dlmalloc.c 71 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
#include <common.h>

#if defined(CONFIG_UNIT_TEST)
#define DEBUG
#endif

#include <malloc.h>
#include <asm/io.h>

#ifdef DEBUG
#if __STD_C
static void malloc_update_mallinfo (void);
void malloc_stats (void);
#else
static void malloc_update_mallinfo ();
void malloc_stats();
#endif
#endif	/* DEBUG */

DECLARE_GLOBAL_DATA_PTR;

/*
  Emulation of sbrk for WIN32
  All code within the ifdef WIN32 is untested by me.

  Thanks to Martin Fong and others for supplying this.
*/


#ifdef WIN32

#define AlignPage(add) (((add) + (malloc_getpagesize-1)) & \
~(malloc_getpagesize-1))
#define AlignPage64K(add) (((add) + (0x10000 - 1)) & ~(0x10000 - 1))

/* resrve 64MB to insure large contiguous space */
#define RESERVED_SIZE (1024*1024*64)
#define NEXT_SIZE (2048*1024)
#define TOP_MEMORY ((unsigned long)2*1024*1024*1024)

struct GmListElement;
typedef struct GmListElement GmListElement;

struct GmListElement
{
	GmListElement* next;
	void* base;
};

static GmListElement* head = 0;
static unsigned int gNextAddress = 0;
static unsigned int gAddressBase = 0;
static unsigned int gAllocatedSize = 0;

static
GmListElement* makeGmListElement (void* bas)
{
	GmListElement* this;
	this = (GmListElement*)(void*)LocalAlloc (0, sizeof (GmListElement));
	assert (this);
	if (this)
	{
		this->base = bas;
		this->next = head;
		head = this;
	}
	return this;
}

void gcleanup ()
{
	BOOL rval;
	assert ( (head == NULL) || (head->base == (void*)gAddressBase));
	if (gAddressBase && (gNextAddress - gAddressBase))
	{
		rval = VirtualFree ((void*)gAddressBase,
							gNextAddress - gAddressBase,
							MEM_DECOMMIT);
	assert (rval);
	}
	while (head)
	{
		GmListElement* next = head->next;
		rval = VirtualFree (head->base, 0, MEM_RELEASE);
		assert (rval);
		LocalFree (head);
		head = next;
	}
}

static
void* findRegion (void* start_address, unsigned long size)
{
	MEMORY_BASIC_INFORMATION info;
	if (size >= TOP_MEMORY) return NULL;

	while ((unsigned long)start_address + size < TOP_MEMORY)
	{
		VirtualQuery (start_address, &info, sizeof (info));
		if ((info.State == MEM_FREE) && (info.RegionSize >= size))
			return start_address;
		else
		{
			/* Requested region is not available so see if the */
			/* next region is available.  Set 'start_address' */
			/* to the next region and call 'VirtualQuery()' */
			/* again. */

			start_address = (char*)info.BaseAddress + info.RegionSize;

			/* Make sure we start looking for the next region */
			/* on the *next* 64K boundary.  Otherwise, even if */
			/* the new region is free according to */
			/* 'VirtualQuery()', the subsequent call to */
			/* 'VirtualAlloc()' (which follows the call to */
			/* this routine in 'wsbrk()') will round *down* */
			/* the requested address to a 64K boundary which */
			/* we already know is an address in the */
			/* unavailable region.  Thus, the subsequent call */
			/* to 'VirtualAlloc()' will fail and bring us back */
			/* here, causing us to go into an infinite loop. */

			start_address =
				(void *) AlignPage64K((unsigned long) start_address);
		}
	}
	return NULL;

}


void* wsbrk (long size)
{
	void* tmp;
	if (size > 0)
	{
		if (gAddressBase == 0)
		{
			gAllocatedSize = max (RESERVED_SIZE, AlignPage (size));
			gNextAddress = gAddressBase =
				(unsigned int)VirtualAlloc (NULL, gAllocatedSize,
											MEM_RESERVE, PAGE_NOACCESS);
		} else if (AlignPage (gNextAddress + size) > (gAddressBase +
gAllocatedSize))
		{
			long new_size = max (NEXT_SIZE, AlignPage (size));
			void* new_address = (void*)(gAddressBase+gAllocatedSize);
			do
			{
				new_address = findRegion (new_address, new_size);

				if (!new_address)
					return (void*)-1;

				gAddressBase = gNextAddress =
					(unsigned int)VirtualAlloc (new_address, new_size,
												MEM_RESERVE, PAGE_NOACCESS);
				/* repeat in case of race condition */
				/* The region that we found has been snagged */
				/* by another thread */
			}
			while (gAddressBase == 0);

			assert (new_address == (void*)gAddressBase);

			gAllocatedSize = new_size;

			if (!makeGmListElement ((void*)gAddressBase))
				return (void*)-1;
		}
		if ((size + gNextAddress) > AlignPage (gNextAddress))
		{
			void* res;
			res = VirtualAlloc ((void*)AlignPage (gNextAddress),
								(size + gNextAddress -
								 AlignPage (gNextAddress)),
								MEM_COMMIT, PAGE_READWRITE);
			if (!res)
				return (void*)-1;
		}
		tmp = (void*)gNextAddress;
		gNextAddress = (unsigned int)tmp + size;
		return tmp;
	}
	else if (size < 0)
	{
		unsigned int alignedGoal = AlignPage (gNextAddress + size);
		/* Trim by releasing the virtual memory */
		if (alignedGoal >= gAddressBase)
		{
			VirtualFree ((void*)alignedGoal, gNextAddress - alignedGoal,
						 MEM_DECOMMIT);
			gNextAddress = gNextAddress + size;
			return (void*)gNextAddress;
		}
		else
		{
			VirtualFree ((void*)gAddressBase, gNextAddress - gAddressBase,
						 MEM_DECOMMIT);
			gNextAddress = gAddressBase;
			return (void*)-1;
		}
	}
	else
	{
		return (void*)gNextAddress;
	}
}

#endif



/*
  Type declarations
*/


struct malloc_chunk
{
  INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
  INTERNAL_SIZE_T size;      /* Size in bytes, including overhead. */
  struct malloc_chunk* fd;   /* double links -- used only if free. */
  struct malloc_chunk* bk;
} __attribute__((__may_alias__)) ;

typedef struct malloc_chunk* mchunkptr;

/*

   malloc_chunk details:

    (The following includes lightly edited explanations by Colin Plumb.)

    Chunks of memory are maintained using a `boundary tag' method as
    described in e.g., Knuth or Standish.  (See the paper by Paul
    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
    survey of such techniques.)  Sizes of free chunks are stored both
    in the front of each chunk and at the end.  This makes
    consolidating fragmented chunks into bigger chunks very fast.  The
    size fields also hold bits representing whether chunks are free or
    in use.

    An allocated chunk looks like this:


    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Size of previous chunk, if allocated            | |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Size of chunk, in bytes                         |P|
      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             User data starts here...                          .
	    .                                                               .
	    .             (malloc_usable_space() bytes)                     .
	    .                                                               |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Size of chunk                                     |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


    Where "chunk" is the front of the chunk for the purpose of most of
    the malloc code, but "mem" is the pointer that is returned to the
    user.  "Nextchunk" is the beginning of the next contiguous chunk.

    Chunks always begin on even word boundries, so the mem portion
    (which is returned to the user) is also on an even word boundary, and
    thus double-word aligned.

    Free chunks are stored in circular doubly-linked lists, and look like this:

    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Size of previous chunk                            |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    `head:' |             Size of chunk, in bytes                         |P|
      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Forward pointer to next chunk in list             |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Back pointer to previous chunk in list            |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
	    |             Unused space (may be 0 bytes long)                .
	    .                                                               .
	    .                                                               |
nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
    `foot:' |             Size of chunk, in bytes                           |
	    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
    chunk size (which is always a multiple of two words), is an in-use
    bit for the *previous* chunk.  If that bit is *clear*, then the
    word before the current chunk size contains the previous chunk
    size, and can be used to find the front of the previous chunk.
    (The very first chunk allocated always has this bit set,
    preventing access to non-existent (or non-owned) memory.)

    Note that the `foot' of the current chunk is actually represented
    as the prev_size of the NEXT chunk. (This makes it easier to
    deal with alignments etc).

    The two exceptions to all this are

     1. The special chunk `top', which doesn't bother using the
	trailing size field since there is no
	next contiguous chunk that would have to index off it. (After
	initialization, `top' is forced to always exist.  If it would
	become less than MINSIZE bytes long, it is replenished via
	malloc_extend_top.)

     2. Chunks allocated via mmap, which have the second-lowest-order
	bit (IS_MMAPPED) set in their size fields.  Because they are
	never merged or traversed from any other chunk, they have no
	foot size or inuse information.

    Available chunks are kept in any of several places (all declared below):

    * `av': An array of chunks serving as bin headers for consolidated
       chunks. Each bin is doubly linked.  The bins are approximately
       proportionally (log) spaced.  There are a lot of these bins
       (128). This may look excessive, but works very well in
       practice.  All procedures maintain the invariant that no
       consolidated chunk physically borders another one. Chunks in
       bins are kept in size order, with ties going to the
       approximately least recently used chunk.

