matsushita-common.c 18.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
/*
 * Copyright (C) 2016 Socionext Inc.
 *   Author: Masahiro Yamada <yamada.masahiro@socionext.com>
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <clk.h>
#include <fdtdec.h>
#include <mmc.h>
#include <dm.h>
#include <linux/compat.h>
#include <linux/dma-direction.h>
#include <linux/io.h>
#include <linux/sizes.h>
#include <power/regulator.h>
#include <asm/unaligned.h>

#include "matsushita-common.h"

DECLARE_GLOBAL_DATA_PTR;

static u64 matsu_sd_readq(struct matsu_sd_priv *priv, unsigned int reg)
{
	return readq(priv->regbase + (reg << 1));
}

static void matsu_sd_writeq(struct matsu_sd_priv *priv,
			       u64 val, unsigned int reg)
{
	writeq(val, priv->regbase + (reg << 1));
}

static u16 matsu_sd_readw(struct matsu_sd_priv *priv, unsigned int reg)
{
	return readw(priv->regbase + (reg >> 1));
}

static void matsu_sd_writew(struct matsu_sd_priv *priv,
			       u16 val, unsigned int reg)
{
	writew(val, priv->regbase + (reg >> 1));
}

static u32 matsu_sd_readl(struct matsu_sd_priv *priv, unsigned int reg)
{
	u32 val;

	if (priv->caps & MATSU_SD_CAP_64BIT)
		return readl(priv->regbase + (reg << 1));
	else if (priv->caps & MATSU_SD_CAP_16BIT) {
		val = readw(priv->regbase + (reg >> 1)) & 0xffff;
		if ((reg == MATSU_SD_RSP10) || (reg == MATSU_SD_RSP32) ||
		    (reg == MATSU_SD_RSP54) || (reg == MATSU_SD_RSP76)) {
			val |= readw(priv->regbase + (reg >> 1) + 2) << 16;
		}
		return val;
	} else
		return readl(priv->regbase + reg);
}

static void matsu_sd_writel(struct matsu_sd_priv *priv,
			       u32 val, unsigned int reg)
{
	if (priv->caps & MATSU_SD_CAP_64BIT)
		writel(val, priv->regbase + (reg << 1));
	if (priv->caps & MATSU_SD_CAP_16BIT) {
		writew(val & 0xffff, priv->regbase + (reg >> 1));
		if (val >> 16)
			writew(val >> 16, priv->regbase + (reg >> 1) + 2);
	} else
		writel(val, priv->regbase + reg);
}

static dma_addr_t __dma_map_single(void *ptr, size_t size,
				   enum dma_data_direction dir)
{
	unsigned long addr = (unsigned long)ptr;

	if (dir == DMA_FROM_DEVICE)
		invalidate_dcache_range(addr, addr + size);
	else
		flush_dcache_range(addr, addr + size);

	return addr;
}

static void __dma_unmap_single(dma_addr_t addr, size_t size,
			       enum dma_data_direction dir)
{
	if (dir != DMA_TO_DEVICE)
		invalidate_dcache_range(addr, addr + size);
}

static int matsu_sd_check_error(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	u32 info2 = matsu_sd_readl(priv, MATSU_SD_INFO2);

	if (info2 & MATSU_SD_INFO2_ERR_RTO) {
		/*
		 * TIMEOUT must be returned for unsupported command.  Do not
		 * display error log since this might be a part of sequence to
		 * distinguish between SD and MMC.
		 */
		return -ETIMEDOUT;
	}

	if (info2 & MATSU_SD_INFO2_ERR_TO) {
		dev_err(dev, "timeout error\n");
		return -ETIMEDOUT;
	}

	if (info2 & (MATSU_SD_INFO2_ERR_END | MATSU_SD_INFO2_ERR_CRC |
		     MATSU_SD_INFO2_ERR_IDX)) {
		dev_err(dev, "communication out of sync\n");
		return -EILSEQ;
	}

	if (info2 & (MATSU_SD_INFO2_ERR_ILA | MATSU_SD_INFO2_ERR_ILR |
		     MATSU_SD_INFO2_ERR_ILW)) {
		dev_err(dev, "illegal access\n");
		return -EIO;
	}

