altera_tse.c 26.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
/*
 * Altera 10/100/1000 triple speed ethernet mac driver
 *
 * Copyright (C) 2008 Altera Corporation.
 * Copyright (C) 2010 Thomas Chou <thomas@wytron.com.tw>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <config.h>
#include <common.h>
#include <malloc.h>
#include <net.h>
#include <command.h>
#include <asm/cache.h>
#include <asm/dma-mapping.h>
#include <miiphy.h>
#include "altera_tse.h"

/* sgdma debug - print descriptor */
static void alt_sgdma_print_desc(volatile struct alt_sgdma_descriptor *desc)
{
	debug("SGDMA DEBUG :\n");
	debug("desc->source : 0x%x \n", (unsigned int)desc->source);
	debug("desc->destination : 0x%x \n", (unsigned int)desc->destination);
	debug("desc->next : 0x%x \n", (unsigned int)desc->next);
	debug("desc->source_pad : 0x%x \n", (unsigned int)desc->source_pad);
	debug("desc->destination_pad : 0x%x \n",
	      (unsigned int)desc->destination_pad);
	debug("desc->next_pad : 0x%x \n", (unsigned int)desc->next_pad);
	debug("desc->bytes_to_transfer : 0x%x \n",
	      (unsigned int)desc->bytes_to_transfer);
	debug("desc->actual_bytes_transferred : 0x%x \n",
	      (unsigned int)desc->actual_bytes_transferred);
	debug("desc->descriptor_status : 0x%x \n",
	      (unsigned int)desc->descriptor_status);
	debug("desc->descriptor_control : 0x%x \n",
	      (unsigned int)desc->descriptor_control);
}

/* This is a generic routine that the SGDMA mode-specific routines
 * call to populate a descriptor.
 * arg1	    :pointer to first SGDMA descriptor.
 * arg2	    :pointer to next  SGDMA descriptor.
 * arg3	    :Address to where data to be written.
 * arg4	    :Address from where data to be read.
 * arg5	    :no of byte to transaction.
 * arg6	    :variable indicating to generate start of packet or not
 * arg7	    :read fixed
 * arg8	    :write fixed
 * arg9	    :read burst
 * arg10    :write burst
 * arg11    :atlantic_channel number
 */
static void alt_sgdma_construct_descriptor_burst(
	volatile struct alt_sgdma_descriptor *desc,
	volatile struct alt_sgdma_descriptor *next,
	unsigned int *read_addr,
	unsigned int *write_addr,
	unsigned short length_or_eop,
	int generate_eop,
	int read_fixed,
	int write_fixed_or_sop,
	int read_burst,
	int write_burst,
	unsigned char atlantic_channel)
{
	/*
	 * Mark the "next" descriptor as "not" owned by hardware. This prevents
	 * The SGDMA controller from continuing to process the chain. This is
	 * done as a single IO write to bypass cache, without flushing
	 * the entire descriptor, since only the 8-bit descriptor status must
	 * be flushed.
	 */
	if (!next)
		debug("Next descriptor not defined!!\n");

	next->descriptor_control = (next->descriptor_control &
		~ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK);

	desc->source = (unsigned int *)((unsigned int)read_addr & 0x1FFFFFFF);
	desc->destination =
	    (unsigned int *)((unsigned int)write_addr & 0x1FFFFFFF);
	desc->next = (unsigned int *)((unsigned int)next & 0x1FFFFFFF);
	desc->source_pad = 0x0;
	desc->destination_pad = 0x0;
	desc->next_pad = 0x0;
	desc->bytes_to_transfer = length_or_eop;
	desc->actual_bytes_transferred = 0;
	desc->descriptor_status = 0x0;

	/* SGDMA burst not currently supported */
	desc->read_burst = 0;
	desc->write_burst = 0;