       The chunks in each bin are maintained in decreasing sorted order by
       size.  This is irrelevant for the small bins, which all contain
       the same-sized chunks, but facilitates best-fit allocation for
       larger chunks. (These lists are just sequential. Keeping them in
       order almost never requires enough traversal to warrant using
       fancier ordered data structures.)  Chunks of the same size are
       linked with the most recently freed at the front, and allocations
       are taken from the back.  This results in LRU or FIFO allocation
       order, which tends to give each chunk an equal opportunity to be
       consolidated with adjacent freed chunks, resulting in larger free
       chunks and less fragmentation.

    * `top': The top-most available chunk (i.e., the one bordering the
       end of available memory) is treated specially. It is never
       included in any bin, is used only if no other chunk is
       available, and is released back to the system if it is very
       large (see M_TRIM_THRESHOLD).

    * `last_remainder': A bin holding only the remainder of the
       most recently split (non-top) chunk. This bin is checked
       before other non-fitting chunks, so as to provide better
       locality for runs of sequentially allocated chunks.

    *  Implicitly, through the host system's memory mapping tables.
       If supported, requests greater than a threshold are usually
       serviced via calls to mmap, and then later released via munmap.

*/

/*  sizes, alignments */

#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
#define MALLOC_ALIGNMENT       (SIZE_SZ + SIZE_SZ)
#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
#define MINSIZE                (sizeof(struct malloc_chunk))

/* conversion from malloc headers to user pointers, and back */

#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))

/* pad request bytes into a usable size */

#define request2size(req) \
 (((long)((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) < \
  (long)(MINSIZE + MALLOC_ALIGN_MASK)) ? MINSIZE : \
   (((req) + (SIZE_SZ + MALLOC_ALIGN_MASK)) & ~(MALLOC_ALIGN_MASK)))

/* Check if m has acceptable alignment */

#define aligned_OK(m)    (((unsigned long)((m)) & (MALLOC_ALIGN_MASK)) == 0)




/*
  Physical chunk operations
*/


/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */

#define PREV_INUSE 0x1

/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */

#define IS_MMAPPED 0x2

/* Bits to mask off when extracting size */

#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)


/* Ptr to next physical malloc_chunk. */

#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))

/* Ptr to previous physical malloc_chunk */

#define prev_chunk(p)\
   ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))


/* Treat space at ptr + offset as a chunk */

#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))




/*
  Dealing with use bits
*/

/* extract p's inuse bit */

#define inuse(p)\
((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)

/* extract inuse bit of previous chunk */

#define prev_inuse(p)  ((p)->size & PREV_INUSE)

/* check for mmap()'ed chunk */

#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)

/* set/clear chunk as in use without otherwise disturbing */

#define set_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE

#define clear_inuse(p)\
((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)

/* check/set/clear inuse bits in known places */

#define inuse_bit_at_offset(p, s)\
 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)

#define set_inuse_bit_at_offset(p, s)\
 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)

#define clear_inuse_bit_at_offset(p, s)\
 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))




/*
  Dealing with size fields
*/

/* Get size, ignoring use bits */

#define chunksize(p)          ((p)->size & ~(SIZE_BITS))

/* Set size at head, without disturbing its use bit */

#define set_head_size(p, s)   ((p)->size = (((p)->size & PREV_INUSE) | (s)))

/* Set size/use ignoring previous bits in header */

#define set_head(p, s)        ((p)->size = (s))

/* Set size at footer (only when chunk is not in use) */

#define set_foot(p, s)   (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))





/*
   Bins

    The bins, `av_' are an array of pairs of pointers serving as the
    heads of (initially empty) doubly-linked lists of chunks, laid out
    in a way so that each pair can be treated as if it were in a
    malloc_chunk. (This way, the fd/bk offsets for linking bin heads
    and chunks are the same).

    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
    8 bytes apart. Larger bins are approximately logarithmically
    spaced. (See the table below.) The `av_' array is never mentioned
    directly in the code, but instead via bin access macros.

    Bin layout:

    64 bins of size       8
    32 bins of size      64
    16 bins of size     512
     8 bins of size    4096
     4 bins of size   32768
     2 bins of size  262144
     1 bin  of size what's left

    There is actually a little bit of slop in the numbers in bin_index
    for the sake of speed. This makes no difference elsewhere.

    The special chunks `top' and `last_remainder' get their own bins,
    (this is implemented via yet more trickery with the av_ array),
    although `top' is never properly linked to its bin since it is
    always handled specially.

*/

#define NAV             128   /* number of bins */

typedef struct malloc_chunk* mbinptr;

/* access macros */

#define bin_at(i)      ((mbinptr)((char*)&(av_[2*(i) + 2]) - 2*SIZE_SZ))
#define next_bin(b)    ((mbinptr)((char*)(b) + 2 * sizeof(mbinptr)))
#define prev_bin(b)    ((mbinptr)((char*)(b) - 2 * sizeof(mbinptr)))

/*
   The first 2 bins are never indexed. The corresponding av_ cells are instead
   used for bookkeeping. This is not to save space, but to simplify
   indexing, maintain locality, and avoid some initialization tests.
*/

#define top            (av_[2])          /* The topmost chunk */
#define last_remainder (bin_at(1))       /* remainder from last split */


/*
   Because top initially points to its own bin with initial
   zero size, thus forcing extension on the first malloc request,
   we avoid having any special code in malloc to check whether
   it even exists yet. But we still need to in malloc_extend_top.
*/

#define initial_top    ((mchunkptr)(bin_at(0)))

/* Helper macro to initialize bins */

#define IAV(i)  bin_at(i), bin_at(i)

static mbinptr av_[NAV * 2 + 2] = {
 NULL, NULL,
 IAV(0),   IAV(1),   IAV(2),   IAV(3),   IAV(4),   IAV(5),   IAV(6),   IAV(7),
 IAV(8),   IAV(9),   IAV(10),  IAV(11),  IAV(12),  IAV(13),  IAV(14),  IAV(15),
 IAV(16),  IAV(17),  IAV(18),  IAV(19),  IAV(20),  IAV(21),  IAV(22),  IAV(23),
 IAV(24),  IAV(25),  IAV(26),  IAV(27),  IAV(28),  IAV(29),  IAV(30),  IAV(31),
 IAV(32),  IAV(33),  IAV(34),  IAV(35),  IAV(36),  IAV(37),  IAV(38),  IAV(39),
 IAV(40),  IAV(41),  IAV(42),  IAV(43),  IAV(44),  IAV(45),  IAV(46),  IAV(47),
 IAV(48),  IAV(49),  IAV(50),  IAV(51),  IAV(52),  IAV(53),  IAV(54),  IAV(55),
 IAV(56),  IAV(57),  IAV(58),  IAV(59),  IAV(60),  IAV(61),  IAV(62),  IAV(63),
 IAV(64),  IAV(65),  IAV(66),  IAV(67),  IAV(68),  IAV(69),  IAV(70),  IAV(71),
 IAV(72),  IAV(73),  IAV(74),  IAV(75),  IAV(76),  IAV(77),  IAV(78),  IAV(79),
 IAV(80),  IAV(81),  IAV(82),  IAV(83),  IAV(84),  IAV(85),  IAV(86),  IAV(87),
 IAV(88),  IAV(89),  IAV(90),  IAV(91),  IAV(92),  IAV(93),  IAV(94),  IAV(95),
 IAV(96),  IAV(97),  IAV(98),  IAV(99),  IAV(100), IAV(101), IAV(102), IAV(103),
 IAV(104), IAV(105), IAV(106), IAV(107), IAV(108), IAV(109), IAV(110), IAV(111),
 IAV(112), IAV(113), IAV(114), IAV(115), IAV(116), IAV(117), IAV(118), IAV(119),
 IAV(120), IAV(121), IAV(122), IAV(123), IAV(124), IAV(125), IAV(126), IAV(127)
};

#ifdef CONFIG_NEEDS_MANUAL_RELOC
static void malloc_bin_reloc(void)
{
	mbinptr *p = &av_[2];
	size_t i;

	for (i = 2; i < ARRAY_SIZE(av_); ++i, ++p)
		*p = (mbinptr)((ulong)*p + gd->reloc_off);
}
#else
static inline void malloc_bin_reloc(void) {}
#endif

ulong mem_malloc_start = 0;
ulong mem_malloc_end = 0;
ulong mem_malloc_brk = 0;

void *sbrk(ptrdiff_t increment)
{
	ulong old = mem_malloc_brk;
	ulong new = old + increment;

	/*
	 * if we are giving memory back make sure we clear it out since
	 * we set MORECORE_CLEARS to 1
	 */
	if (increment < 0)
		memset((void *)new, 0, -increment);

	if ((new < mem_malloc_start) || (new > mem_malloc_end))
		return (void *)MORECORE_FAILURE;

	mem_malloc_brk = new;

	return (void *)old;
}

void mem_malloc_init(ulong start, ulong size)
{
	mem_malloc_start = start;
	mem_malloc_end = start + size;
	mem_malloc_brk = start;

	debug("using memory %#lx-%#lx for malloc()\n", mem_malloc_start,
	      mem_malloc_end);
#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
	memset((void *)mem_malloc_start, 0x0, size);
#endif
	malloc_bin_reloc();
}