	return 0;
}

static int matsu_sd_wait_for_irq(struct udevice *dev, unsigned int reg,
				    u32 flag)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	long wait = 1000000;
	int ret;

	while (!(matsu_sd_readl(priv, reg) & flag)) {
		if (wait-- < 0) {
			dev_err(dev, "timeout\n");
			return -ETIMEDOUT;
		}

		ret = matsu_sd_check_error(dev);
		if (ret)
			return ret;

		udelay(1);
	}

	return 0;
}

#define matsu_pio_read_fifo(__width, __suffix)				\
static void matsu_pio_read_fifo_##__width(struct matsu_sd_priv *priv,	\
					  char *pbuf, uint blksz)	\
{									\
	u##__width *buf = (u##__width *)pbuf;				\
	int i;								\
									\
	if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) {	\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			*buf++ = matsu_sd_read##__suffix(priv,		\
							 MATSU_SD_BUF);	\
		}							\
	} else {							\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			u##__width data;				\
			data = matsu_sd_read##__suffix(priv,		\
						       MATSU_SD_BUF);	\
			put_unaligned(data, buf++);			\
		}							\
	}								\
}

matsu_pio_read_fifo(64, q)
matsu_pio_read_fifo(32, l)
matsu_pio_read_fifo(16, w)

static int matsu_sd_pio_read_one_block(struct udevice *dev, char *pbuf,
					  uint blocksize)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;

	/* wait until the buffer is filled with data */
	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
				       MATSU_SD_INFO2_BRE);
	if (ret)
		return ret;

	/*
	 * Clear the status flag _before_ read the buffer out because
	 * MATSU_SD_INFO2_BRE is edge-triggered, not level-triggered.
	 */
	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	if (priv->caps & MATSU_SD_CAP_64BIT)
		matsu_pio_read_fifo_64(priv, pbuf, blocksize);
	else if (priv->caps & MATSU_SD_CAP_16BIT)
		matsu_pio_read_fifo_16(priv, pbuf, blocksize);
	else
		matsu_pio_read_fifo_32(priv, pbuf, blocksize);

	return 0;
}

#define matsu_pio_write_fifo(__width, __suffix)				\
static void matsu_pio_write_fifo_##__width(struct matsu_sd_priv *priv,	\
					   const char *pbuf, uint blksz)\
{									\
	const u##__width *buf = (const u##__width *)pbuf;		\
	int i;								\
									\
	if (likely(IS_ALIGNED((uintptr_t)buf, ((__width) / 8)))) {	\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			matsu_sd_write##__suffix(priv, *buf++,		\
						 MATSU_SD_BUF);		\
		}							\
	} else {							\
		for (i = 0; i < blksz / ((__width) / 8); i++) {		\
			u##__width data = get_unaligned(buf++);		\
			matsu_sd_write##__suffix(priv, data,		\
						 MATSU_SD_BUF);		\
		}							\
	}								\
}

matsu_pio_write_fifo(64, q)
matsu_pio_write_fifo(32, l)
matsu_pio_write_fifo(16, w)

static int matsu_sd_pio_write_one_block(struct udevice *dev,
					   const char *pbuf, uint blocksize)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;

	/* wait until the buffer becomes empty */
	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO2,
				    MATSU_SD_INFO2_BWE);
	if (ret)
		return ret;

	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	if (priv->caps & MATSU_SD_CAP_64BIT)
		matsu_pio_write_fifo_64(priv, pbuf, blocksize);
	else if (priv->caps & MATSU_SD_CAP_16BIT)
		matsu_pio_write_fifo_16(priv, pbuf, blocksize);
	else
		matsu_pio_write_fifo_32(priv, pbuf, blocksize);

	return 0;
}

static int matsu_sd_pio_xfer(struct udevice *dev, struct mmc_data *data)
{
	const char *src = data->src;
	char *dest = data->dest;
	int i, ret;

	for (i = 0; i < data->blocks; i++) {
		if (data->flags & MMC_DATA_READ)
			ret = matsu_sd_pio_read_one_block(dev, dest,
							     data->blocksize);
		else
			ret = matsu_sd_pio_write_one_block(dev, src,
							      data->blocksize);
		if (ret)
			return ret;

		if (data->flags & MMC_DATA_READ)
			dest += data->blocksize;
		else
			src += data->blocksize;
	}

	return 0;
}

static void matsu_sd_dma_start(struct matsu_sd_priv *priv,
				  dma_addr_t dma_addr)
{
	u32 tmp;

	matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO1);
	matsu_sd_writel(priv, 0, MATSU_SD_DMA_INFO2);