	/*
	 * Set the descriptor control block as follows:
	 * - Set "owned by hardware" bit
	 * - Optionally set "generate EOP" bit
	 * - Optionally set the "read from fixed address" bit
	 * - Optionally set the "write to fixed address bit (which serves
	 *   serves as a "generate SOP" control bit in memory-to-stream mode).
	 * - Set the 4-bit atlantic channel, if specified
	 *
	 * Note this step is performed after all other descriptor information
	 * has been filled out so that, if the controller already happens to be
	 * pointing at this descriptor, it will not run (via the "owned by
	 * hardware" bit) until all other descriptor has been set up.
	 */

	desc->descriptor_control =
	    ((ALT_SGDMA_DESCRIPTOR_CONTROL_OWNED_BY_HW_MSK) |
	     (generate_eop ?
	      ALT_SGDMA_DESCRIPTOR_CONTROL_GENERATE_EOP_MSK : 0x0) |
	     (read_fixed ?
	      ALT_SGDMA_DESCRIPTOR_CONTROL_READ_FIXED_ADDRESS_MSK : 0x0) |
	     (write_fixed_or_sop ?
	      ALT_SGDMA_DESCRIPTOR_CONTROL_WRITE_FIXED_ADDRESS_MSK : 0x0) |
	     (atlantic_channel ? ((atlantic_channel & 0x0F) << 3) : 0)
		    );
}

static int alt_sgdma_do_sync_transfer(volatile struct alt_sgdma_registers *dev,
			       volatile struct alt_sgdma_descriptor *desc)
{
	unsigned int status;
	int counter = 0;

	/* Wait for any pending transfers to complete */
	alt_sgdma_print_desc(desc);
	status = dev->status;

	counter = 0;
	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
			break;
	}

	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
		debug("Timeout waiting sgdma in do sync!\n");

	/*
	 * Clear any (previous) status register information
	 * that might occlude our error checking later.
	 */
	dev->status = 0xFF;

	/* Point the controller at the descriptor */
	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;
	debug("next desc in sgdma 0x%x\n",
	      (unsigned int)dev->next_descriptor_pointer);

	/*
	 * Set up SGDMA controller to:
	 * - Disable interrupt generation
	 * - Run once a valid descriptor is written to controller
	 * - Stop on an error with any particular descriptor
	 */
	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);

	/* Wait for the descriptor (chain) to complete */
	status = dev->status;
	debug("wait for sgdma....");
	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK)
		;
	debug("done\n");

	/* Clear Run */
	dev->control = (dev->control & (~ALT_SGDMA_CONTROL_RUN_MSK));

	/* Get & clear status register contents */
	status = dev->status;
	dev->status = 0xFF;

	/* we really should check if the transfer completes properly */
	debug("tx sgdma status = 0x%x", status);
	return 0;
}

static int alt_sgdma_do_async_transfer(volatile struct alt_sgdma_registers *dev,
				volatile struct alt_sgdma_descriptor *desc)
{
	unsigned int status;
	int counter = 0;

	/* Wait for any pending transfers to complete */
	alt_sgdma_print_desc(desc);
	status = dev->status;

	counter = 0;
	while (dev->status & ALT_SGDMA_STATUS_BUSY_MSK) {
		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
			break;
	}

	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
		debug("Timeout waiting sgdma in do async!\n");

	/*
	 * Clear the RUN bit in the control register. This is needed
	 * to restart the SGDMA engine later on.
	 */
	dev->control = 0;

	/*
	 * Clear any (previous) status register information
	 * that might occlude our error checking later.
	 */
	dev->status = 0xFF;

	/* Point the controller at the descriptor */
	dev->next_descriptor_pointer = (unsigned int)desc & 0x1FFFFFFF;

	/*
	 * Set up SGDMA controller to:
	 * - Disable interrupt generation
	 * - Run once a valid descriptor is written to controller
	 * - Stop on an error with any particular descriptor
	 */
	dev->control = (ALT_SGDMA_CONTROL_RUN_MSK |
			ALT_SGDMA_CONTROL_STOP_DMA_ER_MSK);

