cpu.c 28.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright 2017-2020 NXP
 */

#include <common.h>
#include <clk.h>
#include <cpu.h>
#include <cpu_func.h>
#include <dm.h>
#include <init.h>
#include <dm/device-internal.h>
#include <dm/lists.h>
#include <dm/uclass.h>
#include <errno.h>
#include <asm/arch/clock.h>
#include <power-domain.h>
#include <dm/device.h>
#include <dm/uclass-internal.h>
#include <thermal.h>
#include <asm/arch/sci/sci.h>
#include <power-domain.h>
#include <elf.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch-imx/cpu.h>
#include <asm/armv8/cpu.h>
#include <asm/armv8/mmu.h>
#include <asm/setup.h>
#include <asm/mach-imx/boot_mode.h>
#include <asm/mach-imx/imx_vservice.h>
#include <spl.h>
#include <usb/ci_udc.h>

DECLARE_GLOBAL_DATA_PTR;

#define BT_PASSOVER_TAG	0x504F
struct pass_over_info_t *get_pass_over_info(void)
{
	struct pass_over_info_t *p =
		(struct pass_over_info_t *)PASS_OVER_INFO_ADDR;

	if (p->barker != BT_PASSOVER_TAG ||
	    p->len != sizeof(struct pass_over_info_t))
		return NULL;

	return p;
}

#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_RECOVER_SPL_DATA_SECTION)
char __data_save_start[0] __attribute__((section(".__data_save_start")));
char __data_save_end[0] __attribute__((section(".__data_save_end")));

u32 cold_reboot_flag = 1;

static void save_restore_data(void)
{
	u32 data_size = __data_save_end - __data_save_start;

	if (cold_reboot_flag == 1) {
		/* Save data section to data_save section */
		memcpy(__data_save_start, __data_save_start - data_size, data_size);
	} else {
		/* Restore the data_save section to data section */
		memcpy(__data_save_start - data_size, __data_save_start, data_size);
	}
	cold_reboot_flag++;
}
#endif

int arch_cpu_init(void)
{
#if defined(CONFIG_SPL_BUILD) && defined(CONFIG_RECOVER_SPL_DATA_SECTION)
	save_restore_data();
#endif

	return 0;
}

static void power_off_all_usb(void);

int arch_cpu_init_dm(void)
{
	struct udevice *devp;
	int node, ret;

	node = fdt_node_offset_by_compatible(gd->fdt_blob, -1, "fsl,imx8-mu");

	ret = uclass_get_device_by_of_offset(UCLASS_MISC, node, &devp);
	if (ret) {
		printf("could not get scu %d\n", ret);
		return ret;
	}

	if (IS_ENABLED(CONFIG_XEN))
		return 0;

	struct pass_over_info_t *pass_over;

	if ((is_imx8qm() || is_imx8qxp()) && is_soc_rev(CHIP_REV_A)) {
		pass_over = get_pass_over_info();
		if (pass_over && pass_over->g_ap_mu == 0) {
			/*
			 * When ap_mu is 0, means the U-Boot booted
			 * from first container
			 */
			sc_misc_boot_status(-1, SC_MISC_BOOT_STATUS_SUCCESS);
		}
	}

	if (is_imx8qm()) {
		ret = sc_pm_set_resource_power_mode(-1, SC_R_SMMU,
						    SC_PM_PW_MODE_ON);
		if (ret)
			return ret;
	}

	power_off_all_usb();

	return 0;
}

#ifdef CONFIG_IMX_BOOTAUX

#ifdef CONFIG_IMX8QM
int arch_auxiliary_core_up(u32 core_id, ulong boot_private_data)
{
	sc_rsrc_t core_rsrc, mu_rsrc;
	sc_faddr_t tcml_addr;
	u32 tcm_size = SZ_256K; /* TCML + TCMU */
	ulong addr;


	switch (core_id) {
	case 0:
		core_rsrc = SC_R_M4_0_PID0;
		tcml_addr = 0x34FE0000;
		mu_rsrc = SC_R_M4_0_MU_1A;
		break;
	case 1:
		core_rsrc = SC_R_M4_1_PID0;
		tcml_addr = 0x38FE0000;
		mu_rsrc = SC_R_M4_1_MU_1A;
		break;
	default:
		printf("Not support this core boot up, ID:%u\n", core_id);
		return -EINVAL;
	}

	addr = (sc_faddr_t)boot_private_data;

	if (addr >= tcml_addr && addr <= tcml_addr + tcm_size) {
		printf("Wrong image address 0x%lx, should not in TCML\n",
			addr);
		return -EINVAL;
	}

	printf("Power on M4 and MU\n");