	/* enable DMA */
	tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
	tmp |= MATSU_SD_EXTMODE_DMA_EN;
	matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);

	matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_L);

	/* suppress the warning "right shift count >= width of type" */
	dma_addr >>= min_t(int, 32, 8 * sizeof(dma_addr));

	matsu_sd_writel(priv, dma_addr & U32_MAX, MATSU_SD_DMA_ADDR_H);

	matsu_sd_writel(priv, MATSU_SD_DMA_CTL_START, MATSU_SD_DMA_CTL);
}

static int matsu_sd_dma_wait_for_irq(struct udevice *dev, u32 flag,
					unsigned int blocks)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	long wait = 1000000 + 10 * blocks;

	while (!(matsu_sd_readl(priv, MATSU_SD_DMA_INFO1) & flag)) {
		if (wait-- < 0) {
			dev_err(dev, "timeout during DMA\n");
			return -ETIMEDOUT;
		}

		udelay(10);
	}

	if (matsu_sd_readl(priv, MATSU_SD_DMA_INFO2)) {
		dev_err(dev, "error during DMA\n");
		return -EIO;
	}

	return 0;
}

static int matsu_sd_dma_xfer(struct udevice *dev, struct mmc_data *data)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	size_t len = data->blocks * data->blocksize;
	void *buf;
	enum dma_data_direction dir;
	dma_addr_t dma_addr;
	u32 poll_flag, tmp;
	int ret;

	tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);

	if (data->flags & MMC_DATA_READ) {
		buf = data->dest;
		dir = DMA_FROM_DEVICE;
		poll_flag = MATSU_SD_DMA_INFO1_END_RD2;
		tmp |= MATSU_SD_DMA_MODE_DIR_RD;
	} else {
		buf = (void *)data->src;
		dir = DMA_TO_DEVICE;
		poll_flag = MATSU_SD_DMA_INFO1_END_WR;
		tmp &= ~MATSU_SD_DMA_MODE_DIR_RD;
	}

	matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);

	dma_addr = __dma_map_single(buf, len, dir);

	matsu_sd_dma_start(priv, dma_addr);

	ret = matsu_sd_dma_wait_for_irq(dev, poll_flag, data->blocks);

	__dma_unmap_single(dma_addr, len, dir);

	return ret;
}

/* check if the address is DMA'able */
static bool matsu_sd_addr_is_dmaable(unsigned long addr)
{
	if (!IS_ALIGNED(addr, MATSU_SD_DMA_MINALIGN))
		return false;

#if defined(CONFIG_ARCH_UNIPHIER) && !defined(CONFIG_ARM64) && \
	defined(CONFIG_SPL_BUILD)
	/*
	 * For UniPhier ARMv7 SoCs, the stack is allocated in the locked ways
	 * of L2, which is unreachable from the DMA engine.
	 */
	if (addr < CONFIG_SPL_STACK)
		return false;
#endif

	return true;
}

int matsu_sd_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
		      struct mmc_data *data)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	int ret;
	u32 tmp;

	if (matsu_sd_readl(priv, MATSU_SD_INFO2) & MATSU_SD_INFO2_CBSY) {
		dev_err(dev, "command busy\n");
		return -EBUSY;
	}

	/* clear all status flags */
	matsu_sd_writel(priv, 0, MATSU_SD_INFO1);
	matsu_sd_writel(priv, 0, MATSU_SD_INFO2);

	/* disable DMA once */
	tmp = matsu_sd_readl(priv, MATSU_SD_EXTMODE);
	tmp &= ~MATSU_SD_EXTMODE_DMA_EN;
	matsu_sd_writel(priv, tmp, MATSU_SD_EXTMODE);

	matsu_sd_writel(priv, cmd->cmdarg, MATSU_SD_ARG);

	tmp = cmd->cmdidx;

	if (data) {
		matsu_sd_writel(priv, data->blocksize, MATSU_SD_SIZE);
		matsu_sd_writel(priv, data->blocks, MATSU_SD_SECCNT);