	/* we really should check if the transfer completes properly */
	return 0;
}

/* u-boot interface */
static int tse_adjust_link(struct altera_tse_priv *priv)
{
	unsigned int refvar;

	refvar = priv->mac_dev->command_config.image;

	if (!(priv->duplexity))
		refvar |= ALTERA_TSE_CMD_HD_ENA_MSK;
	else
		refvar &= ~ALTERA_TSE_CMD_HD_ENA_MSK;

	switch (priv->speed) {
	case 1000:
		refvar |= ALTERA_TSE_CMD_ETH_SPEED_MSK;
		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
		break;
	case 100:
		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
		refvar &= ~ALTERA_TSE_CMD_ENA_10_MSK;
		break;
	case 10:
		refvar &= ~ALTERA_TSE_CMD_ETH_SPEED_MSK;
		refvar |= ALTERA_TSE_CMD_ENA_10_MSK;
		break;
	}
	priv->mac_dev->command_config.image = refvar;

	return 0;
}

static int tse_eth_send(struct eth_device *dev, void *packet, int length)
{
	struct altera_tse_priv *priv = dev->priv;
	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
	volatile struct alt_sgdma_descriptor *tx_desc =
	    (volatile struct alt_sgdma_descriptor *)priv->tx_desc;

	volatile struct alt_sgdma_descriptor *tx_desc_cur =
	    (volatile struct alt_sgdma_descriptor *)&tx_desc[0];

	flush_dcache_range((unsigned long)packet,
			(unsigned long)packet + length);
	alt_sgdma_construct_descriptor_burst(
		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
		(unsigned int *)packet,	/* read addr */
		(unsigned int *)0,
		length,	/* length or EOP ,will change for each tx */
		0x1,	/* gen eop */
		0x0,	/* read fixed */
		0x1,	/* write fixed or sop */
		0x0,	/* read burst */
		0x0,	/* write burst */
		0x0	/* channel */
		);
	debug("TX Packet @ 0x%x,0x%x bytes", (unsigned int)packet, length);

	/* send the packet */
	debug("sending packet\n");
	alt_sgdma_do_sync_transfer(tx_sgdma, tx_desc_cur);
	debug("sent %d bytes\n", tx_desc_cur->actual_bytes_transferred);
	return tx_desc_cur->actual_bytes_transferred;
}

static int tse_eth_rx(struct eth_device *dev)
{
	int packet_length = 0;
	struct altera_tse_priv *priv = dev->priv;
	volatile struct alt_sgdma_descriptor *rx_desc =
	    (volatile struct alt_sgdma_descriptor *)priv->rx_desc;
	volatile struct alt_sgdma_descriptor *rx_desc_cur = &rx_desc[0];

	if (rx_desc_cur->descriptor_status &
	    ALT_SGDMA_DESCRIPTOR_STATUS_TERMINATED_BY_EOP_MSK) {
		debug("got packet\n");
		packet_length = rx_desc->actual_bytes_transferred;
		NetReceive(NetRxPackets[0], packet_length);

		/* start descriptor again */
		flush_dcache_range((unsigned long)(NetRxPackets[0]),
			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
		alt_sgdma_construct_descriptor_burst(
			(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
			(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
			(unsigned int)0x0,	/* read addr */
			(unsigned int *)NetRxPackets[0],
			0x0,	/* length or EOP */
			0x0,	/* gen eop */
			0x0,	/* read fixed */
			0x0,	/* write fixed or sop */
			0x0,	/* read burst */
			0x0,	/* write burst */
			0x0	/* channel */
		    );

		/* setup the sgdma */
		alt_sgdma_do_async_transfer(priv->sgdma_rx, &rx_desc[0]);

		return packet_length;
	}

	return -1;
}

static void tse_eth_halt(struct eth_device *dev)
{
	/* don't do anything! */
	/* this gets called after each uboot  */
	/* network command.  don't need to reset the thing all of the time */
}

static void tse_eth_reset(struct eth_device *dev)
{
	/* stop sgdmas, disable tse receive */
	struct altera_tse_priv *priv = dev->priv;
	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
	volatile struct alt_sgdma_registers *rx_sgdma = priv->sgdma_rx;
	volatile struct alt_sgdma_registers *tx_sgdma = priv->sgdma_tx;
	int counter;
	volatile struct alt_sgdma_descriptor *rx_desc =
	    (volatile struct alt_sgdma_descriptor *)&priv->rx_desc[0];

	/* clear rx desc & wait for sgdma to complete */
	rx_desc->descriptor_control = 0;
	rx_sgdma->control = 0;
	counter = 0;
	while (rx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
			break;
	}

