1 format divisor given a parent clock rate and
 * required child clock rate. This function assumes that a second-stage
 * divisor is available which can divide by powers of 2 from 1 to 256.
 *
 * @param divider_bits	number of divider bits (8 or 16)
 * @param parent_rate	clock rate of parent clock in Hz
 * @param rate		required clock rate for this clock
 * @param extra_div	value for the second-stage divisor (not set if this
 *			function returns -1.
 * @return divider which should be used, or -1 if nothing is valid
 *
 */
static int find_best_divider(unsigned divider_bits, unsigned long parent_rate,
				unsigned long rate, int *extra_div)
{
	int shift;
	int best_divider = -1;
	int best_error = rate;

	/* try dividers from 1 to 256 and find closest match */
	for (shift = 0; shift <= 8 && best_error > 0; shift++) {
		unsigned divided_parent = parent_rate >> shift;
		int divider = clk_get_divider(divider_bits, divided_parent,
						rate);
		unsigned effective_rate = get_rate_from_divider(divided_parent,
						divider);
		int error = rate - effective_rate;

		/* Given a valid divider, look for the lowest error */
		if (divider != -1 && error < best_error) {
			best_error = error;
			*extra_div = 1 << shift;
			best_divider = divider;
		}
	}

	/* return what we found - *extra_div will already be set */
	return best_divider;
}

/**
 * Adjust peripheral PLL to use the given divider and source.
 *
 * @param periph_id	peripheral to adjust
 * @param source	Source number (0-3 or 0-7)
 * @param mux_bits	Number of mux bits (2 or 4)
 * @param divider	Required divider in 7.1 or 15.1 format
 * @return 0 if ok, -1 on error (requesting a parent clock which is not valid
 *		for this peripheral)
 */
static int adjust_periph_pll(enum periph_id periph_id, int source,
				int mux_bits, unsigned divider)
{
	u32 *reg = get_periph_source_reg(periph_id);

	clrsetbits_le32(reg, OUT_CLK_DIVISOR_MASK,
			divider << OUT_CLK_DIVISOR_SHIFT);
	udelay(1);

	/* work out the source clock and set it */
	if (source < 0)
		return -1;

	switch (mux_bits) {
	case MASK_BITS_31_30:
		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_30_MASK,
				source << OUT_CLK_SOURCE_31_30_SHIFT);
		break;

	case MASK_BITS_31_29:
		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_29_MASK,
				source << OUT_CLK_SOURCE_31_29_SHIFT);
		break;

	case MASK_BITS_31_28:
		clrsetbits_le32(reg, OUT_CLK_SOURCE_31_28_MASK,
				source << OUT_CLK_SOURCE_31_28_SHIFT);
		break;

	default:
		return -1;
	}

	udelay(2);
	return 0;
}

unsigned clock_adjust_periph_pll_div(enum periph_id periph_id,
		enum clock_id parent, unsigned rate, int *extra_div)
{
	unsigned effective_rate;
	int mux_bits, divider_bits, source;
	int divider;
	int xdiv = 0;

	/* work out the source clock and set it */
	source = get_periph_clock_source(periph_id, parent, &mux_bits,
					 &divider_bits);

	divider = find_best_divider(divider_bits, pll_rate[parent],
				    rate, &xdiv);
	if (extra_div)
		*extra_div = xdiv;

	assert(divider >= 0);
	if (adjust_periph_pll(periph_id, source, mux_bits, divider))
		return -1U;
	debug("periph %d, rate=%d, reg=%p = %x\n", periph_id, rate,
		get_periph_source_reg(periph_id),
		readl(get_periph_source_reg(periph_id)));

	/* Check what we ended up with. This shouldn't matter though */
	effective_rate = clock_get_periph_rate(periph_id, parent);
	if (extra_div)
		effective_rate /= *extra_div;
	if (rate != effective_rate)
		debug("Requested clock rate %u not honored (got %u)\n",
			rate, effective_rate);
	return effective_rate;
}

unsigned clock_start_periph_pll(enum periph_id periph_id,
		enum clock_id parent, unsigned rate)
{
	unsigned effective_rate;

	reset_set_enable(periph_id, 1);
	clock_enable(periph_id);

	effective_rate = clock_adjust_periph_pll_div(periph_id, parent, rate,
						 NULL);

	reset_set_enable(periph_id, 0);
	return effective_rate;
}

void clock_enable(enum periph_id clkid)
{
	clock_set_enable(clkid, 1);
}

void clock_disable(enum periph_id clkid)
{
	clock_set_enable(clkid, 0);
}

void reset_periph(enum periph_id periph_id, int us_delay)
{
	/* Put peripheral into reset */
	reset_set_enable(periph_id, 1);
	udelay(us_delay);

	/* Remove reset */
	reset_set_enable(periph_id, 0);

	udelay(us_delay);
}

void reset_cmplx_set_enable(int cpu, int which, int reset)
{
	struct clk_rst_ctlr *clkrst =
			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
	u32 mask;

	/* Form the mask, which depends on the cpu chosen (2 or 4) */
	assert(cpu >= 0 && cpu < MAX_NUM_CPU);
	mask = which << cpu;