/* field-extraction macros */

#define first(b) ((b)->fd)
#define last(b)  ((b)->bk)

/*
  Indexing into bins
*/

#define bin_index(sz)                                                          \
(((((unsigned long)(sz)) >> 9) ==    0) ?       (((unsigned long)(sz)) >>  3): \
 ((((unsigned long)(sz)) >> 9) <=    4) ?  56 + (((unsigned long)(sz)) >>  6): \
 ((((unsigned long)(sz)) >> 9) <=   20) ?  91 + (((unsigned long)(sz)) >>  9): \
 ((((unsigned long)(sz)) >> 9) <=   84) ? 110 + (((unsigned long)(sz)) >> 12): \
 ((((unsigned long)(sz)) >> 9) <=  340) ? 119 + (((unsigned long)(sz)) >> 15): \
 ((((unsigned long)(sz)) >> 9) <= 1364) ? 124 + (((unsigned long)(sz)) >> 18): \
					  126)
/*
  bins for chunks < 512 are all spaced 8 bytes apart, and hold
  identically sized chunks. This is exploited in malloc.
*/

#define MAX_SMALLBIN         63
#define MAX_SMALLBIN_SIZE   512
#define SMALLBIN_WIDTH        8

#define smallbin_index(sz)  (((unsigned long)(sz)) >> 3)

/*
   Requests are `small' if both the corresponding and the next bin are small
*/

#define is_small_request(nb) (nb < MAX_SMALLBIN_SIZE - SMALLBIN_WIDTH)



/*
    To help compensate for the large number of bins, a one-level index
    structure is used for bin-by-bin searching.  `binblocks' is a
    one-word bitvector recording whether groups of BINBLOCKWIDTH bins
    have any (possibly) non-empty bins, so they can be skipped over
    all at once during during traversals. The bits are NOT always
    cleared as soon as all bins in a block are empty, but instead only
    when all are noticed to be empty during traversal in malloc.
*/

#define BINBLOCKWIDTH     4   /* bins per block */

#define binblocks_r     ((INTERNAL_SIZE_T)av_[1]) /* bitvector of nonempty blocks */
#define binblocks_w     (av_[1])

/* bin<->block macros */

#define idx2binblock(ix)    ((unsigned)1 << (ix / BINBLOCKWIDTH))
#define mark_binblock(ii)   (binblocks_w = (mbinptr)(binblocks_r | idx2binblock(ii)))
#define clear_binblock(ii)  (binblocks_w = (mbinptr)(binblocks_r & ~(idx2binblock(ii))))





/*  Other static bookkeeping data */

/* variables holding tunable values */

static unsigned long trim_threshold   = DEFAULT_TRIM_THRESHOLD;
static unsigned long top_pad          = DEFAULT_TOP_PAD;
static unsigned int  n_mmaps_max      = DEFAULT_MMAP_MAX;
static unsigned long mmap_threshold   = DEFAULT_MMAP_THRESHOLD;

/* The first value returned from sbrk */
static char* sbrk_base = (char*)(-1);

/* The maximum memory obtained from system via sbrk */
static unsigned long max_sbrked_mem = 0;

/* The maximum via either sbrk or mmap */
static unsigned long max_total_mem = 0;

/* internal working copy of mallinfo */
static struct mallinfo current_mallinfo = {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

/* The total memory obtained from system via sbrk */
#define sbrked_mem  (current_mallinfo.arena)

/* Tracking mmaps */

#ifdef DEBUG
static unsigned int n_mmaps = 0;
#endif	/* DEBUG */
static unsigned long mmapped_mem = 0;
#if HAVE_MMAP
static unsigned int max_n_mmaps = 0;
static unsigned long max_mmapped_mem = 0;
#endif



/*
  Debugging support
*/

#ifdef DEBUG


/*
  These routines make a number of assertions about the states
  of data structures that should be true at all times. If any
  are not true, it's very likely that a user program has somehow
  trashed memory. (It's also possible that there is a coding error
  in malloc. In which case, please report it!)
*/

#if __STD_C
static void do_check_chunk(mchunkptr p)
#else
static void do_check_chunk(p) mchunkptr p;
#endif
{
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;

  /* No checkable chunk is mmapped */
  assert(!chunk_is_mmapped(p));

  /* Check for legal address ... */
  assert((char*)p >= sbrk_base);
  if (p != top)
    assert((char*)p + sz <= (char*)top);
  else
    assert((char*)p + sz <= sbrk_base + sbrked_mem);

}


#if __STD_C
static void do_check_free_chunk(mchunkptr p)
#else
static void do_check_free_chunk(p) mchunkptr p;
#endif
{
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
  mchunkptr next = chunk_at_offset(p, sz);

  do_check_chunk(p);

  /* Check whether it claims to be free ... */
  assert(!inuse(p));

  /* Unless a special marker, must have OK fields */
  if ((long)sz >= (long)MINSIZE)
  {
    assert((sz & MALLOC_ALIGN_MASK) == 0);
    assert(aligned_OK(chunk2mem(p)));
    /* ... matching footer field */
    assert(next->prev_size == sz);
    /* ... and is fully consolidated */
    assert(prev_inuse(p));
    assert (next == top || inuse(next));

    /* ... and has minimally sane links */
    assert(p->fd->bk == p);
    assert(p->bk->fd == p);
  }
  else /* markers are always of size SIZE_SZ */
    assert(sz == SIZE_SZ);
}

#if __STD_C
static void do_check_inuse_chunk(mchunkptr p)
#else
static void do_check_inuse_chunk(p) mchunkptr p;
#endif
{
  mchunkptr next = next_chunk(p);
  do_check_chunk(p);

  /* Check whether it claims to be in use ... */
  assert(inuse(p));

  /* ... and is surrounded by OK chunks.
    Since more things can be checked with free chunks than inuse ones,
    if an inuse chunk borders them and debug is on, it's worth doing them.
  */
  if (!prev_inuse(p))
  {
    mchunkptr prv = prev_chunk(p);
    assert(next_chunk(prv) == p);
    do_check_free_chunk(prv);
  }
  if (next == top)
  {
    assert(prev_inuse(next));
    assert(chunksize(next) >= MINSIZE);
  }
  else if (!inuse(next))
    do_check_free_chunk(next);

}

#if __STD_C
static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
#else
static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
#endif
{
  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
  long room = sz - s;

  do_check_inuse_chunk(p);

  /* Legal size ... */
  assert((long)sz >= (long)MINSIZE);
  assert((sz & MALLOC_ALIGN_MASK) == 0);
  assert(room >= 0);
  assert(room < (long)MINSIZE);

  /* ... and alignment */
  assert(aligned_OK(chunk2mem(p)));


  /* ... and was allocated at front of an available chunk */
  assert(prev_inuse(p));

}


#define check_free_chunk(P)  do_check_free_chunk(P)
#define check_inuse_chunk(P) do_check_inuse_chunk(P)
#define check_chunk(P) do_check_chunk(P)
#define check_malloced_chunk(P,N) do_check_malloced_chunk(P,N)
#else
#define check_free_chunk(P)
#define check_inuse_chunk(P)
#define check_chunk(P)
#define check_malloced_chunk(P,N)
#endif



/*
  Macro-based internal utilities
*/


/*
  Linking chunks in bin lists.
  Call these only with variables, not arbitrary expressions, as arguments.
*/

/*
  Place chunk p of size s in its bin, in size order,
  putting it ahead of others of same size.
*/


#define frontlink(P, S, IDX, BK, FD)                                          \
{                                                                             \
  if (S < MAX_SMALLBIN_SIZE)                                                  \
  {                                                                           \
    IDX = smallbin_index(S);                                                  \
    mark_binblock(IDX);                                                       \
    BK = bin_at(IDX);                                                         \
    FD = BK->fd;                                                              \
    P->bk = BK;                                                               \
    P->fd = FD;                                                               \
    FD->bk = BK->fd = P;                                                      \
  }                                                                           \
  else                                                                        \
  {                                                                           \
    IDX = bin_index(S);                                                       \
    BK = bin_at(IDX);                                                         \
    FD = BK->fd;                                                              \
    if (FD == BK) mark_binblock(IDX);                                         \
    else                                                                      \
    {                                                                         \
      while (FD != BK && S < chunksize(FD)) FD = FD->fd;                      \
      BK = FD->bk;                                                            \
    }                                                                         \
    P->bk = BK;                                                               \
    P->fd = FD;                                                               \
    FD->bk = BK->fd = P;                                                      \
  }                                                                           \
}


/* take a chunk off a list */

#define unlink(P, BK, FD)                                                     \
{                                                                             \
  BK = P->bk;                                                                 \
  FD = P->fd;                                                                 \
  FD->bk = BK;                                                                \
  BK->fd = FD;                                                                \
}                                                                             \