	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
		debug("Timeout waiting for rx sgdma!\n");
		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
		rx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
	}

	counter = 0;
	tx_sgdma->control = 0;
	while (tx_sgdma->status & ALT_SGDMA_STATUS_BUSY_MSK) {
		if (counter++ > ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR)
			break;
	}

	if (counter >= ALT_TSE_SGDMA_BUSY_WATCHDOG_CNTR) {
		debug("Timeout waiting for tx sgdma!\n");
		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
		tx_sgdma->control = ALT_SGDMA_CONTROL_SOFTWARERESET_MSK;
	}
	/* reset the mac */
	mac_dev->command_config.bits.transmit_enable = 1;
	mac_dev->command_config.bits.receive_enable = 1;
	mac_dev->command_config.bits.software_reset = 1;

	counter = 0;
	while (mac_dev->command_config.bits.software_reset) {
		if (counter++ > ALT_TSE_SW_RESET_WATCHDOG_CNTR)
			break;
	}

	if (counter >= ALT_TSE_SW_RESET_WATCHDOG_CNTR)
		debug("TSEMAC SW reset bit never cleared!\n");
}

static int tse_mdio_read(struct altera_tse_priv *priv, unsigned int regnum)
{
	volatile struct alt_tse_mac *mac_dev;
	unsigned int *mdio_regs;
	unsigned int data;
	u16 value;

	mac_dev = priv->mac_dev;

	/* set mdio address */
	mac_dev->mdio_phy1_addr = priv->phyaddr;
	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;

	/* get the data */
	data = mdio_regs[regnum];

	value = data & 0xffff;

	return value;
}

static int tse_mdio_write(struct altera_tse_priv *priv, unsigned int regnum,
		   unsigned int value)
{
	volatile struct alt_tse_mac *mac_dev;
	unsigned int *mdio_regs;
	unsigned int data;

	mac_dev = priv->mac_dev;

	/* set mdio address */
	mac_dev->mdio_phy1_addr = priv->phyaddr;
	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;

	/* get the data */
	data = (unsigned int)value;

	mdio_regs[regnum] = data;

	return 0;
}

/* MDIO access to phy */
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
static int altera_tse_miiphy_write(const char *devname, unsigned char addr,
				   unsigned char reg, unsigned short value)
{
	struct eth_device *dev;
	struct altera_tse_priv *priv;
	dev = eth_get_dev_by_name(devname);
	priv = dev->priv;

	tse_mdio_write(priv, (uint) reg, (uint) value);

	return 0;
}

static int altera_tse_miiphy_read(const char *devname, unsigned char addr,
				  unsigned char reg, unsigned short *value)
{
	struct eth_device *dev;
	struct altera_tse_priv *priv;
	volatile struct alt_tse_mac *mac_dev;
	unsigned int *mdio_regs;

	dev = eth_get_dev_by_name(devname);
	priv = dev->priv;

	mac_dev = priv->mac_dev;
	mac_dev->mdio_phy1_addr = (int)addr;
	mdio_regs = (unsigned int *)&mac_dev->mdio_phy1;

	*value = 0xffff & mdio_regs[reg];

	return 0;

}
#endif

/*
 * Also copied from tsec.c
 */
/* Parse the status register for link, and then do
 * auto-negotiation
 */
static uint mii_parse_sr(uint mii_reg, struct altera_tse_priv *priv)
{
	/*
	 * Wait if the link is up, and autonegotiation is in progress
	 * (ie - we're capable and it's not done)
	 */
	mii_reg = tse_mdio_read(priv, MIIM_STATUS);

	if (!(mii_reg & MIIM_STATUS_LINK) && (mii_reg & BMSR_ANEGCAPABLE)
	    && !(mii_reg & BMSR_ANEGCOMPLETE)) {
		int i = 0;

		puts("Waiting for PHY auto negotiation to complete");
		while (!(mii_reg & BMSR_ANEGCOMPLETE)) {
			/*
			 * Timeout reached ?
			 */
			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
				puts(" TIMEOUT !\n");
				priv->link = 0;
				return 0;
			}