	/* either enable or disable those reset for that CPU */
	if (reset)
		writel(mask, &clkrst->crc_cpu_cmplx_set);
	else
		writel(mask, &clkrst->crc_cpu_cmplx_clr);
}

unsigned clock_get_rate(enum clock_id clkid)
{
	struct clk_pll *pll;
	u32 base;
	u32 divm;
	u64 parent_rate;
	u64 rate;

	parent_rate = osc_freq[clock_get_osc_freq()];
	if (clkid == CLOCK_ID_OSC)
		return parent_rate;

	pll = get_pll(clkid);
	base = readl(&pll->pll_base);

	/* Oh for bf_unpack()... */
	rate = parent_rate * ((base & PLL_DIVN_MASK) >> PLL_DIVN_SHIFT);
	divm = (base & PLL_DIVM_MASK) >> PLL_DIVM_SHIFT;
	if (clkid == CLOCK_ID_USB)
		divm <<= (base & PLLU_VCO_FREQ_MASK) >> PLLU_VCO_FREQ_SHIFT;
	else
		divm <<= (base & PLL_DIVP_MASK) >> PLL_DIVP_SHIFT;
	do_div(rate, divm);
	return rate;
}

/**
 * Set the output frequency you want for each PLL clock.
 * PLL output frequencies are programmed by setting their N, M and P values.
 * The governing equations are:
 *     VCO = (Fi / m) * n, Fo = VCO / (2^p)
 *     where Fo is the output frequency from the PLL.
 * Example: Set the output frequency to 216Mhz(Fo) with 12Mhz OSC(Fi)
 *     216Mhz = ((12Mhz / m) * n) / (2^p) so n=432,m=12,p=1
 * Please see Tegra TRM section 5.3 to get the detail for PLL Programming
 *
 * @param n PLL feedback divider(DIVN)
 * @param m PLL input divider(DIVN)
 * @param p post divider(DIVP)
 * @param cpcon base PLL charge pump(CPCON)
 * @return 0 if ok, -1 on error (the requested PLL is incorrect and cannot
 *		be overriden), 1 if PLL is already correct
 */
int clock_set_rate(enum clock_id clkid, u32 n, u32 m, u32 p, u32 cpcon)
{
	u32 base_reg;
	u32 misc_reg;
	struct clk_pll *pll;

	pll = get_pll(clkid);

	base_reg = readl(&pll->pll_base);

	/* Set BYPASS, m, n and p to PLL_BASE */
	base_reg &= ~PLL_DIVM_MASK;
	base_reg |= m << PLL_DIVM_SHIFT;

	base_reg &= ~PLL_DIVN_MASK;
	base_reg |= n << PLL_DIVN_SHIFT;

	base_reg &= ~PLL_DIVP_MASK;
	base_reg |= p << PLL_DIVP_SHIFT;

	if (clkid == CLOCK_ID_PERIPH) {
		/*
		 * If the PLL is already set up, check that it is correct
		 * and record this info for clock_verify() to check.
		 */
		if (base_reg & PLL_BASE_OVRRIDE_MASK) {
			base_reg |= PLL_ENABLE_MASK;
			if (base_reg != readl(&pll->pll_base))
				pllp_valid = 0;
			return pllp_valid ? 1 : -1;
		}
		base_reg |= PLL_BASE_OVRRIDE_MASK;
	}

	base_reg |= PLL_BYPASS_MASK;
	writel(base_reg, &pll->pll_base);

	/* Set cpcon to PLL_MISC */
	misc_reg = readl(&pll->pll_misc);
	misc_reg &= ~PLL_CPCON_MASK;
	misc_reg |= cpcon << PLL_CPCON_SHIFT;
	writel(misc_reg, &pll->pll_misc);

	/* Enable PLL */
	base_reg |= PLL_ENABLE_MASK;
	writel(base_reg, &pll->pll_base);

	/* Disable BYPASS */
	base_reg &= ~PLL_BYPASS_MASK;
	writel(base_reg, &pll->pll_base);

	return 0;
}

void clock_ll_start_uart(enum periph_id periph_id)
{
	/* Assert UART reset and enable clock */
	reset_set_enable(periph_id, 1);
	clock_enable(periph_id);
	clock_ll_set_source(periph_id, 0); /* UARTx_CLK_SRC = 00, PLLP_OUT0 */

	/* wait for 2us */
	udelay(2);