		/* Do not send CMD12 automatically */
		tmp |= MATSU_SD_CMD_NOSTOP | MATSU_SD_CMD_DATA;

		if (data->blocks > 1)
			tmp |= MATSU_SD_CMD_MULTI;

		if (data->flags & MMC_DATA_READ)
			tmp |= MATSU_SD_CMD_RD;
	}

	/*
	 * Do not use the response type auto-detection on this hardware.
	 * CMD8, for example, has different response types on SD and eMMC,
	 * while this controller always assumes the response type for SD.
	 * Set the response type manually.
	 */
	switch (cmd->resp_type) {
	case MMC_RSP_NONE:
		tmp |= MATSU_SD_CMD_RSP_NONE;
		break;
	case MMC_RSP_R1:
		tmp |= MATSU_SD_CMD_RSP_R1;
		break;
	case MMC_RSP_R1b:
		tmp |= MATSU_SD_CMD_RSP_R1B;
		break;
	case MMC_RSP_R2:
		tmp |= MATSU_SD_CMD_RSP_R2;
		break;
	case MMC_RSP_R3:
		tmp |= MATSU_SD_CMD_RSP_R3;
		break;
	default:
		dev_err(dev, "unknown response type\n");
		return -EINVAL;
	}

	dev_dbg(dev, "sending CMD%d (SD_CMD=%08x, SD_ARG=%08x)\n",
		cmd->cmdidx, tmp, cmd->cmdarg);
	matsu_sd_writel(priv, tmp, MATSU_SD_CMD);

	ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
				       MATSU_SD_INFO1_RSP);
	if (ret)
		return ret;

	if (cmd->resp_type & MMC_RSP_136) {
		u32 rsp_127_104 = matsu_sd_readl(priv, MATSU_SD_RSP76);
		u32 rsp_103_72 = matsu_sd_readl(priv, MATSU_SD_RSP54);
		u32 rsp_71_40 = matsu_sd_readl(priv, MATSU_SD_RSP32);
		u32 rsp_39_8 = matsu_sd_readl(priv, MATSU_SD_RSP10);

		cmd->response[0] = ((rsp_127_104 & 0x00ffffff) << 8) |
				   ((rsp_103_72  & 0xff000000) >> 24);
		cmd->response[1] = ((rsp_103_72  & 0x00ffffff) << 8) |
				   ((rsp_71_40   & 0xff000000) >> 24);
		cmd->response[2] = ((rsp_71_40   & 0x00ffffff) << 8) |
				   ((rsp_39_8    & 0xff000000) >> 24);
		cmd->response[3] = (rsp_39_8     & 0xffffff)   << 8;
	} else {
		/* bit 39-8 */
		cmd->response[0] = matsu_sd_readl(priv, MATSU_SD_RSP10);
	}

	if (data) {
		/* use DMA if the HW supports it and the buffer is aligned */
		if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL &&
		    matsu_sd_addr_is_dmaable((long)data->src))
			ret = matsu_sd_dma_xfer(dev, data);
		else
			ret = matsu_sd_pio_xfer(dev, data);

		ret = matsu_sd_wait_for_irq(dev, MATSU_SD_INFO1,
					       MATSU_SD_INFO1_CMP);
		if (ret)
			return ret;
	}

	return ret;
}

static int matsu_sd_set_bus_width(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	u32 val, tmp;

	switch (mmc->bus_width) {
	case 1:
		val = MATSU_SD_OPTION_WIDTH_1;
		break;
	case 4:
		val = MATSU_SD_OPTION_WIDTH_4;
		break;
	case 8:
		val = MATSU_SD_OPTION_WIDTH_8;
		break;
	default:
		return -EINVAL;
	}

	tmp = matsu_sd_readl(priv, MATSU_SD_OPTION);
	tmp &= ~MATSU_SD_OPTION_WIDTH_MASK;
	tmp |= val;
	matsu_sd_writel(priv, tmp, MATSU_SD_OPTION);

	return 0;
}

static void matsu_sd_set_ddr_mode(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	u32 tmp;