	if (sc_pm_set_resource_power_mode(-1, core_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
		return -EIO;

	if (sc_pm_set_resource_power_mode(-1, mu_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
		return -EIO;

	printf("Copy M4 image from 0x%lx to TCML 0x%lx\n", addr, (ulong)tcml_addr);

	if (addr != tcml_addr)
		memcpy((void *)tcml_addr, (void *)addr, tcm_size);

	printf("Start M4 %u\n", core_id);
	if (sc_pm_cpu_start(-1, core_rsrc, true, tcml_addr) != SC_ERR_NONE)
		return -EIO;

	printf("bootaux complete\n");
	return 0;
}
#endif

#if defined(CONFIG_IMX8QXP) || defined(CONFIG_IMX8DXL)
static unsigned long load_elf_image_shdr(unsigned long addr)
{
	Elf32_Ehdr *ehdr; /* Elf header structure pointer */
	Elf32_Shdr *shdr; /* Section header structure pointer */
	unsigned char *strtab = 0; /* String table pointer */
	unsigned char *image; /* Binary image pointer */
	int i; /* Loop counter */

	ehdr = (Elf32_Ehdr *)addr;

	/* Find the section header string table for output info */
	shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
			     (ehdr->e_shstrndx * sizeof(Elf32_Shdr)));

	if (shdr->sh_type == SHT_STRTAB)
		strtab = (unsigned char *)(addr + shdr->sh_offset);

	/* Load each appropriate section */
	for (i = 0; i < ehdr->e_shnum; ++i) {
		shdr = (Elf32_Shdr *)(addr + ehdr->e_shoff +
				     (i * sizeof(Elf32_Shdr)));

		if (!(shdr->sh_flags & SHF_ALLOC) ||
		    shdr->sh_addr == 0 || shdr->sh_size == 0) {
			continue;
		}

		if (strtab) {
			debug("%sing %s @ 0x%08lx (%ld bytes)\n",
			      (shdr->sh_type == SHT_NOBITS) ? "Clear" : "Load",
			       &strtab[shdr->sh_name],
			       (unsigned long)shdr->sh_addr,
			       (long)shdr->sh_size);
		}

		if (shdr->sh_type == SHT_NOBITS) {
			memset((void *)(uintptr_t)shdr->sh_addr, 0,
			       shdr->sh_size);
		} else {
			image = (unsigned char *)addr + shdr->sh_offset;
			memcpy((void *)(uintptr_t)shdr->sh_addr,
			       (const void *)image, shdr->sh_size);
		}
		flush_cache(shdr->sh_addr, shdr->sh_size);
	}

	return ehdr->e_entry;
}

int arch_auxiliary_core_up(u32 core_id, ulong boot_private_data)
{
	sc_rsrc_t core_rsrc, mu_rsrc = SC_R_NONE;
	sc_faddr_t aux_core_ram;
	u32 size;
	ulong addr;

	switch (core_id) {
	case 0:
		core_rsrc = SC_R_M4_0_PID0;
		aux_core_ram = 0x34FE0000;
		mu_rsrc = SC_R_M4_0_MU_1A;
		size = SZ_256K;
		break;
	case 1:
		core_rsrc = SC_R_DSP;
		aux_core_ram = 0x596f8000;
		size = SZ_2K;
		break;
	default:
		printf("Not support this core boot up, ID:%u\n", core_id);
		return -EINVAL;
	}

	addr = (sc_faddr_t)boot_private_data;

	if (addr >= aux_core_ram && addr <= aux_core_ram + size) {
		printf("Wrong image address 0x%lx, should not in aux core ram\n",
			addr);
		return -EINVAL;
	}

	printf("Power on aux core %d\n", core_id);

	if (sc_pm_set_resource_power_mode(-1, core_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
		return -EIO;

	if (mu_rsrc != SC_R_NONE) {
		if (sc_pm_set_resource_power_mode(-1, mu_rsrc, SC_PM_PW_MODE_ON) != SC_ERR_NONE)
			return -EIO;
	}

	if (core_id == 1) {
		struct power_domain pd;

		if (sc_pm_clock_enable(-1, core_rsrc, SC_PM_CLK_PER, true, false) != SC_ERR_NONE) {
			printf("Error enable clock\n");
			return -EIO;
		}

		if (!power_domain_lookup_name("audio_sai0", &pd)) {
			if (power_domain_on(&pd)) {
				printf("Error power on SAI0\n");
				return -EIO;
			}
		}

		if (!power_domain_lookup_name("audio_ocram", &pd)) {
			if (power_domain_on(&pd)) {
				printf("Error power on HIFI RAM\n");
				return -EIO;
			}
		}
	}