			if ((i++ % 1000) == 0)
				putc('.');
			udelay(1000);	/* 1 ms */
			mii_reg = tse_mdio_read(priv, MIIM_STATUS);
		}
		puts(" done\n");
		priv->link = 1;
		udelay(500000);	/* another 500 ms (results in faster booting) */
	} else {
		if (mii_reg & MIIM_STATUS_LINK) {
			debug("Link is up\n");
			priv->link = 1;
		} else {
			debug("Link is down\n");
			priv->link = 0;
		}
	}

	return 0;
}

/* Parse the 88E1011's status register for speed and duplex
 * information
 */
static uint mii_parse_88E1011_psr(uint mii_reg, struct altera_tse_priv *priv)
{
	uint speed;

	mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);

	if ((mii_reg & MIIM_88E1011_PHYSTAT_LINK) &&
	    !(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
		int i = 0;

		puts("Waiting for PHY realtime link");
		while (!(mii_reg & MIIM_88E1011_PHYSTAT_SPDDONE)) {
			/* Timeout reached ? */
			if (i > PHY_AUTONEGOTIATE_TIMEOUT) {
				puts(" TIMEOUT !\n");
				priv->link = 0;
				break;
			}

			if ((i++ == 1000) == 0) {
				i = 0;
				puts(".");
			}
			udelay(1000);	/* 1 ms */
			mii_reg = tse_mdio_read(priv, MIIM_88E1011_PHY_STATUS);
		}
		puts(" done\n");
		udelay(500000);	/* another 500 ms (results in faster booting) */
	} else {
		if (mii_reg & MIIM_88E1011_PHYSTAT_LINK)
			priv->link = 1;
		else
			priv->link = 0;
	}

	if (mii_reg & MIIM_88E1011_PHYSTAT_DUPLEX)
		priv->duplexity = 1;
	else
		priv->duplexity = 0;

	speed = (mii_reg & MIIM_88E1011_PHYSTAT_SPEED);

	switch (speed) {
	case MIIM_88E1011_PHYSTAT_GBIT:
		priv->speed = 1000;
		debug("PHY Speed is 1000Mbit\n");
		break;
	case MIIM_88E1011_PHYSTAT_100:
		debug("PHY Speed is 100Mbit\n");
		priv->speed = 100;
		break;
	default:
		debug("PHY Speed is 10Mbit\n");
		priv->speed = 10;
	}

	return 0;
}

static uint mii_m88e1111s_setmode_sr(uint mii_reg, struct altera_tse_priv *priv)
{
	uint mii_data = tse_mdio_read(priv, mii_reg);
	mii_data &= 0xfff0;
	if ((priv->flags >= 1) && (priv->flags <= 4))
		mii_data |= 0xb;
	else if (priv->flags == 5)
		mii_data |= 0x4;

	return mii_data;
}

static uint mii_m88e1111s_setmode_cr(uint mii_reg, struct altera_tse_priv *priv)
{
	uint mii_data = tse_mdio_read(priv, mii_reg);
	mii_data &= ~0x82;
	if ((priv->flags >= 1) && (priv->flags <= 4))
		mii_data |= 0x82;

	return mii_data;
}

/*
 * Returns which value to write to the control register.
 * For 10/100, the value is slightly different
 */
static uint mii_cr_init(uint mii_reg, struct altera_tse_priv *priv)
{
	return MIIM_CONTROL_INIT;
}

/*
 * PHY & MDIO code
 * Need to add SGMII stuff
 *
 */

static struct phy_info phy_info_M88E1111S = {
	0x01410cc,
	"Marvell 88E1111S",
	4,
	(struct phy_cmd[]){	/* config */
			   /* Reset and configure the PHY */
			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
			   {MIIM_88E1111_PHY_EXT_SR, 0x848f,
			    &mii_m88e1111s_setmode_sr},
			   /* Delay RGMII TX and RX */
			   {MIIM_88E1111_PHY_EXT_CR, 0x0cd2,
			    &mii_m88e1111s_setmode_cr},
			   {MIIM_GBIT_CONTROL, MIIM_GBIT_CONTROL_INIT, NULL},
			   {MIIM_ANAR, MIIM_ANAR_INIT, NULL},
			   {MIIM_CONTROL, MIIM_CONTROL_RESET, NULL},
			   {MIIM_CONTROL, MIIM_CONTROL_INIT, &mii_cr_init},
			   {miim_end,}
			   },
	(struct phy_cmd[]){	/* startup */
			   /* Status is read once to clear old link state */
			   {MIIM_STATUS, miim_read, NULL},
			   /* Auto-negotiate */
			   {MIIM_STATUS, miim_read, &mii_parse_sr},
			   /* Read the status */
			   {MIIM_88E1011_PHY_STATUS, miim_read,
			    &mii_parse_88E1011_psr},
			   {miim_end,}
			   },
	(struct phy_cmd[]){	/* shutdown */
			   {miim_end,}
			   },
};