/* Place p as the last remainder */

#define link_last_remainder(P)                                                \
{                                                                             \
  last_remainder->fd = last_remainder->bk =  P;                               \
  P->fd = P->bk = last_remainder;                                             \
}

/* Clear the last_remainder bin */

#define clear_last_remainder \
  (last_remainder->fd = last_remainder->bk = last_remainder)





/* Routines dealing with mmap(). */

#if HAVE_MMAP

#if __STD_C
static mchunkptr mmap_chunk(size_t size)
#else
static mchunkptr mmap_chunk(size) size_t size;
#endif
{
  size_t page_mask = malloc_getpagesize - 1;
  mchunkptr p;

#ifndef MAP_ANONYMOUS
  static int fd = -1;
#endif

  if(n_mmaps >= n_mmaps_max) return 0; /* too many regions */

  /* For mmapped chunks, the overhead is one SIZE_SZ unit larger, because
   * there is no following chunk whose prev_size field could be used.
   */
  size = (size + SIZE_SZ + page_mask) & ~page_mask;

#ifdef MAP_ANONYMOUS
  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE,
		      MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
#else /* !MAP_ANONYMOUS */
  if (fd < 0)
  {
    fd = open("/dev/zero", O_RDWR);
    if(fd < 0) return 0;
  }
  p = (mchunkptr)mmap(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, 0);
#endif

  if(p == (mchunkptr)-1) return 0;

  n_mmaps++;
  if (n_mmaps > max_n_mmaps) max_n_mmaps = n_mmaps;

  /* We demand that eight bytes into a page must be 8-byte aligned. */
  assert(aligned_OK(chunk2mem(p)));

  /* The offset to the start of the mmapped region is stored
   * in the prev_size field of the chunk; normally it is zero,
   * but that can be changed in memalign().
   */
  p->prev_size = 0;
  set_head(p, size|IS_MMAPPED);

  mmapped_mem += size;
  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
    max_mmapped_mem = mmapped_mem;
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
    max_total_mem = mmapped_mem + sbrked_mem;
  return p;
}

#if __STD_C
static void munmap_chunk(mchunkptr p)
#else
static void munmap_chunk(p) mchunkptr p;
#endif
{
  INTERNAL_SIZE_T size = chunksize(p);
  int ret;

  assert (chunk_is_mmapped(p));
  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
  assert((n_mmaps > 0));
  assert(((p->prev_size + size) & (malloc_getpagesize-1)) == 0);

  n_mmaps--;
  mmapped_mem -= (size + p->prev_size);

  ret = munmap((char *)p - p->prev_size, size + p->prev_size);

  /* munmap returns non-zero on failure */
  assert(ret == 0);
}

#if HAVE_MREMAP

#if __STD_C
static mchunkptr mremap_chunk(mchunkptr p, size_t new_size)
#else
static mchunkptr mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
#endif
{
  size_t page_mask = malloc_getpagesize - 1;
  INTERNAL_SIZE_T offset = p->prev_size;
  INTERNAL_SIZE_T size = chunksize(p);
  char *cp;

  assert (chunk_is_mmapped(p));
  assert(! ((char*)p >= sbrk_base && (char*)p < sbrk_base + sbrked_mem));
  assert((n_mmaps > 0));
  assert(((size + offset) & (malloc_getpagesize-1)) == 0);

  /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
  new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;

  cp = (char *)mremap((char *)p - offset, size + offset, new_size, 1);

  if (cp == (char *)-1) return 0;

  p = (mchunkptr)(cp + offset);

  assert(aligned_OK(chunk2mem(p)));

  assert((p->prev_size == offset));
  set_head(p, (new_size - offset)|IS_MMAPPED);

  mmapped_mem -= size + offset;
  mmapped_mem += new_size;
  if ((unsigned long)mmapped_mem > (unsigned long)max_mmapped_mem)
    max_mmapped_mem = mmapped_mem;
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
    max_total_mem = mmapped_mem + sbrked_mem;
  return p;
}

#endif /* HAVE_MREMAP */

#endif /* HAVE_MMAP */




/*
  Extend the top-most chunk by obtaining memory from system.
  Main interface to sbrk (but see also malloc_trim).
*/

#if __STD_C
static void malloc_extend_top(INTERNAL_SIZE_T nb)
#else
static void malloc_extend_top(nb) INTERNAL_SIZE_T nb;
#endif
{
  char*     brk;                  /* return value from sbrk */
  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of sbrked space */
  INTERNAL_SIZE_T correction;     /* bytes for 2nd sbrk call */
  char*     new_brk;              /* return of 2nd sbrk call */
  INTERNAL_SIZE_T top_size;       /* new size of top chunk */

  mchunkptr old_top     = top;  /* Record state of old top */
  INTERNAL_SIZE_T old_top_size = chunksize(old_top);
  char*     old_end      = (char*)(chunk_at_offset(old_top, old_top_size));

  /* Pad request with top_pad plus minimal overhead */

  INTERNAL_SIZE_T    sbrk_size     = nb + top_pad + MINSIZE;
  unsigned long pagesz    = malloc_getpagesize;

  /* If not the first time through, round to preserve page boundary */
  /* Otherwise, we need to correct to a page size below anyway. */
  /* (We also correct below if an intervening foreign sbrk call.) */

  if (sbrk_base != (char*)(-1))
    sbrk_size = (sbrk_size + (pagesz - 1)) & ~(pagesz - 1);

  brk = (char*)(MORECORE (sbrk_size));

  /* Fail if sbrk failed or if a foreign sbrk call killed our space */
  if (brk == (char*)(MORECORE_FAILURE) ||
      (brk < old_end && old_top != initial_top))
    return;

  sbrked_mem += sbrk_size;

  if (brk == old_end) /* can just add bytes to current top */
  {
    top_size = sbrk_size + old_top_size;
    set_head(top, top_size | PREV_INUSE);
  }
  else
  {
    if (sbrk_base == (char*)(-1))  /* First time through. Record base */
      sbrk_base = brk;
    else  /* Someone else called sbrk().  Count those bytes as sbrked_mem. */
      sbrked_mem += brk - (char*)old_end;

    /* Guarantee alignment of first new chunk made from this space */
    front_misalign = (unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK;
    if (front_misalign > 0)
    {
      correction = (MALLOC_ALIGNMENT) - front_misalign;
      brk += correction;
    }
    else
      correction = 0;

    /* Guarantee the next brk will be at a page boundary */

    correction += ((((unsigned long)(brk + sbrk_size))+(pagesz-1)) &
		   ~(pagesz - 1)) - ((unsigned long)(brk + sbrk_size));

    /* Allocate correction */
    new_brk = (char*)(MORECORE (correction));
    if (new_brk == (char*)(MORECORE_FAILURE)) return;

    sbrked_mem += correction;

    top = (mchunkptr)brk;
    top_size = new_brk - brk + correction;
    set_head(top, top_size | PREV_INUSE);

    if (old_top != initial_top)
    {

      /* There must have been an intervening foreign sbrk call. */
      /* A double fencepost is necessary to prevent consolidation */

      /* If not enough space to do this, then user did something very wrong */
      if (old_top_size < MINSIZE)
      {
	set_head(top, PREV_INUSE); /* will force null return from malloc */
	return;
      }

      /* Also keep size a multiple of MALLOC_ALIGNMENT */
      old_top_size = (old_top_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
      set_head_size(old_top, old_top_size);
      chunk_at_offset(old_top, old_top_size          )->size =
	SIZE_SZ|PREV_INUSE;
      chunk_at_offset(old_top, old_top_size + SIZE_SZ)->size =
	SIZE_SZ|PREV_INUSE;
      /* If possible, release the rest. */
      if (old_top_size >= MINSIZE)
	fREe(chunk2mem(old_top));
    }
  }

  if ((unsigned long)sbrked_mem > (unsigned long)max_sbrked_mem)
    max_sbrked_mem = sbrked_mem;
  if ((unsigned long)(mmapped_mem + sbrked_mem) > (unsigned long)max_total_mem)
    max_total_mem = mmapped_mem + sbrked_mem;

  /* We always land on a page boundary */
  assert(((unsigned long)((char*)top + top_size) & (pagesz - 1)) == 0);
}




/* Main public routines */


/*
  Malloc Algorthim:

    The requested size is first converted into a usable form, `nb'.
    This currently means to add 4 bytes overhead plus possibly more to
    obtain 8-byte alignment and/or to obtain a size of at least
    MINSIZE (currently 16 bytes), the smallest allocatable size.
    (All fits are considered `exact' if they are within MINSIZE bytes.)

    From there, the first successful of the following steps is taken:

      1. The bin corresponding to the request size is scanned, and if
	 a chunk of exactly the right size is found, it is taken.

      2. The most recently remaindered chunk is used if it is big
	 enough.  This is a form of (roving) first fit, used only in
	 the absence of exact fits. Runs of consecutive requests use
	 the remainder of the chunk used for the previous such request
	 whenever possible. This limited use of a first-fit style
	 allocation strategy tends to give contiguous chunks
	 coextensive lifetimes, which improves locality and can reduce
	 fragmentation in the long run.