	tmp = matsu_sd_readl(priv, MATSU_SD_IF_MODE);
	if (mmc->ddr_mode)
		tmp |= MATSU_SD_IF_MODE_DDR;
	else
		tmp &= ~MATSU_SD_IF_MODE_DDR;
	matsu_sd_writel(priv, tmp, MATSU_SD_IF_MODE);
}

static void matsu_sd_set_clk_rate(struct matsu_sd_priv *priv,
				     struct mmc *mmc)
{
	unsigned int divisor;
	u32 val, tmp;

	if (!mmc->clock)
		return;

	divisor = DIV_ROUND_UP(priv->mclk, mmc->clock);

	if (divisor <= 1)
		val = MATSU_SD_CLKCTL_DIV1;
	else if (divisor <= 2)
		val = MATSU_SD_CLKCTL_DIV2;
	else if (divisor <= 4)
		val = MATSU_SD_CLKCTL_DIV4;
	else if (divisor <= 8)
		val = MATSU_SD_CLKCTL_DIV8;
	else if (divisor <= 16)
		val = MATSU_SD_CLKCTL_DIV16;
	else if (divisor <= 32)
		val = MATSU_SD_CLKCTL_DIV32;
	else if (divisor <= 64)
		val = MATSU_SD_CLKCTL_DIV64;
	else if (divisor <= 128)
		val = MATSU_SD_CLKCTL_DIV128;
	else if (divisor <= 256)
		val = MATSU_SD_CLKCTL_DIV256;
	else if (divisor <= 512 || !(priv->caps & MATSU_SD_CAP_DIV1024))
		val = MATSU_SD_CLKCTL_DIV512;
	else
		val = MATSU_SD_CLKCTL_DIV1024;

	tmp = matsu_sd_readl(priv, MATSU_SD_CLKCTL);
	if (tmp & MATSU_SD_CLKCTL_SCLKEN &&
	    (tmp & MATSU_SD_CLKCTL_DIV_MASK) == val)
		return;

	/* stop the clock before changing its rate to avoid a glitch signal */
	tmp &= ~MATSU_SD_CLKCTL_SCLKEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	tmp &= ~MATSU_SD_CLKCTL_DIV_MASK;
	tmp |= val | MATSU_SD_CLKCTL_OFFEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	tmp |= MATSU_SD_CLKCTL_SCLKEN;
	matsu_sd_writel(priv, tmp, MATSU_SD_CLKCTL);

	udelay(1000);
}

int matsu_sd_set_ios(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	struct mmc *mmc = mmc_get_mmc_dev(dev);
	int ret;

	dev_dbg(dev, "clock %uHz, DDRmode %d, width %u\n",
		mmc->clock, mmc->ddr_mode, mmc->bus_width);

	ret = matsu_sd_set_bus_width(priv, mmc);
	if (ret)
		return ret;
	matsu_sd_set_ddr_mode(priv, mmc);
	matsu_sd_set_clk_rate(priv, mmc);

	return 0;
}

int matsu_sd_get_cd(struct udevice *dev)
{
	struct matsu_sd_priv *priv = dev_get_priv(dev);

	if (priv->caps & MATSU_SD_CAP_NONREMOVABLE)
		return 1;

	return !!(matsu_sd_readl(priv, MATSU_SD_INFO1) &
		  MATSU_SD_INFO1_CD);
}

static void matsu_sd_host_init(struct matsu_sd_priv *priv)
{
	u32 tmp;

	/* soft reset of the host */
	tmp = matsu_sd_readl(priv, MATSU_SD_SOFT_RST);
	tmp &= ~MATSU_SD_SOFT_RST_RSTX;
	matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);
	tmp |= MATSU_SD_SOFT_RST_RSTX;
	matsu_sd_writel(priv, tmp, MATSU_SD_SOFT_RST);

	/* FIXME: implement eMMC hw_reset */

	matsu_sd_writel(priv, MATSU_SD_STOP_SEC, MATSU_SD_STOP);