/* a generic flavor.  */
static struct phy_info phy_info_generic = {
	0,
	"Unknown/Generic PHY",
	32,
	(struct phy_cmd[]){	/* config */
			   {MII_BMCR, BMCR_RESET, NULL},
			   {MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART, NULL},
			   {miim_end,}
			   },
	(struct phy_cmd[]){	/* startup */
			   {MII_BMSR, miim_read, NULL},
			   {MII_BMSR, miim_read, &mii_parse_sr},
			   {miim_end,}
			   },
	(struct phy_cmd[]){	/* shutdown */
			   {miim_end,}
			   }
};

static struct phy_info *phy_info[] = {
	&phy_info_M88E1111S,
	NULL
};

 /* Grab the identifier of the device's PHY, and search through
  * all of the known PHYs to see if one matches.	 If so, return
  * it, if not, return NULL
  */
static struct phy_info *get_phy_info(struct eth_device *dev)
{
	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
	uint phy_reg, phy_ID;
	int i;
	struct phy_info *theInfo = NULL;

	/* Grab the bits from PHYIR1, and put them in the upper half */
	phy_reg = tse_mdio_read(priv, MIIM_PHYIR1);
	phy_ID = (phy_reg & 0xffff) << 16;

	/* Grab the bits from PHYIR2, and put them in the lower half */
	phy_reg = tse_mdio_read(priv, MIIM_PHYIR2);
	phy_ID |= (phy_reg & 0xffff);

	/* loop through all the known PHY types, and find one that */
	/* matches the ID we read from the PHY. */
	for (i = 0; phy_info[i]; i++) {
		if (phy_info[i]->id == (phy_ID >> phy_info[i]->shift)) {
			theInfo = phy_info[i];
			break;
		}
	}

	if (theInfo == NULL) {
		theInfo = &phy_info_generic;
		debug("%s: No support for PHY id %x; assuming generic\n",
		      dev->name, phy_ID);
	} else
		debug("%s: PHY is %s (%x)\n", dev->name, theInfo->name, phy_ID);

	return theInfo;
}

/* Execute the given series of commands on the given device's
 * PHY, running functions as necessary
 */
static void phy_run_commands(struct altera_tse_priv *priv, struct phy_cmd *cmd)
{
	int i;
	uint result;

	for (i = 0; cmd->mii_reg != miim_end; i++) {
		if (cmd->mii_data == miim_read) {
			result = tse_mdio_read(priv, cmd->mii_reg);

			if (cmd->funct != NULL)
				(*(cmd->funct)) (result, priv);

		} else {
			if (cmd->funct != NULL)
				result = (*(cmd->funct)) (cmd->mii_reg, priv);
			else
				result = cmd->mii_data;

			tse_mdio_write(priv, cmd->mii_reg, result);

		}
		cmd++;
	}
}

/* Phy init code */
static int init_phy(struct eth_device *dev)
{
	struct altera_tse_priv *priv = (struct altera_tse_priv *)dev->priv;
	struct phy_info *curphy;