	printf("Copy image from 0x%lx to 0x%lx\n", addr, (ulong)aux_core_ram);
	if (core_id == 0) {
		/* M4 use bin file */
		memcpy((void *)aux_core_ram, (void *)addr, size);
	} else {
		/* HIFI use elf file */
		if (!valid_elf_image(addr))
			return -1;
		addr = load_elf_image_shdr(addr);
	}

	printf("Start %s\n", core_id == 0 ? "M4" : "HIFI");

	if (sc_pm_cpu_start(-1, core_rsrc, true, aux_core_ram) != SC_ERR_NONE)
		return -EIO;

	printf("bootaux complete\n");
	return 0;
}
#endif

int arch_auxiliary_core_check_up(u32 core_id)
{
	sc_rsrc_t core_rsrc;
	sc_pm_power_mode_t power_mode;

	switch (core_id) {
	case 0:
		core_rsrc = SC_R_M4_0_PID0;
		break;
#ifdef CONFIG_IMX8QM
	case 1:
		core_rsrc = SC_R_M4_1_PID0;
		break;
#endif
	default:
		printf("Not support this core, ID:%u\n", core_id);
		return 0;
	}

	if (sc_pm_get_resource_power_mode(-1, core_rsrc, &power_mode) != SC_ERR_NONE)
		return 0;

	if (power_mode != SC_PM_PW_MODE_OFF)
		return 1;

	return 0;
}
#endif

int print_bootinfo(void)
{
	enum boot_device bt_dev = get_boot_device();

	puts("Boot:  ");
	switch (bt_dev) {
	case SD1_BOOT:
		puts("SD0\n");
		break;
	case SD2_BOOT:
		puts("SD1\n");
		break;
	case SD3_BOOT:
		puts("SD2\n");
		break;
	case MMC1_BOOT:
		puts("MMC0\n");
		break;
	case MMC2_BOOT:
		puts("MMC1\n");
		break;
	case MMC3_BOOT:
		puts("MMC2\n");
		break;
	case FLEXSPI_BOOT:
		puts("FLEXSPI\n");
		break;
	case SATA_BOOT:
		puts("SATA\n");
		break;
	case NAND_BOOT:
		puts("NAND\n");
		break;
	case USB_BOOT:
		puts("USB\n");
		break;
	default:
		printf("Unknown device %u\n", bt_dev);
		break;
	}

	return 0;
}

enum boot_device get_boot_device(void)
{
	enum boot_device boot_dev = SD1_BOOT;

	sc_rsrc_t dev_rsrc;

	/* Note we only support android in EMMC SDHC0 */
	if (IS_ENABLED(CONFIG_XEN))
		return MMC1_BOOT;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		boot_dev = MMC1_BOOT;
		break;
	case SC_R_SDHC_1:
		boot_dev = SD2_BOOT;
		break;
	case SC_R_SDHC_2:
		boot_dev = SD3_BOOT;
		break;
	case SC_R_NAND:
		boot_dev = NAND_BOOT;
		break;
	case SC_R_FSPI_0:
		boot_dev = FLEXSPI_BOOT;
		break;
	case SC_R_SATA_0:
		boot_dev = SATA_BOOT;
		break;
	case SC_R_USB_0:
	case SC_R_USB_1:
	case SC_R_USB_2:
		boot_dev = USB_BOOT;
		break;
	default:
		break;
	}

	return boot_dev;
}

bool is_usb_boot(void)
{
	return get_boot_device() == USB_BOOT;
}

#ifdef CONFIG_SERIAL_TAG
#define FUSE_UNIQUE_ID_WORD0 16
#define FUSE_UNIQUE_ID_WORD1 17
void get_board_serial(struct tag_serialnr *serialnr)
{
	sc_err_t err;
	uint32_t val1 = 0, val2 = 0;
	uint32_t word1, word2;

	word1 = FUSE_UNIQUE_ID_WORD0;
	word2 = FUSE_UNIQUE_ID_WORD1;

	err = sc_misc_otp_fuse_read(-1, word1, &val1);
	if (err != SC_ERR_NONE) {
		printf("%s fuse %d read error: %d\n", __func__,word1, err);
		return;
	}

	err = sc_misc_otp_fuse_read(-1, word2, &val2);
	if (err != SC_ERR_NONE) {
		printf("%s fuse %d read error: %d\n", __func__, word2, err);
		return;
	}
	serialnr->low = val1;
	serialnr->high = val2;
}
#endif /*CONFIG_SERIAL_TAG*/