      3. Other bins are scanned in increasing size order, using a
	 chunk big enough to fulfill the request, and splitting off
	 any remainder.  This search is strictly by best-fit; i.e.,
	 the smallest (with ties going to approximately the least
	 recently used) chunk that fits is selected.

      4. If large enough, the chunk bordering the end of memory
	 (`top') is split off. (This use of `top' is in accord with
	 the best-fit search rule.  In effect, `top' is treated as
	 larger (and thus less well fitting) than any other available
	 chunk since it can be extended to be as large as necessary
	 (up to system limitations).

      5. If the request size meets the mmap threshold and the
	 system supports mmap, and there are few enough currently
	 allocated mmapped regions, and a call to mmap succeeds,
	 the request is allocated via direct memory mapping.

      6. Otherwise, the top of memory is extended by
	 obtaining more space from the system (normally using sbrk,
	 but definable to anything else via the MORECORE macro).
	 Memory is gathered from the system (in system page-sized
	 units) in a way that allows chunks obtained across different
	 sbrk calls to be consolidated, but does not require
	 contiguous memory. Thus, it should be safe to intersperse
	 mallocs with other sbrk calls.


      All allocations are made from the the `lowest' part of any found
      chunk. (The implementation invariant is that prev_inuse is
      always true of any allocated chunk; i.e., that each allocated
      chunk borders either a previously allocated and still in-use chunk,
      or the base of its memory arena.)

*/

#if __STD_C
Void_t* mALLOc(size_t bytes)
#else
Void_t* mALLOc(bytes) size_t bytes;
#endif
{
  mchunkptr victim;                  /* inspected/selected chunk */
  INTERNAL_SIZE_T victim_size;       /* its size */
  int       idx;                     /* index for bin traversal */
  mbinptr   bin;                     /* associated bin */
  mchunkptr remainder;               /* remainder from a split */
  long      remainder_size;          /* its size */
  int       remainder_index;         /* its bin index */
  unsigned long block;               /* block traverser bit */
  int       startidx;                /* first bin of a traversed block */
  mchunkptr fwd;                     /* misc temp for linking */
  mchunkptr bck;                     /* misc temp for linking */
  mbinptr q;                         /* misc temp */

  INTERNAL_SIZE_T nb;

#if CONFIG_VAL(SYS_MALLOC_F_LEN)
	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
		return malloc_simple(bytes);
#endif

  /* check if mem_malloc_init() was run */
  if ((mem_malloc_start == 0) && (mem_malloc_end == 0)) {
    /* not initialized yet */
    return NULL;
  }

  if ((long)bytes < 0) return NULL;

  nb = request2size(bytes);  /* padded request size; */

  /* Check for exact match in a bin */

  if (is_small_request(nb))  /* Faster version for small requests */
  {
    idx = smallbin_index(nb);

    /* No traversal or size check necessary for small bins.  */

    q = bin_at(idx);
    victim = last(q);

    /* Also scan the next one, since it would have a remainder < MINSIZE */
    if (victim == q)
    {
      q = next_bin(q);
      victim = last(q);
    }
    if (victim != q)
    {
      victim_size = chunksize(victim);
      unlink(victim, bck, fwd);
      set_inuse_bit_at_offset(victim, victim_size);
      check_malloced_chunk(victim, nb);
      return chunk2mem(victim);
    }

    idx += 2; /* Set for bin scan below. We've already scanned 2 bins. */

  }
  else
  {
    idx = bin_index(nb);
    bin = bin_at(idx);

    for (victim = last(bin); victim != bin; victim = victim->bk)
    {
      victim_size = chunksize(victim);
      remainder_size = victim_size - nb;

      if (remainder_size >= (long)MINSIZE) /* too big */
      {
	--idx; /* adjust to rescan below after checking last remainder */
	break;
      }

      else if (remainder_size >= 0) /* exact fit */
      {
	unlink(victim, bck, fwd);
	set_inuse_bit_at_offset(victim, victim_size);
	check_malloced_chunk(victim, nb);
	return chunk2mem(victim);
      }
    }

    ++idx;

  }

  /* Try to use the last split-off remainder */

  if ( (victim = last_remainder->fd) != last_remainder)
  {
    victim_size = chunksize(victim);
    remainder_size = victim_size - nb;

    if (remainder_size >= (long)MINSIZE) /* re-split */
    {
      remainder = chunk_at_offset(victim, nb);
      set_head(victim, nb | PREV_INUSE);
      link_last_remainder(remainder);
      set_head(remainder, remainder_size | PREV_INUSE);
      set_foot(remainder, remainder_size);
      check_malloced_chunk(victim, nb);
      return chunk2mem(victim);
    }

    clear_last_remainder;

    if (remainder_size >= 0)  /* exhaust */
    {
      set_inuse_bit_at_offset(victim, victim_size);
      check_malloced_chunk(victim, nb);
      return chunk2mem(victim);
    }

    /* Else place in bin */

    frontlink(victim, victim_size, remainder_index, bck, fwd);
  }

  /*
     If there are any possibly nonempty big-enough blocks,
     search for best fitting chunk by scanning bins in blockwidth units.
  */

  if ( (block = idx2binblock(idx)) <= binblocks_r)
  {

    /* Get to the first marked block */

    if ( (block & binblocks_r) == 0)
    {
      /* force to an even block boundary */
      idx = (idx & ~(BINBLOCKWIDTH - 1)) + BINBLOCKWIDTH;
      block <<= 1;
      while ((block & binblocks_r) == 0)
      {
	idx += BINBLOCKWIDTH;
	block <<= 1;
      }
    }

    /* For each possibly nonempty block ... */
    for (;;)
    {
      startidx = idx;          /* (track incomplete blocks) */
      q = bin = bin_at(idx);

      /* For each bin in this block ... */
      do
      {
	/* Find and use first big enough chunk ... */

	for (victim = last(bin); victim != bin; victim = victim->bk)
	{
	  victim_size = chunksize(victim);
	  remainder_size = victim_size - nb;

	  if (remainder_size >= (long)MINSIZE) /* split */
	  {
	    remainder = chunk_at_offset(victim, nb);
	    set_head(victim, nb | PREV_INUSE);
	    unlink(victim, bck, fwd);
	    link_last_remainder(remainder);
	    set_head(remainder, remainder_size | PREV_INUSE);
	    set_foot(remainder, remainder_size);
	    check_malloced_chunk(victim, nb);
	    return chunk2mem(victim);
	  }

	  else if (remainder_size >= 0)  /* take */
	  {
	    set_inuse_bit_at_offset(victim, victim_size);
	    unlink(victim, bck, fwd);
	    check_malloced_chunk(victim, nb);
	    return chunk2mem(victim);
	  }

	}

       bin = next_bin(bin);

      } while ((++idx & (BINBLOCKWIDTH - 1)) != 0);

      /* Clear out the block bit. */

      do   /* Possibly backtrack to try to clear a partial block */
      {
	if ((startidx & (BINBLOCKWIDTH - 1)) == 0)
	{
	  av_[1] = (mbinptr)(binblocks_r & ~block);
	  break;
	}
	--startidx;
       q = prev_bin(q);
      } while (first(q) == q);

      /* Get to the next possibly nonempty block */

      if ( (block <<= 1) <= binblocks_r && (block != 0) )
      {
	while ((block & binblocks_r) == 0)
	{
	  idx += BINBLOCKWIDTH;
	  block <<= 1;
	}
      }
      else
	break;
    }
  }


  /* Try to use top chunk */

  /* Require that there be a remainder, ensuring top always exists  */
  if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
  {

#if HAVE_MMAP
    /* If big and would otherwise need to extend, try to use mmap instead */
    if ((unsigned long)nb >= (unsigned long)mmap_threshold &&
	(victim = mmap_chunk(nb)))
      return chunk2mem(victim);
#endif

    /* Try to extend */
    malloc_extend_top(nb);
    if ( (remainder_size = chunksize(top) - nb) < (long)MINSIZE)
      return NULL; /* propagate failure */
  }

  victim = top;
  set_head(victim, nb | PREV_INUSE);
  top = chunk_at_offset(victim, nb);
  set_head(top, remainder_size | PREV_INUSE);
  check_malloced_chunk(victim, nb);
  return chunk2mem(victim);

}




/*

  free() algorithm :

    cases:

       1. free(0) has no effect.

       2. If the chunk was allocated via mmap, it is release via munmap().

       3. If a returned chunk borders the current high end of memory,
	  it is consolidated into the top, and if the total unused
	  topmost memory exceeds the trim threshold, malloc_trim is
	  called.

       4. Other chunks are consolidated as they arrive, and
	  placed in corresponding bins. (This includes the case of
	  consolidating with the current `last_remainder').