	/* Get the cmd structure corresponding to the attached
	 * PHY */
	curphy = get_phy_info(dev);

	if (curphy == NULL) {
		priv->phyinfo = NULL;
		debug("%s: No PHY found\n", dev->name);

		return 0;
	} else
		debug("%s found\n", curphy->name);
	priv->phyinfo = curphy;

	phy_run_commands(priv, priv->phyinfo->config);

	return 1;
}

static int tse_set_mac_address(struct eth_device *dev)
{
	struct altera_tse_priv *priv = dev->priv;
	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;

	debug("Setting MAC address to 0x%02x%02x%02x%02x%02x%02x\n",
	      dev->enetaddr[5], dev->enetaddr[4],
	      dev->enetaddr[3], dev->enetaddr[2],
	      dev->enetaddr[1], dev->enetaddr[0]);
	mac_dev->mac_addr_0 = ((dev->enetaddr[3]) << 24 |
			       (dev->enetaddr[2]) << 16 |
			       (dev->enetaddr[1]) << 8 | (dev->enetaddr[0]));

	mac_dev->mac_addr_1 = ((dev->enetaddr[5] << 8 |
				(dev->enetaddr[4])) & 0xFFFF);

	/* Set the MAC address */
	mac_dev->supp_mac_addr_0_0 = mac_dev->mac_addr_0;
	mac_dev->supp_mac_addr_0_1 = mac_dev->mac_addr_1;

	/* Set the MAC address */
	mac_dev->supp_mac_addr_1_0 = mac_dev->mac_addr_0;
	mac_dev->supp_mac_addr_1_1 = mac_dev->mac_addr_1;

	/* Set the MAC address */
	mac_dev->supp_mac_addr_2_0 = mac_dev->mac_addr_0;
	mac_dev->supp_mac_addr_2_1 = mac_dev->mac_addr_1;

	/* Set the MAC address */
	mac_dev->supp_mac_addr_3_0 = mac_dev->mac_addr_0;
	mac_dev->supp_mac_addr_3_1 = mac_dev->mac_addr_1;
	return 0;
}

static int tse_eth_init(struct eth_device *dev, bd_t * bd)
{
	int dat;
	struct altera_tse_priv *priv = dev->priv;
	volatile struct alt_tse_mac *mac_dev = priv->mac_dev;
	volatile struct alt_sgdma_descriptor *tx_desc = priv->tx_desc;
	volatile struct alt_sgdma_descriptor *rx_desc = priv->rx_desc;
	volatile struct alt_sgdma_descriptor *rx_desc_cur =
	    (volatile struct alt_sgdma_descriptor *)&rx_desc[0];

	/* stop controller */
	debug("Reseting TSE & SGDMAs\n");
	tse_eth_reset(dev);

	/* start the phy */
	debug("Configuring PHY\n");
	phy_run_commands(priv, priv->phyinfo->startup);

	/* need to create sgdma */
	debug("Configuring tx desc\n");
	alt_sgdma_construct_descriptor_burst(
		(volatile struct alt_sgdma_descriptor *)&tx_desc[0],
		(volatile struct alt_sgdma_descriptor *)&tx_desc[1],
		(unsigned int *)NULL,	/* read addr */
		(unsigned int *)0,
		0,	/* length or EOP ,will change for each tx */
		0x1,	/* gen eop */
		0x0,	/* read fixed */
		0x1,	/* write fixed or sop */
		0x0,	/* read burst */
		0x0,	/* write burst */
		0x0	/* channel */
		);
	debug("Configuring rx desc\n");
	flush_dcache_range((unsigned long)(NetRxPackets[0]),
			(unsigned long)(NetRxPackets[0]) + PKTSIZE_ALIGN);
	alt_sgdma_construct_descriptor_burst(
		(volatile struct alt_sgdma_descriptor *)&rx_desc[0],
		(volatile struct alt_sgdma_descriptor *)&rx_desc[1],
		(unsigned int)0x0,	/* read addr */
		(unsigned int *)NetRxPackets[0],
		0x0,	/* length or EOP */
		0x0,	/* gen eop */
		0x0,	/* read fixed */
		0x0,	/* write fixed or sop */
		0x0,	/* read burst */
		0x0,	/* write burst */
		0x0	/* channel */
		);
	/* start rx async transfer */
	debug("Starting rx sgdma\n");
	alt_sgdma_do_async_transfer(priv->sgdma_rx, rx_desc_cur);