__weak int board_mmc_get_env_dev(int devno)
{
	return devno;
}

int mmc_get_env_dev(void)
{
	sc_rsrc_t dev_rsrc;
	int devno;

	sc_misc_get_boot_dev(-1, &dev_rsrc);

	switch (dev_rsrc) {
	case SC_R_SDHC_0:
		devno = 0;
		break;
	case SC_R_SDHC_1:
		devno = 1;
		break;
	case SC_R_SDHC_2:
		devno = 2;
		break;
	default:
		/* If not boot from sd/mmc, use default value */
		return env_get_ulong("mmcdev", 10, CONFIG_SYS_MMC_ENV_DEV);
	}

	return board_mmc_get_env_dev(devno);
}

#define MEMSTART_ALIGNMENT  SZ_2M /* Align the memory start with 2MB */

static sc_faddr_t reserve_optee_shm(sc_faddr_t addr_start)
{
	/* OPTEE has a share memory at its top address,
	 * ATF assigns the share memory to non-secure os partition for share with kernel
	 * We should not add this share memory to DDR bank, as this memory is dedicated for
	 * optee, optee driver will memremap it and can't be used by system malloc.
	 */

	sc_faddr_t optee_start = rom_pointer[0];
	sc_faddr_t optee_size = rom_pointer[1];

	if (optee_size && optee_start <= addr_start &&
		addr_start < optee_start + optee_size) {
		debug("optee 0x%llx 0x%llx, addr_start 0x%llx\n",
			optee_start, optee_size, addr_start);
		return optee_start + optee_size;
	}

	return addr_start;
}

static int get_owned_memreg(sc_rm_mr_t mr, sc_faddr_t *addr_start,
			    sc_faddr_t *addr_end)
{
	sc_faddr_t start, end;
	int ret;
	bool owned;

	owned = sc_rm_is_memreg_owned(-1, mr);
	if (owned) {
		ret = sc_rm_get_memreg_info(-1, mr, &start, &end);
		if (ret) {
			printf("Memreg get info failed, %d\n", ret);
			return -EINVAL;
		}
		debug("0x%llx -- 0x%llx\n", start, end);
		*addr_start = reserve_optee_shm(start);
		*addr_end = end;

		return 0;
	}

	return -EINVAL;
}

phys_size_t get_effective_memsize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, start_aligned;
	int err;

	if (IS_ENABLED(CONFIG_XEN))
		return PHYS_SDRAM_1_SIZE;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start_aligned = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start_aligned > end)
				continue;

			/* Find the memory region runs the U-Boot */
			if (start >= PHYS_SDRAM_1 && start <= end1 &&
			    (start <= CONFIG_SYS_TEXT_BASE &&
			    end >= CONFIG_SYS_TEXT_BASE)) {
				if ((end + 1) <= ((sc_faddr_t)PHYS_SDRAM_1 +
				    PHYS_SDRAM_1_SIZE))
					return (end - PHYS_SDRAM_1 + 1);
				else
					return PHYS_SDRAM_1_SIZE;
			}
		}
	}

	return PHYS_SDRAM_1_SIZE;
}

int dram_init(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int err;

	if (IS_ENABLED(CONFIG_XEN)) {
		gd->ram_size = PHYS_SDRAM_1_SIZE;
		gd->ram_size += PHYS_SDRAM_2_SIZE;

		return 0;
	}

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
	for (mr = 0; mr < 64; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			/* Too small memory region, not use it */
			if (start > end)
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				if ((end + 1) <= end1)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end1 - start;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				if ((end + 1) <= end2)
					gd->ram_size += end - start + 1;
				else
					gd->ram_size += end2 - start;
			}
		}
	}

	/* If error, set to the default value */
	if (!gd->ram_size) {
		gd->ram_size = PHYS_SDRAM_1_SIZE;
		gd->ram_size += PHYS_SDRAM_2_SIZE;
	}
	return 0;
}

static void dram_bank_sort(int current_bank)
{
	phys_addr_t start;
	phys_size_t size;

	while (current_bank > 0) {
		if (gd->bd->bi_dram[current_bank - 1].start >
		    gd->bd->bi_dram[current_bank].start) {
			start = gd->bd->bi_dram[current_bank - 1].start;
			size = gd->bd->bi_dram[current_bank - 1].size;

			gd->bd->bi_dram[current_bank - 1].start =
				gd->bd->bi_dram[current_bank].start;
			gd->bd->bi_dram[current_bank - 1].size =
				gd->bd->bi_dram[current_bank].size;

			gd->bd->bi_dram[current_bank].start = start;
			gd->bd->bi_dram[current_bank].size = size;
		}
		current_bank--;
	}
}

int dram_init_banksize(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end, end1, end2;
	int i = 0;
	int err;

	if (IS_ENABLED(CONFIG_XEN)) {
		gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
		gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
		gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
		gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;