*/


#if __STD_C
void fREe(Void_t* mem)
#else
void fREe(mem) Void_t* mem;
#endif
{
  mchunkptr p;         /* chunk corresponding to mem */
  INTERNAL_SIZE_T hd;  /* its head field */
  INTERNAL_SIZE_T sz;  /* its size */
  int       idx;       /* its bin index */
  mchunkptr next;      /* next contiguous chunk */
  INTERNAL_SIZE_T nextsz; /* its size */
  INTERNAL_SIZE_T prevsz; /* size of previous contiguous chunk */
  mchunkptr bck;       /* misc temp for linking */
  mchunkptr fwd;       /* misc temp for linking */
  int       islr;      /* track whether merging with last_remainder */

#if CONFIG_VAL(SYS_MALLOC_F_LEN)
	/* free() is a no-op - all the memory will be freed on relocation */
	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT))
		return;
#endif

  if (mem == NULL)                              /* free(0) has no effect */
    return;

  p = mem2chunk(mem);
  hd = p->size;

#if HAVE_MMAP
  if (hd & IS_MMAPPED)                       /* release mmapped memory. */
  {
    munmap_chunk(p);
    return;
  }
#endif

  check_inuse_chunk(p);

  sz = hd & ~PREV_INUSE;
  next = chunk_at_offset(p, sz);
  nextsz = chunksize(next);

  if (next == top)                            /* merge with top */
  {
    sz += nextsz;

    if (!(hd & PREV_INUSE))                    /* consolidate backward */
    {
      prevsz = p->prev_size;
      p = chunk_at_offset(p, -((long) prevsz));
      sz += prevsz;
      unlink(p, bck, fwd);
    }

    set_head(p, sz | PREV_INUSE);
    top = p;
    if ((unsigned long)(sz) >= (unsigned long)trim_threshold)
      malloc_trim(top_pad);
    return;
  }

  set_head(next, nextsz);                    /* clear inuse bit */

  islr = 0;

  if (!(hd & PREV_INUSE))                    /* consolidate backward */
  {
    prevsz = p->prev_size;
    p = chunk_at_offset(p, -((long) prevsz));
    sz += prevsz;

    if (p->fd == last_remainder)             /* keep as last_remainder */
      islr = 1;
    else
      unlink(p, bck, fwd);
  }

  if (!(inuse_bit_at_offset(next, nextsz)))   /* consolidate forward */
  {
    sz += nextsz;

    if (!islr && next->fd == last_remainder)  /* re-insert last_remainder */
    {
      islr = 1;
      link_last_remainder(p);
    }
    else
      unlink(next, bck, fwd);
  }


  set_head(p, sz | PREV_INUSE);
  set_foot(p, sz);
  if (!islr)
    frontlink(p, sz, idx, bck, fwd);
}





/*

  Realloc algorithm:

    Chunks that were obtained via mmap cannot be extended or shrunk
    unless HAVE_MREMAP is defined, in which case mremap is used.
    Otherwise, if their reallocation is for additional space, they are
    copied.  If for less, they are just left alone.

    Otherwise, if the reallocation is for additional space, and the
    chunk can be extended, it is, else a malloc-copy-free sequence is
    taken.  There are several different ways that a chunk could be
    extended. All are tried:

       * Extending forward into following adjacent free chunk.
       * Shifting backwards, joining preceding adjacent space
       * Both shifting backwards and extending forward.
       * Extending into newly sbrked space

    Unless the #define REALLOC_ZERO_BYTES_FREES is set, realloc with a
    size argument of zero (re)allocates a minimum-sized chunk.

    If the reallocation is for less space, and the new request is for
    a `small' (<512 bytes) size, then the newly unused space is lopped
    off and freed.

    The old unix realloc convention of allowing the last-free'd chunk
    to be used as an argument to realloc is no longer supported.
    I don't know of any programs still relying on this feature,
    and allowing it would also allow too many other incorrect
    usages of realloc to be sensible.


*/


#if __STD_C
Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
#else
Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
#endif
{
  INTERNAL_SIZE_T    nb;      /* padded request size */

  mchunkptr oldp;             /* chunk corresponding to oldmem */
  INTERNAL_SIZE_T    oldsize; /* its size */

  mchunkptr newp;             /* chunk to return */
  INTERNAL_SIZE_T    newsize; /* its size */
  Void_t*   newmem;           /* corresponding user mem */

  mchunkptr next;             /* next contiguous chunk after oldp */
  INTERNAL_SIZE_T  nextsize;  /* its size */

  mchunkptr prev;             /* previous contiguous chunk before oldp */
  INTERNAL_SIZE_T  prevsize;  /* its size */

  mchunkptr remainder;        /* holds split off extra space from newp */
  INTERNAL_SIZE_T  remainder_size;   /* its size */

  mchunkptr bck;              /* misc temp for linking */
  mchunkptr fwd;              /* misc temp for linking */

#ifdef REALLOC_ZERO_BYTES_FREES
  if (!bytes) {
	fREe(oldmem);
	return NULL;
  }
#endif

  if ((long)bytes < 0) return NULL;

  /* realloc of null is supposed to be same as malloc */
  if (oldmem == NULL) return mALLOc(bytes);

#if CONFIG_VAL(SYS_MALLOC_F_LEN)
	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
		/* This is harder to support and should not be needed */
		panic("pre-reloc realloc() is not supported");
	}
#endif

  newp    = oldp    = mem2chunk(oldmem);
  newsize = oldsize = chunksize(oldp);


  nb = request2size(bytes);

#if HAVE_MMAP
  if (chunk_is_mmapped(oldp))
  {
#if HAVE_MREMAP
    newp = mremap_chunk(oldp, nb);
    if(newp) return chunk2mem(newp);
#endif
    /* Note the extra SIZE_SZ overhead. */
    if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
    /* Must alloc, copy, free. */
    newmem = mALLOc(bytes);
    if (!newmem)
	return NULL; /* propagate failure */
    MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
    munmap_chunk(oldp);
    return newmem;
  }
#endif

  check_inuse_chunk(oldp);

  if ((long)(oldsize) < (long)(nb))
  {

    /* Try expanding forward */

    next = chunk_at_offset(oldp, oldsize);
    if (next == top || !inuse(next))
    {
      nextsize = chunksize(next);

      /* Forward into top only if a remainder */
      if (next == top)
      {
	if ((long)(nextsize + newsize) >= (long)(nb + MINSIZE))
	{
	  newsize += nextsize;
	  top = chunk_at_offset(oldp, nb);
	  set_head(top, (newsize - nb) | PREV_INUSE);
	  set_head_size(oldp, nb);
	  return chunk2mem(oldp);
	}
      }

      /* Forward into next chunk */
      else if (((long)(nextsize + newsize) >= (long)(nb)))
      {
	unlink(next, bck, fwd);
	newsize  += nextsize;
	goto split;
      }
    }
    else
    {
      next = NULL;
      nextsize = 0;
    }

    /* Try shifting backwards. */

    if (!prev_inuse(oldp))
    {
      prev = prev_chunk(oldp);
      prevsize = chunksize(prev);

      /* try forward + backward first to save a later consolidation */

      if (next != NULL)
      {
	/* into top */
	if (next == top)
	{
	  if ((long)(nextsize + prevsize + newsize) >= (long)(nb + MINSIZE))
	  {
	    unlink(prev, bck, fwd);
	    newp = prev;
	    newsize += prevsize + nextsize;
	    newmem = chunk2mem(newp);
	    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
	    top = chunk_at_offset(newp, nb);
	    set_head(top, (newsize - nb) | PREV_INUSE);
	    set_head_size(newp, nb);
	    return newmem;
	  }
	}

	/* into next chunk */
	else if (((long)(nextsize + prevsize + newsize) >= (long)(nb)))
	{
	  unlink(next, bck, fwd);
	  unlink(prev, bck, fwd);
	  newp = prev;
	  newsize += nextsize + prevsize;
	  newmem = chunk2mem(newp);
	  MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
	  goto split;
	}
      }

      /* backward only */
      if (prev != NULL && (long)(prevsize + newsize) >= (long)nb)
      {
	unlink(prev, bck, fwd);
	newp = prev;
	newsize += prevsize;
	newmem = chunk2mem(newp);
	MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
	goto split;
      }
    }

    /* Must allocate */

    newmem = mALLOc (bytes);

    if (newmem == NULL)  /* propagate failure */
      return NULL;

    /* Avoid copy if newp is next chunk after oldp. */
    /* (This can only happen when new chunk is sbrk'ed.) */

    if ( (newp = mem2chunk(newmem)) == next_chunk(oldp))
    {
      newsize += chunksize(newp);
      newp = oldp;
      goto split;
    }

    /* Otherwise copy, free, and exit */
    MALLOC_COPY(newmem, oldmem, oldsize - SIZE_SZ);
    fREe(oldmem);
    return newmem;
  }


 split:  /* split off extra room in old or expanded chunk */

  if (newsize - nb >= MINSIZE) /* split off remainder */
  {
    remainder = chunk_at_offset(newp, nb);
    remainder_size = newsize - nb;
    set_head_size(newp, nb);
    set_head(remainder, remainder_size | PREV_INUSE);
    set_inuse_bit_at_offset(remainder, remainder_size);
    fREe(chunk2mem(remainder)); /* let free() deal with it */
  }
  else
  {
    set_head_size(newp, newsize);
    set_inuse_bit_at_offset(newp, newsize);
  }

  check_inuse_chunk(newp);
  return chunk2mem(newp);
}




/*

  memalign algorithm:

    memalign requests more than enough space from malloc, finds a spot
    within that chunk that meets the alignment request, and then
    possibly frees the leading and trailing space.