	/* start TSE */
	debug("Configuring TSE Mac\n");
	/* Initialize MAC registers */
	mac_dev->max_frame_length = PKTSIZE_ALIGN;
	mac_dev->rx_almost_empty_threshold = 8;
	mac_dev->rx_almost_full_threshold = 8;
	mac_dev->tx_almost_empty_threshold = 8;
	mac_dev->tx_almost_full_threshold = 3;
	mac_dev->tx_sel_empty_threshold =
	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
	mac_dev->tx_sel_full_threshold = 0;
	mac_dev->rx_sel_empty_threshold =
	    CONFIG_SYS_ALTERA_TSE_TX_FIFO - 16;
	mac_dev->rx_sel_full_threshold = 0;

	/* NO Shift */
	mac_dev->rx_cmd_stat.bits.rx_shift16 = 0;
	mac_dev->tx_cmd_stat.bits.tx_shift16 = 0;

	/* enable MAC */
	dat = 0;
	dat = ALTERA_TSE_CMD_TX_ENA_MSK | ALTERA_TSE_CMD_RX_ENA_MSK;

	mac_dev->command_config.image = dat;

	/* configure the TSE core  */
	/*  -- output clocks,  */
	/*  -- and later config stuff for SGMII */
	if (priv->link) {
		debug("Adjusting TSE to link speed\n");
		tse_adjust_link(priv);
	}

	return priv->link ? 0 : -1;
}

/* TSE init code */
int altera_tse_initialize(u8 dev_num, int mac_base,
			  int sgdma_rx_base, int sgdma_tx_base,
			  u32 sgdma_desc_base, u32 sgdma_desc_size)
{
	struct altera_tse_priv *priv;
	struct eth_device *dev;
	struct alt_sgdma_descriptor *rx_desc;
	struct alt_sgdma_descriptor *tx_desc;
	unsigned long dma_handle;

	dev = (struct eth_device *)malloc(sizeof *dev);

	if (NULL == dev)
		return 0;

	memset(dev, 0, sizeof *dev);

	priv = malloc(sizeof(*priv));

	if (!priv) {
		free(dev);
		return 0;
	}
	if (sgdma_desc_size) {
		if (sgdma_desc_size < (sizeof(*tx_desc) * (3 + PKTBUFSRX))) {
			printf("ALTERA_TSE-%hu: "
			       "descriptor memory is too small\n", dev_num);
			free(priv);
			free(dev);
			return 0;
		}
		tx_desc = (struct alt_sgdma_descriptor *)sgdma_desc_base;
	} else {
		tx_desc = dma_alloc_coherent(sizeof(*tx_desc) * (3 + PKTBUFSRX),
					     &dma_handle);
	}

	rx_desc = tx_desc + 2;
	debug("tx desc: address = 0x%x\n", (unsigned int)tx_desc);
	debug("rx desc: address = 0x%x\n", (unsigned int)rx_desc);

	if (!tx_desc) {
		free(priv);
		free(dev);
		return 0;
	}
	memset(rx_desc, 0, (sizeof *rx_desc) * (PKTBUFSRX + 1));
	memset(tx_desc, 0, (sizeof *tx_desc) * 2);

	/* initialize tse priv */
	priv->mac_dev = (volatile struct alt_tse_mac *)mac_base;
	priv->sgdma_rx = (volatile struct alt_sgdma_registers *)sgdma_rx_base;
	priv->sgdma_tx = (volatile struct alt_sgdma_registers *)sgdma_tx_base;
	priv->phyaddr = CONFIG_SYS_ALTERA_TSE_PHY_ADDR;
	priv->flags = CONFIG_SYS_ALTERA_TSE_FLAGS;
	priv->rx_desc = rx_desc;
	priv->tx_desc = tx_desc;

	/* init eth structure */
	dev->priv = priv;
	dev->init = tse_eth_init;
	dev->halt = tse_eth_halt;
	dev->send = tse_eth_send;
	dev->recv = tse_eth_rx;
	dev->write_hwaddr = tse_set_mac_address;
	sprintf(dev->name, "%s-%hu", "ALTERA_TSE", dev_num);

	eth_register(dev);

#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) && !defined(BITBANGMII)
	miiphy_register(dev->name, altera_tse_miiphy_read,
			altera_tse_miiphy_write);
#endif

	init_phy(dev);

	return 1;
}