		return 0;
	}

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;
	for (mr = 0; mr < 64 && i < CONFIG_NR_DRAM_BANKS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			start = roundup(start, MEMSTART_ALIGNMENT);
			if (start > end) /* Small memory region, no use it */
				continue;

			if (start >= PHYS_SDRAM_1 && start <= end1) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end1)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end1 - start;

				dram_bank_sort(i);
				i++;
			} else if (start >= PHYS_SDRAM_2 && start <= end2) {
				gd->bd->bi_dram[i].start = start;

				if ((end + 1) <= end2)
					gd->bd->bi_dram[i].size =
						end - start + 1;
				else
					gd->bd->bi_dram[i].size = end2 - start;

				dram_bank_sort(i);
				i++;
			}
		}
	}

	/* If error, set to the default value */
	if (!i) {
		gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
		gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE;
		gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
		gd->bd->bi_dram[1].size = PHYS_SDRAM_2_SIZE;
	}

	return 0;
}

static u64 get_block_attrs(sc_faddr_t addr_start)
{
	u64 attr = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) | PTE_BLOCK_NON_SHARE |
		PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	if ((addr_start >= PHYS_SDRAM_1 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE)) ||
	    (addr_start >= PHYS_SDRAM_2 &&
	     addr_start <= ((sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE)))
#ifdef CONFIG_IMX_TRUSTY_OS
		return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE);
#else
		return (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_OUTER_SHARE);
#endif

	return attr;
}

static u64 get_block_size(sc_faddr_t addr_start, sc_faddr_t addr_end)
{
	sc_faddr_t end1, end2;

	end1 = (sc_faddr_t)PHYS_SDRAM_1 + PHYS_SDRAM_1_SIZE;
	end2 = (sc_faddr_t)PHYS_SDRAM_2 + PHYS_SDRAM_2_SIZE;

	if (addr_start >= PHYS_SDRAM_1 && addr_start <= end1) {
		if ((addr_end + 1) > end1)
			return end1 - addr_start;
	} else if (addr_start >= PHYS_SDRAM_2 && addr_start <= end2) {
		if ((addr_end + 1) > end2)
			return end2 - addr_start;
	}

	return (addr_end - addr_start + 1);
}

#define MAX_PTE_ENTRIES 512
#define MAX_MEM_MAP_REGIONS 16

static struct mm_region imx8_mem_map[MAX_MEM_MAP_REGIONS];
struct mm_region *mem_map = imx8_mem_map;

void enable_caches(void)
{
	sc_rm_mr_t mr;
	sc_faddr_t start, end;
	int err, i;

	if (IS_ENABLED(CONFIG_XEN)) {
		imx8_mem_map[0].virt = 0x00000000UL;
		imx8_mem_map[0].phys = 0x00000000UL;
		imx8_mem_map[0].size = 0x39000000UL;
		imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
				 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
		imx8_mem_map[1].virt = 0x39000000UL;
		imx8_mem_map[1].phys = 0x39000000UL;
		imx8_mem_map[1].size = 0x01000000UL;
		imx8_mem_map[1].attrs = (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE);

		imx8_mem_map[2].virt = 0x40000000UL;
		imx8_mem_map[2].phys = 0x40000000UL;
		imx8_mem_map[2].size = 0x40000000UL;
		imx8_mem_map[2].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
				 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;

		imx8_mem_map[3].virt = 0x80000000UL;
		imx8_mem_map[3].phys = 0x80000000UL;
		imx8_mem_map[3].size = 0x80000000UL;
		imx8_mem_map[3].attrs = (PTE_BLOCK_MEMTYPE(MT_NORMAL) | PTE_BLOCK_INNER_SHARE);

		imx8_mem_map[4].virt = 0x100000000UL;
		imx8_mem_map[4].phys = 0x100000000UL;
		imx8_mem_map[4].size = 0x100000000UL;
		imx8_mem_map[4].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
				 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;

		icache_enable();
		dcache_enable();

		return;
	}

	/* Create map for registers access from 0x1c000000 to 0x80000000*/
	imx8_mem_map[0].virt = 0x1c000000UL;
	imx8_mem_map[0].phys = 0x1c000000UL;
	imx8_mem_map[0].size = 0x64000000UL;
	imx8_mem_map[0].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
			 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;

	i = 1;