    The alignment argument must be a power of two. This property is not
    checked by memalign, so misuse may result in random runtime errors.

    8-byte alignment is guaranteed by normal malloc calls, so don't
    bother calling memalign with an argument of 8 or less.

    Overreliance on memalign is a sure way to fragment space.

*/


#if __STD_C
Void_t* mEMALIGn(size_t alignment, size_t bytes)
#else
Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
#endif
{
  INTERNAL_SIZE_T    nb;      /* padded  request size */
  char*     m;                /* memory returned by malloc call */
  mchunkptr p;                /* corresponding chunk */
  char*     brk;              /* alignment point within p */
  mchunkptr newp;             /* chunk to return */
  INTERNAL_SIZE_T  newsize;   /* its size */
  INTERNAL_SIZE_T  leadsize;  /* leading space befor alignment point */
  mchunkptr remainder;        /* spare room at end to split off */
  long      remainder_size;   /* its size */

  if ((long)bytes < 0) return NULL;

  /* If need less alignment than we give anyway, just relay to malloc */

  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);

  /* Otherwise, ensure that it is at least a minimum chunk size */

  if (alignment <  MINSIZE) alignment = MINSIZE;

  /* Call malloc with worst case padding to hit alignment. */

  nb = request2size(bytes);
  m  = (char*)(mALLOc(nb + alignment + MINSIZE));

  /*
  * The attempt to over-allocate (with a size large enough to guarantee the
  * ability to find an aligned region within allocated memory) failed.
  *
  * Try again, this time only allocating exactly the size the user wants. If
  * the allocation now succeeds and just happens to be aligned, we can still
  * fulfill the user's request.
  */
  if (m == NULL) {
    size_t extra, extra2;
    /*
     * Use bytes not nb, since mALLOc internally calls request2size too, and
     * each call increases the size to allocate, to account for the header.
     */
    m  = (char*)(mALLOc(bytes));
    /* Aligned -> return it */
    if ((((unsigned long)(m)) % alignment) == 0)
      return m;
    /*
     * Otherwise, try again, requesting enough extra space to be able to
     * acquire alignment.
     */
    fREe(m);
    /* Add in extra bytes to match misalignment of unexpanded allocation */
    extra = alignment - (((unsigned long)(m)) % alignment);
    m  = (char*)(mALLOc(bytes + extra));
    /*
     * m might not be the same as before. Validate that the previous value of
     * extra still works for the current value of m.
     * If (!m), extra2=alignment so 
     */
    if (m) {
      extra2 = alignment - (((unsigned long)(m)) % alignment);
      if (extra2 > extra) {
        fREe(m);
        m = NULL;
      }
    }
    /* Fall through to original NULL check and chunk splitting logic */
  }

  if (m == NULL) return NULL; /* propagate failure */

  p = mem2chunk(m);

  if ((((unsigned long)(m)) % alignment) == 0) /* aligned */
  {
#if HAVE_MMAP
    if(chunk_is_mmapped(p))
      return chunk2mem(p); /* nothing more to do */
#endif
  }
  else /* misaligned */
  {
    /*
      Find an aligned spot inside chunk.
      Since we need to give back leading space in a chunk of at
      least MINSIZE, if the first calculation places us at
      a spot with less than MINSIZE leader, we can move to the
      next aligned spot -- we've allocated enough total room so that
      this is always possible.
    */

    brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) & -((signed) alignment));
    if ((long)(brk - (char*)(p)) < MINSIZE) brk = brk + alignment;

    newp = (mchunkptr)brk;
    leadsize = brk - (char*)(p);
    newsize = chunksize(p) - leadsize;

#if HAVE_MMAP
    if(chunk_is_mmapped(p))
    {
      newp->prev_size = p->prev_size + leadsize;
      set_head(newp, newsize|IS_MMAPPED);
      return chunk2mem(newp);
    }
#endif

    /* give back leader, use the rest */

    set_head(newp, newsize | PREV_INUSE);
    set_inuse_bit_at_offset(newp, newsize);
    set_head_size(p, leadsize);
    fREe(chunk2mem(p));
    p = newp;

    assert (newsize >= nb && (((unsigned long)(chunk2mem(p))) % alignment) == 0);
  }

  /* Also give back spare room at the end */

  remainder_size = chunksize(p) - nb;

  if (remainder_size >= (long)MINSIZE)
  {
    remainder = chunk_at_offset(p, nb);
    set_head(remainder, remainder_size | PREV_INUSE);
    set_head_size(p, nb);
    fREe(chunk2mem(remainder));
  }

  check_inuse_chunk(p);
  return chunk2mem(p);

}




/*
    valloc just invokes memalign with alignment argument equal
    to the page size of the system (or as near to this as can
    be figured out from all the includes/defines above.)
*/

#if __STD_C
Void_t* vALLOc(size_t bytes)
#else
Void_t* vALLOc(bytes) size_t bytes;
#endif
{
  return mEMALIGn (malloc_getpagesize, bytes);
}

/*
  pvalloc just invokes valloc for the nearest pagesize
  that will accommodate request
*/


#if __STD_C
Void_t* pvALLOc(size_t bytes)
#else
Void_t* pvALLOc(bytes) size_t bytes;
#endif
{
  size_t pagesize = malloc_getpagesize;
  return mEMALIGn (pagesize, (bytes + pagesize - 1) & ~(pagesize - 1));
}

/*

  calloc calls malloc, then zeroes out the allocated chunk.

*/

#if __STD_C
Void_t* cALLOc(size_t n, size_t elem_size)
#else
Void_t* cALLOc(n, elem_size) size_t n; size_t elem_size;
#endif
{
  mchunkptr p;
  INTERNAL_SIZE_T csz;

  INTERNAL_SIZE_T sz = n * elem_size;


  /* check if expand_top called, in which case don't need to clear */
#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
#if MORECORE_CLEARS
  mchunkptr oldtop = top;
  INTERNAL_SIZE_T oldtopsize = chunksize(top);
#endif
#endif
  Void_t* mem = mALLOc (sz);

  if ((long)n < 0) return NULL;

  if (mem == NULL)
    return NULL;
  else
  {
#if CONFIG_VAL(SYS_MALLOC_F_LEN)
	if (!(gd->flags & GD_FLG_FULL_MALLOC_INIT)) {
		MALLOC_ZERO(mem, sz);
		return mem;
	}
#endif
    p = mem2chunk(mem);

    /* Two optional cases in which clearing not necessary */


#if HAVE_MMAP
    if (chunk_is_mmapped(p)) return mem;
#endif

    csz = chunksize(p);

#ifdef CONFIG_SYS_MALLOC_CLEAR_ON_INIT
#if MORECORE_CLEARS
    if (p == oldtop && csz > oldtopsize)
    {
      /* clear only the bytes from non-freshly-sbrked memory */
      csz = oldtopsize;
    }
#endif
#endif

    MALLOC_ZERO(mem, csz - SIZE_SZ);
    return mem;
  }
}

/*

  cfree just calls free. It is needed/defined on some systems
  that pair it with calloc, presumably for odd historical reasons.

*/

#if !defined(INTERNAL_LINUX_C_LIB) || !defined(__ELF__)
#if __STD_C
void cfree(Void_t *mem)
#else
void cfree(mem) Void_t *mem;
#endif
{
  fREe(mem);
}
#endif



/*

    Malloc_trim gives memory back to the system (via negative
    arguments to sbrk) if there is unused memory at the `high' end of
    the malloc pool. You can call this after freeing large blocks of
    memory to potentially reduce the system-level memory requirements
    of a program. However, it cannot guarantee to reduce memory. Under
    some allocation patterns, some large free blocks of memory will be
    locked between two used chunks, so they cannot be given back to
    the system.

    The `pad' argument to malloc_trim represents the amount of free
    trailing space to leave untrimmed. If this argument is zero,
    only the minimum amount of memory to maintain internal data
    structures will be left (one page or less). Non-zero arguments
    can be supplied to maintain enough trailing space to service
    future expected allocations without having to re-obtain memory
    from the system.

    Malloc_trim returns 1 if it actually released any memory, else 0.