	/*
	 * Connected to 32bit AXI.
	 * This register dropped backward compatibility at version 0x10.
	 * Write an appropriate value depending on the IP version.
	 */
	if (priv->version >= 0x10)
		matsu_sd_writel(priv, 0x101, MATSU_SD_HOST_MODE);
	else if (priv->caps & MATSU_SD_CAP_16BIT)
		matsu_sd_writel(priv, 0x1, MATSU_SD_HOST_MODE);
	else
		matsu_sd_writel(priv, 0x0, MATSU_SD_HOST_MODE);

	if (priv->caps & MATSU_SD_CAP_DMA_INTERNAL) {
		tmp = matsu_sd_readl(priv, MATSU_SD_DMA_MODE);
		tmp |= MATSU_SD_DMA_MODE_ADDR_INC;
		matsu_sd_writel(priv, tmp, MATSU_SD_DMA_MODE);
	}
}

int matsu_sd_bind(struct udevice *dev)
{
	struct matsu_sd_plat *plat = dev_get_platdata(dev);

	return mmc_bind(dev, &plat->mmc, &plat->cfg);
}

int matsu_sd_probe(struct udevice *dev)
{
	struct matsu_sd_plat *plat = dev_get_platdata(dev);
	struct matsu_sd_priv *priv = dev_get_priv(dev);
	struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
	const u32 quirks = dev_get_driver_data(dev);
	fdt_addr_t base;
	struct clk clk;
	int ret;
#ifdef CONFIG_DM_REGULATOR
	struct udevice *vqmmc_dev;
#endif

	base = devfdt_get_addr(dev);
	if (base == FDT_ADDR_T_NONE)
		return -EINVAL;

	priv->regbase = devm_ioremap(dev, base, SZ_2K);
	if (!priv->regbase)
		return -ENOMEM;

#ifdef CONFIG_DM_REGULATOR
	ret = device_get_supply_regulator(dev, "vqmmc-supply", &vqmmc_dev);
	if (!ret) {
		/* Set the regulator to 3.3V until we support 1.8V modes */
		regulator_set_value(vqmmc_dev, 3300000);
		regulator_set_enable(vqmmc_dev, true);
	}
#endif

	ret = clk_get_by_index(dev, 0, &clk);
	if (ret < 0) {
		dev_err(dev, "failed to get host clock\n");
		return ret;
	}

	/* set to max rate */
	priv->mclk = clk_set_rate(&clk, ULONG_MAX);
	if (IS_ERR_VALUE(priv->mclk)) {
		dev_err(dev, "failed to set rate for host clock\n");
		clk_free(&clk);
		return priv->mclk;
	}

	ret = clk_enable(&clk);
	clk_free(&clk);
	if (ret) {
		dev_err(dev, "failed to enable host clock\n");
		return ret;
	}

	plat->cfg.name = dev->name;
	plat->cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS;

	switch (fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "bus-width",
			       1)) {
	case 8:
		plat->cfg.host_caps |= MMC_MODE_8BIT;
		break;
	case 4:
		plat->cfg.host_caps |= MMC_MODE_4BIT;
		break;
	case 1:
		break;
	default:
		dev_err(dev, "Invalid \"bus-width\" value\n");
		return -EINVAL;
	}

	if (quirks) {
		priv->caps = quirks;
	} else {
		priv->version = matsu_sd_readl(priv, MATSU_SD_VERSION) &
							MATSU_SD_VERSION_IP;
		dev_dbg(dev, "version %x\n", priv->version);
		if (priv->version >= 0x10) {
			priv->caps |= MATSU_SD_CAP_DMA_INTERNAL;
			priv->caps |= MATSU_SD_CAP_DIV1024;
		}
	}

	if (fdt_get_property(gd->fdt_blob, dev_of_offset(dev), "non-removable",
			     NULL))
		priv->caps |= MATSU_SD_CAP_NONREMOVABLE;

	matsu_sd_host_init(priv);

	plat->cfg.voltages = MMC_VDD_165_195 | MMC_VDD_32_33 | MMC_VDD_33_34;
	plat->cfg.f_min = priv->mclk /
			(priv->caps & MATSU_SD_CAP_DIV1024 ? 1024 : 512);
	plat->cfg.f_max = priv->mclk;
	plat->cfg.b_max = U32_MAX; /* max value of MATSU_SD_SECCNT */

	upriv->mmc = &plat->mmc;

	return 0;
}