#ifdef CONFIG_IMX_VSERVICE_SHARED_BUFFER
	imx8_mem_map[i].virt = CONFIG_IMX_VSERVICE_SHARED_BUFFER;
	imx8_mem_map[i].phys = CONFIG_IMX_VSERVICE_SHARED_BUFFER;
	imx8_mem_map[i].size = CONFIG_IMX_VSERVICE_SHARED_BUFFER_SIZE;
	imx8_mem_map[i].attrs = PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE) |
			 PTE_BLOCK_NON_SHARE | PTE_BLOCK_PXN | PTE_BLOCK_UXN;
	i++;
#endif

	for (mr = 0; mr < 64 && i < MAX_MEM_MAP_REGIONS; mr++) {
		err = get_owned_memreg(mr, &start, &end);
		if (!err) {
			imx8_mem_map[i].virt = start;
			imx8_mem_map[i].phys = start;
			imx8_mem_map[i].size = get_block_size(start, end);
			imx8_mem_map[i].attrs = get_block_attrs(start);
			i++;
		}
	}

	if (i < MAX_MEM_MAP_REGIONS) {
		imx8_mem_map[i].size = 0;
		imx8_mem_map[i].attrs = 0;
	} else {
		puts("Error, need more MEM MAP REGIONS reserved\n");
		icache_enable();
		return;
	}

	for (i = 0; i < MAX_MEM_MAP_REGIONS; i++) {
		debug("[%d] vir = 0x%llx phys = 0x%llx size = 0x%llx attrs = 0x%llx\n",
		      i, imx8_mem_map[i].virt, imx8_mem_map[i].phys,
		      imx8_mem_map[i].size, imx8_mem_map[i].attrs);
	}

	icache_enable();
	dcache_enable();
}

#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
u64 get_page_table_size(void)
{
	u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
	u64 size = 0;

	/*
	 * For each memory region, the max table size:
	 * 2 level 3 tables + 2 level 2 tables + 1 level 1 table
	 */
	size = (2 + 2 + 1) * one_pt * MAX_MEM_MAP_REGIONS + one_pt;

	/*
	 * We need to duplicate our page table once to have an emergency pt to
	 * resort to when splitting page tables later on
	 */
	size *= 2;

	/*
	 * We may need to split page tables later on if dcache settings change,
	 * so reserve up to 4 (random pick) page tables for that.
	 */
	size += one_pt * 4;

	return size;
}
#endif

#if defined(CONFIG_IMX8QM)
#define FUSE_MAC0_WORD0 452
#define FUSE_MAC0_WORD1 453
#define FUSE_MAC1_WORD0 454
#define FUSE_MAC1_WORD1 455
#elif defined(CONFIG_IMX8QXP) || defined (CONFIG_IMX8DXL)
#define FUSE_MAC0_WORD0 708
#define FUSE_MAC0_WORD1 709
#define FUSE_MAC1_WORD0 710
#define FUSE_MAC1_WORD1 711
#endif

void imx_get_mac_from_fuse(int dev_id, unsigned char *mac)
{
	u32 word[2], val[2] = {};
	int i, ret;

	if (dev_id == 0) {
		word[0] = FUSE_MAC0_WORD0;
		word[1] = FUSE_MAC0_WORD1;
	} else {
		word[0] = FUSE_MAC1_WORD0;
		word[1] = FUSE_MAC1_WORD1;
	}

	for (i = 0; i < 2; i++) {
		ret = sc_misc_otp_fuse_read(-1, word[i], &val[i]);
		if (ret < 0)
			goto err;
	}

	mac[0] = val[0];
	mac[1] = val[0] >> 8;
	mac[2] = val[0] >> 16;
	mac[3] = val[0] >> 24;
	mac[4] = val[1];
	mac[5] = val[1] >> 8;

	debug("%s: MAC%d: %02x.%02x.%02x.%02x.%02x.%02x\n",
	      __func__, dev_id, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
	return;
err:
	printf("%s: fuse %d, err: %d\n", __func__, word[i], ret);
}

u32 get_cpu_rev(void)
{
	u32 id = 0, rev = 0;
	int ret;

	ret = sc_misc_get_control(-1, SC_R_SYSTEM, SC_C_ID, &id);
	if (ret)
		return 0;

	rev = (id >> 5)  & 0xf;
	id = (id & 0x1f) + MXC_SOC_IMX8;  /* Dummy ID for chip */