	/* De-assert reset to UART */
	reset_set_enable(periph_id, 0);
}

#ifdef CONFIG_OF_CONTROL
int clock_decode_periph_id(const void *blob, int node)
{
	enum periph_id id;
	u32 cell[2];
	int err;

	err = fdtdec_get_int_array(blob, node, "clocks", cell,
				   ARRAY_SIZE(cell));
	if (err)
		return -1;
	id = clk_id_to_periph_id(cell[1]);
	assert(clock_periph_id_isvalid(id));
	return id;
}
#endif /* CONFIG_OF_CONTROL */

int clock_verify(void)
{
	struct clk_pll *pll = get_pll(CLOCK_ID_PERIPH);
	u32 reg = readl(&pll->pll_base);

	if (!pllp_valid) {
		printf("Warning: PLLP %x is not correct\n", reg);
		return -1;
	}
	debug("PLLP %x is correct\n", reg);
	return 0;
}

void clock_init(void)
{
	pll_rate[CLOCK_ID_MEMORY] = clock_get_rate(CLOCK_ID_MEMORY);
	pll_rate[CLOCK_ID_PERIPH] = clock_get_rate(CLOCK_ID_PERIPH);
	pll_rate[CLOCK_ID_CGENERAL] = clock_get_rate(CLOCK_ID_CGENERAL);
	pll_rate[CLOCK_ID_OSC] = clock_get_rate(CLOCK_ID_OSC);
	pll_rate[CLOCK_ID_SFROM32KHZ] = 32768;
	pll_rate[CLOCK_ID_XCPU] = clock_get_rate(CLOCK_ID_XCPU);
	debug("Osc = %d\n", pll_rate[CLOCK_ID_OSC]);
	debug("PLLM = %d\n", pll_rate[CLOCK_ID_MEMORY]);
	debug("PLLP = %d\n", pll_rate[CLOCK_ID_PERIPH]);
	debug("PLLC = %d\n", pll_rate[CLOCK_ID_CGENERAL]);
	debug("PLLX = %d\n", pll_rate[CLOCK_ID_XCPU]);

	/* Do any special system timer/TSC setup */
#if defined(CONFIG_TEGRA_SUPPORT_NON_SECURE)
	if (!tegra_cpu_is_non_secure())
#endif
		arch_timer_init();
}

static void set_avp_clock_source(u32 src)
{
	struct clk_rst_ctlr *clkrst =
			(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
	u32 val;

	val = (src << SCLK_SWAKEUP_FIQ_SOURCE_SHIFT) |
		(src << SCLK_SWAKEUP_IRQ_SOURCE_SHIFT) |
		(src << SCLK_SWAKEUP_RUN_SOURCE_SHIFT) |
		(src << SCLK_SWAKEUP_IDLE_SOURCE_SHIFT) |
		(SCLK_SYS_STATE_RUN << SCLK_SYS_STATE_SHIFT);
	writel(val, &clkrst->crc_sclk_brst_pol);
	udelay(3);
}

/*
 * This function is useful on Tegra30, and any later SoCs that have compatible
 * PLLP configuration registers.
 */
void tegra30_set_up_pllp(void)
{
	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
	u32 reg;

	/*
	 * Based on the Tegra TRM, the system clock (which is the AVP clock) can
	 * run up to 275MHz. On power on, the default sytem clock source is set
	 * to PLLP_OUT0. This function sets PLLP's (hence PLLP_OUT0's) rate to
	 * 408MHz which is beyond system clock's upper limit.
	 *
	 * The fix is to set the system clock to CLK_M before initializing PLLP,
	 * and then switch back to PLLP_OUT4, which has an appropriate divider
	 * configured, after PLLP has been configured
	 */
	set_avp_clock_source(SCLK_SOURCE_CLKM);

	/*
	 * PLLP output frequency set to 408Mhz
	 * PLLC output frequency set to 228Mhz
	 */
	switch (clock_get_osc_freq()) {
	case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
		clock_set_rate(CLOCK_ID_PERIPH, 408, 12, 0, 8);
		clock_set_rate(CLOCK_ID_CGENERAL, 456, 12, 1, 8);
		break;

	case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
		clock_set_rate(CLOCK_ID_PERIPH, 408, 26, 0, 8);
		clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
		break;

	case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
		clock_set_rate(CLOCK_ID_PERIPH, 408, 13, 0, 8);
		clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
		break;
	case CLOCK_OSC_FREQ_19_2:
	default:
		/*
		 * These are not supported. It is too early to print a
		 * message and the UART likely won't work anyway due to the
		 * oscillator being wrong.
		 */
		break;
	}

	/* Set PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */

	/* OUT1, 2 */
	/* Assert RSTN before enable */
	reg = PLLP_OUT2_RSTN_EN | PLLP_OUT1_RSTN_EN;
	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);
	/* Set divisor and reenable */
	reg = (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO)
		| PLLP_OUT2_OVR | PLLP_OUT2_CLKEN | PLLP_OUT2_RSTN_DIS
		| (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO)
		| PLLP_OUT1_OVR | PLLP_OUT1_CLKEN | PLLP_OUT1_RSTN_DIS;
	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[0]);

	/* OUT3, 4 */
	/* Assert RSTN before enable */
	reg = PLLP_OUT4_RSTN_EN | PLLP_OUT3_RSTN_EN;
	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);
	/* Set divisor and reenable */
	reg = (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO)
		| PLLP_OUT4_OVR | PLLP_OUT4_CLKEN | PLLP_OUT4_RSTN_DIS
		| (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO)
		| PLLP_OUT3_OVR | PLLP_OUT3_CLKEN | PLLP_OUT3_RSTN_DIS;
	writel(reg, &clkrst->crc_pll[CLOCK_ID_PERIPH].pll_out[1]);

	set_avp_clock_source(SCLK_SOURCE_PLLP_OUT4);
}