*/

#if __STD_C
int malloc_trim(size_t pad)
#else
int malloc_trim(pad) size_t pad;
#endif
{
  long  top_size;        /* Amount of top-most memory */
  long  extra;           /* Amount to release */
  char* current_brk;     /* address returned by pre-check sbrk call */
  char* new_brk;         /* address returned by negative sbrk call */

  unsigned long pagesz = malloc_getpagesize;

  top_size = chunksize(top);
  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;

  if (extra < (long)pagesz)  /* Not enough memory to release */
    return 0;

  else
  {
    /* Test to make sure no one else called sbrk */
    current_brk = (char*)(MORECORE (0));
    if (current_brk != (char*)(top) + top_size)
      return 0;     /* Apparently we don't own memory; must fail */

    else
    {
      new_brk = (char*)(MORECORE (-extra));

      if (new_brk == (char*)(MORECORE_FAILURE)) /* sbrk failed? */
      {
	/* Try to figure out what we have */
	current_brk = (char*)(MORECORE (0));
	top_size = current_brk - (char*)top;
	if (top_size >= (long)MINSIZE) /* if not, we are very very dead! */
	{
	  sbrked_mem = current_brk - sbrk_base;
	  set_head(top, top_size | PREV_INUSE);
	}
	check_chunk(top);
	return 0;
      }

      else
      {
	/* Success. Adjust top accordingly. */
	set_head(top, (top_size - extra) | PREV_INUSE);
	sbrked_mem -= extra;
	check_chunk(top);
	return 1;
      }
    }
  }
}



/*
  malloc_usable_size:

    This routine tells you how many bytes you can actually use in an
    allocated chunk, which may be more than you requested (although
    often not). You can use this many bytes without worrying about
    overwriting other allocated objects. Not a particularly great
    programming practice, but still sometimes useful.

*/

#if __STD_C
size_t malloc_usable_size(Void_t* mem)
#else
size_t malloc_usable_size(mem) Void_t* mem;
#endif
{
  mchunkptr p;
  if (mem == NULL)
    return 0;
  else
  {
    p = mem2chunk(mem);
    if(!chunk_is_mmapped(p))
    {
      if (!inuse(p)) return 0;
      check_inuse_chunk(p);
      return chunksize(p) - SIZE_SZ;
    }
    return chunksize(p) - 2*SIZE_SZ;
  }
}




/* Utility to update current_mallinfo for malloc_stats and mallinfo() */

#ifdef DEBUG
static void malloc_update_mallinfo()
{
  int i;
  mbinptr b;
  mchunkptr p;
#ifdef DEBUG
  mchunkptr q;
#endif

  INTERNAL_SIZE_T avail = chunksize(top);
  int   navail = ((long)(avail) >= (long)MINSIZE)? 1 : 0;

  for (i = 1; i < NAV; ++i)
  {
    b = bin_at(i);
    for (p = last(b); p != b; p = p->bk)
    {
#ifdef DEBUG
      check_free_chunk(p);
      for (q = next_chunk(p);
	   q < top && inuse(q) && (long)(chunksize(q)) >= (long)MINSIZE;
	   q = next_chunk(q))
	check_inuse_chunk(q);
#endif
      avail += chunksize(p);
      navail++;
    }
  }

  current_mallinfo.ordblks = navail;
  current_mallinfo.uordblks = sbrked_mem - avail;
  current_mallinfo.fordblks = avail;
  current_mallinfo.hblks = n_mmaps;
  current_mallinfo.hblkhd = mmapped_mem;
  current_mallinfo.keepcost = chunksize(top);

}
#endif	/* DEBUG */



/*

  malloc_stats:

    Prints on the amount of space obtain from the system (both
    via sbrk and mmap), the maximum amount (which may be more than
    current if malloc_trim and/or munmap got called), the maximum
    number of simultaneous mmap regions used, and the current number
    of bytes allocated via malloc (or realloc, etc) but not yet
    freed. (Note that this is the number of bytes allocated, not the
    number requested. It will be larger than the number requested
    because of alignment and bookkeeping overhead.)

*/

#ifdef DEBUG
void malloc_stats()
{
  malloc_update_mallinfo();
  printf("max system bytes = %10u\n",
	  (unsigned int)(max_total_mem));
  printf("system bytes     = %10u\n",
	  (unsigned int)(sbrked_mem + mmapped_mem));
  printf("in use bytes     = %10u\n",
	  (unsigned int)(current_mallinfo.uordblks + mmapped_mem));
#if HAVE_MMAP
  printf("max mmap regions = %10u\n",
	  (unsigned int)max_n_mmaps);
#endif
}
#endif	/* DEBUG */

/*
  mallinfo returns a copy of updated current mallinfo.
*/

#ifdef DEBUG
struct mallinfo mALLINFo()
{
  malloc_update_mallinfo();
  return current_mallinfo;
}
#endif	/* DEBUG */




/*
  mallopt:

    mallopt is the general SVID/XPG interface to tunable parameters.
    The format is to provide a (parameter-number, parameter-value) pair.
    mallopt then sets the corresponding parameter to the argument
    value if it can (i.e., so long as the value is meaningful),
    and returns 1 if successful else 0.

    See descriptions of tunable parameters above.

*/

#if __STD_C
int mALLOPt(int param_number, int value)
#else
int mALLOPt(param_number, value) int param_number; int value;
#endif
{
  switch(param_number)
  {
    case M_TRIM_THRESHOLD:
      trim_threshold = value; return 1;
    case M_TOP_PAD:
      top_pad = value; return 1;
    case M_MMAP_THRESHOLD:
      mmap_threshold = value; return 1;
    case M_MMAP_MAX:
#if HAVE_MMAP
      n_mmaps_max = value; return 1;
#else
      if (value != 0) return 0; else  n_mmaps_max = value; return 1;
#endif

    default:
      return 0;
  }
}

int initf_malloc(void)
{
#if CONFIG_VAL(SYS_MALLOC_F_LEN)
	assert(gd->malloc_base);	/* Set up by crt0.S */
	gd->malloc_limit = CONFIG_VAL(SYS_MALLOC_F_LEN);
	gd->malloc_ptr = 0;
#endif

	return 0;
}

/*

History:

    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
      * return null for negative arguments
      * Added Several WIN32 cleanups from Martin C. Fong <mcfong@yahoo.com>
	 * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
	  (e.g. WIN32 platforms)
	 * Cleanup up header file inclusion for WIN32 platforms
	 * Cleanup code to avoid Microsoft Visual C++ compiler complaints
	 * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
	   memory allocation routines
	 * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
	 * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
	   usage of 'assert' in non-WIN32 code
	 * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
	   avoid infinite loop
      * Always call 'fREe()' rather than 'free()'

    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
      * Fixed ordering problem with boundary-stamping

    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
      * Added pvalloc, as recommended by H.J. Liu
      * Added 64bit pointer support mainly from Wolfram Gloger
      * Added anonymously donated WIN32 sbrk emulation
      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
      * malloc_extend_top: fix mask error that caused wastage after
	foreign sbrks
      * Add linux mremap support code from HJ Liu

    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
      * Integrated most documentation with the code.
      * Add support for mmap, with help from
	Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
      * Use last_remainder in more cases.
      * Pack bins using idea from  colin@nyx10.cs.du.edu
      * Use ordered bins instead of best-fit threshhold
      * Eliminate block-local decls to simplify tracing and debugging.
      * Support another case of realloc via move into top
      * Fix error occuring when initial sbrk_base not word-aligned.
      * Rely on page size for units instead of SBRK_UNIT to
	avoid surprises about sbrk alignment conventions.
      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
	(raymond@es.ele.tue.nl) for the suggestion.
      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
      * More precautions for cases where other routines call sbrk,
	courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
      * Added macros etc., allowing use in linux libc from
	H.J. Lu (hjl@gnu.ai.mit.edu)
      * Inverted this history list

    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
      * Removed all preallocation code since under current scheme
	the work required to undo bad preallocations exceeds
	the work saved in good cases for most test programs.
      * No longer use return list or unconsolidated bins since
	no scheme using them consistently outperforms those that don't
	given above changes.
      * Use best fit for very large chunks to prevent some worst-cases.
      * Added some support for debugging

    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
      * Removed footers when chunks are in use. Thanks to
	Paul Wilson (wilson@cs.texas.edu) for the suggestion.

    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
      * Added malloc_trim, with help from Wolfram Gloger
	(wmglo@Dent.MED.Uni-Muenchen.DE).

    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)

    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
      * realloc: try to expand in both directions
      * malloc: swap order of clean-bin strategy;
      * realloc: only conditionally expand backwards
      * Try not to scavenge used bins
      * Use bin counts as a guide to preallocation
      * Occasionally bin return list chunks in first scan
      * Add a few optimizations from colin@nyx10.cs.du.edu

    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
      * faster bin computation & slightly different binning
      * merged all consolidations to one part of malloc proper
	 (eliminating old malloc_find_space & malloc_clean_bin)
      * Scan 2 returns chunks (not just 1)
      * Propagate failure in realloc if malloc returns 0
      * Add stuff to allow compilation on non-ANSI compilers
	  from kpv@research.att.com

    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
      * removed potential for odd address access in prev_chunk
      * removed dependency on getpagesize.h
      * misc cosmetics and a bit more internal documentation
      * anticosmetics: mangled names in macros to evade debugger strangeness
      * tested on sparc, hp-700, dec-mips, rs6000
	  with gcc & native cc (hp, dec only) allowing
	  Detlefs & Zorn comparison study (in SIGPLAN Notices.)

    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
	 structure of old version,  but most details differ.)

*/