	/* 8DXL uses A1/A2, so generate dummy rev to differentiate with B/C */
	if (id == MXC_CPU_IMX8DXL && rev != 0)
		rev = 0x10 + rev;

	return (id << 12) | rev;
}

static bool check_device_power_off(struct udevice *dev,
	const char* permanent_on_devices[], int size)
{
	int i;

	for (i = 0; i < size; i++) {
		if (!strcmp(dev->name, permanent_on_devices[i]))
			return false;
	}

	return true;
}

void power_off_pd_devices(const char* permanent_on_devices[], int size)
{
	struct udevice *dev;
	struct power_domain pd;

	for (uclass_find_first_device(UCLASS_POWER_DOMAIN, &dev); dev;
		uclass_find_next_device(&dev)) {

		if (device_active(dev)) {
			/* Power off active pd devices except the permanent power on devices */
			if (check_device_power_off(dev, permanent_on_devices, size)) {
				pd.dev = dev;
				power_domain_off(&pd);
			}
		}
	}
}

void disconnect_from_pc(void)
{
	int ret;
	struct power_domain pd;

	if (!power_domain_lookup_name("conn_usb0", &pd)) {
		ret = power_domain_on(&pd);
		if (ret) {
			printf("conn_usb0 Power up failed! (error = %d)\n", ret);
			return;
		}

		writel(0x0, USB_BASE_ADDR + 0x140);

		ret = power_domain_off(&pd);
		if (ret) {
			printf("conn_usb0 Power off failed! (error = %d)\n", ret);
			return;
		}
	} else {
		printf("conn_usb0 finding failed!\n");
		return;
	}
}

bool check_owned_udevice(struct udevice *dev)
{
	int ret;
	sc_rsrc_t resource_id;
	struct ofnode_phandle_args args;

	/* Get the resource id from its power-domain */
	ret = dev_read_phandle_with_args(dev, "power-domains",
					 "#power-domain-cells", 0, 0, &args);
	if (ret) {
		printf("no power-domains found\n");
		return false;
	}

	/* Get the owner partition for resource*/
	resource_id = (sc_rsrc_t)ofnode_read_u32_default(args.node, "reg", SC_R_NONE);
	if (resource_id == SC_R_NONE) {
		printf("Can't find the resource id for udev %s\n", dev->name);
		return false;
	}

	debug("udev %s, resource id %d\n", dev->name, resource_id);

	return sc_rm_is_resource_owned(-1, resource_id);
}

bool check_m4_parts_boot(void)
{
	sc_rm_pt_t m4_parts[2];
	int err;

	err = sc_rm_get_resource_owner(-1, SC_R_M4_0_PID0, &m4_parts[0]);
	if (err != SC_ERR_NONE) {
		printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_0_PID0, err);
		return false;
	}

	if (sc_pm_is_partition_started(-1, m4_parts[0]))
		return true;

	if (is_imx8qm()) {
		err = sc_rm_get_resource_owner(-1, SC_R_M4_1_PID0, &m4_parts[1]);
		if (err != SC_ERR_NONE) {
			printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_1_PID0, err);
			return false;
		}

		if (sc_pm_is_partition_started(-1, m4_parts[1]))
			return true;
	}

	return false;
}

#ifdef CONFIG_IMX_VSERVICE
struct udevice * board_imx_vservice_find_mu(struct udevice *dev)
{
	int ret;
	const char *m4_mu_name[2] = {
		"mu@5d230000",
		"mu@5d240000"
	};
	struct udevice *m4_mu[2];
	sc_rm_pt_t m4_parts[2];
	int err;
	struct ofnode_phandle_args args;
	sc_rsrc_t resource_id;
	sc_rm_pt_t resource_part;

	/* Get the resource id from its power-domain */
	ret = dev_read_phandle_with_args(dev, "power-domains",
					 "#power-domain-cells", 0, 0, &args);
	if (ret) {
		printf("Can't find the power-domains property for udev %s\n", dev->name);
		return NULL;
	}

	/* Get the owner partition for resource*/
	resource_id = (sc_rsrc_t)ofnode_read_u32_default(args.node, "reg", SC_R_NONE);
	if (resource_id == SC_R_NONE) {
		printf("Can't find the resource id for udev %s\n", dev->name);
		return NULL;
	}

	err = sc_rm_get_resource_owner(-1, resource_id, &resource_part);
	if (err != SC_ERR_NONE) {
		printf("%s get resource [%d] owner error: %d\n", __func__, resource_id, err);
		return NULL;
	}

	debug("udev %s, resource id %d, resource part %d\n", dev->name, resource_id, resource_part);

	/* MU8 for communication between M4_0 and u-boot, MU9 for M4_1 and u-boot */
	err = sc_rm_get_resource_owner(-1, SC_R_M4_0_PID0, &m4_parts[0]);
	if (err != SC_ERR_NONE) {
		printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_0_PID0, err);
		return NULL;
	}

	ret = uclass_find_device_by_name(UCLASS_MISC,  m4_mu_name[0], &m4_mu[0]);
	if (!ret) {
		/* If the i2c is in m4_0 partition, return the mu8 */
		if (resource_part == m4_parts[0])
			return m4_mu[0];
	}

	if (is_imx8qm()) {
		err = sc_rm_get_resource_owner(-1, SC_R_M4_1_PID0, &m4_parts[1]);
		if (err != SC_ERR_NONE) {
			printf("%s get resource [%d] owner error: %d\n", __func__, SC_R_M4_1_PID0, err);
			return NULL;
		}

		ret = uclass_find_device_by_name(UCLASS_MISC,  m4_mu_name[1], &m4_mu[1]);
		if (!ret) {
			/* If the i2c is in m4_1 partition, return the mu9 */
			if (resource_part == m4_parts[1])
				return m4_mu[1];
		}
	}

	return NULL;
}

void * board_imx_vservice_get_buffer(struct imx_vservice_channel *node, u32 size)
{
	const char *m4_mu_name[2] = {
		"mu@5d230000",
		"mu@5d240000"
	};

	/* Each MU ownes 1M buffer */
	if (size <= 0x100000) {
		if (!strcmp(node->mu_dev->name, m4_mu_name[0]))
			return (void * )CONFIG_IMX_VSERVICE_SHARED_BUFFER;
		else if (!strcmp(node->mu_dev->name, m4_mu_name[1]))
			return (void * )(CONFIG_IMX_VSERVICE_SHARED_BUFFER + 0x100000);
		else
			return NULL;
	}

	return NULL;
}
#endif

/* imx8qxp i2c1 has lots of devices may used by both M4 and A core
*   If A core partition does not own the resource, we will start
*   virtual i2c driver. Otherwise use local i2c driver.
*/
int board_imx_virt_i2c_bind(struct udevice *dev)
{
	if (check_owned_udevice(dev))
		return -ENODEV;

	return 0;
}

int board_imx_lpi2c_bind(struct udevice *dev)
{
	if (check_owned_udevice(dev))
		return 0;

	return -ENODEV;
}

void board_boot_order(u32 *spl_boot_list)
{
	spl_boot_list[0] = spl_boot_device();

	if (spl_boot_list[0] == BOOT_DEVICE_SPI) {
		/* Check whether we own the flexspi0, if not, use NOR boot */
		if (!sc_rm_is_resource_owned(-1, SC_R_FSPI_0))
			spl_boot_list[0] = BOOT_DEVICE_NOR;
	}
}

#ifdef CONFIG_USB_PORT_AUTO
static int usb_port_auto_check(void)
{
	int ret;
	u32 usb2_data;
	struct power_domain pd;
	struct power_domain phy_pd;

	if (!power_domain_lookup_name("conn_usb0", &pd)) {
		ret = power_domain_on(&pd);
		if (ret) {
			printf("conn_usb0 Power up failed!\n");
			return ret;
		}

		if (!power_domain_lookup_name("conn_usb0_phy", &phy_pd)) {
			ret = power_domain_on(&phy_pd);
			if (ret) {
				printf("conn_usb0_phy Power up failed!\n");
				return ret;
			}
		} else {
			return -1;
		}

		enable_usboh3_clk(1);
		usb2_data = ci_udc_check_bus_active(USB_BASE_ADDR, USB_PHY0_BASE_ADDR, 0);

		ret = power_domain_off(&phy_pd);
		if (ret) {
			printf("conn_usb0_phy Power off failed!\n");
			return ret;
		}
		ret = power_domain_off(&pd);
		if (ret) {
			printf("conn_usb0 Power off failed!\n");
			return ret;
		}

		if (!usb2_data)
			return 1;
		else
			return 0;
	}
	return -1;
}

int board_usb_gadget_port_auto(void)
{
    int usb_boot_index;
	usb_boot_index = usb_port_auto_check();

	if (usb_boot_index < 0)
		usb_boot_index = 0;

	printf("auto usb %d\n", usb_boot_index);

	return usb_boot_index;
}
#endif

static void power_off_all_usb(void)
{
	if (is_usb_boot()) {
		/* Turn off all usb resource to let conn SS power down */
		sc_pm_set_resource_power_mode(-1, SC_R_USB_0_PHY, SC_PM_PW_MODE_OFF);
		sc_pm_set_resource_power_mode(-1, SC_R_USB_1_PHY, SC_PM_PW_MODE_OFF);
		sc_pm_set_resource_power_mode(-1, SC_R_USB_2_PHY, SC_PM_PW_MODE_OFF);

		sc_pm_set_resource_power_mode(-1, SC_R_USB_0, SC_PM_PW_MODE_OFF);
		sc_pm_set_resource_power_mode(-1, SC_R_USB_1, SC_PM_PW_MODE_OFF);
		sc_pm_set_resource_power_mode(-1, SC_R_USB_2, SC_PM_PW_MODE_OFF);
	}
}