ich.c 23.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (c) 2011-12 The Chromium OS Authors.
 *
 * This file is derived from the flashrom project.
 */

#define LOG_CATEGORY	UCLASS_SPI

#include <common.h>
#include <div64.h>
#include <dm.h>
#include <dt-structs.h>
#include <errno.h>
#include <malloc.h>
#include <pch.h>
#include <pci.h>
#include <pci_ids.h>
#include <spi.h>
#include <spi_flash.h>
#include <spi-mem.h>
#include <spl.h>
#include <asm/fast_spi.h>
#include <asm/io.h>
#include <asm/mtrr.h>
#include <linux/sizes.h>

#include "ich.h"

#ifdef DEBUG_TRACE
#define debug_trace(fmt, args...) debug(fmt, ##args)
#else
#define debug_trace(x, args...)
#endif

struct ich_spi_platdata {
#if CONFIG_IS_ENABLED(OF_PLATDATA)
	struct dtd_intel_fast_spi dtplat;
#endif
	enum ich_version ich_version;	/* Controller version, 7 or 9 */
	bool lockdown;			/* lock down controller settings? */
	ulong mmio_base;		/* Base of MMIO registers */
	pci_dev_t bdf;			/* PCI address used by of-platdata */
	bool hwseq;			/* Use hardware sequencing (not s/w) */
};

static u8 ich_readb(struct ich_spi_priv *priv, int reg)
{
	u8 value = readb(priv->base + reg);

	debug_trace("read %2.2x from %4.4x\n", value, reg);

	return value;
}

static u16 ich_readw(struct ich_spi_priv *priv, int reg)
{
	u16 value = readw(priv->base + reg);

	debug_trace("read %4.4x from %4.4x\n", value, reg);

	return value;
}

static u32 ich_readl(struct ich_spi_priv *priv, int reg)
{
	u32 value = readl(priv->base + reg);

	debug_trace("read %8.8x from %4.4x\n", value, reg);

	return value;
}

static void ich_writeb(struct ich_spi_priv *priv, u8 value, int reg)
{
	writeb(value, priv->base + reg);
	debug_trace("wrote %2.2x to %4.4x\n", value, reg);
}

static void ich_writew(struct ich_spi_priv *priv, u16 value, int reg)
{
	writew(value, priv->base + reg);
	debug_trace("wrote %4.4x to %4.4x\n", value, reg);
}

static void ich_writel(struct ich_spi_priv *priv, u32 value, int reg)
{
	writel(value, priv->base + reg);
	debug_trace("wrote %8.8x to %4.4x\n", value, reg);
}

static void write_reg(struct ich_spi_priv *priv, const void *value,
		      int dest_reg, uint32_t size)
{
	memcpy_toio(priv->base + dest_reg, value, size);
}

static void read_reg(struct ich_spi_priv *priv, int src_reg, void *value,
		     uint32_t size)
{
	memcpy_fromio(value, priv->base + src_reg, size);
}

static void ich_set_bbar(struct ich_spi_priv *ctlr, uint32_t minaddr)
{
	const uint32_t bbar_mask = 0x00ffff00;
	uint32_t ichspi_bbar;

	if (ctlr->bbar) {
		minaddr &= bbar_mask;
		ichspi_bbar = ich_readl(ctlr, ctlr->bbar) & ~bbar_mask;
		ichspi_bbar |= minaddr;
		ich_writel(ctlr, ichspi_bbar, ctlr->bbar);
	}
}

/* @return 1 if the SPI flash supports the 33MHz speed */
static bool ich9_can_do_33mhz(struct udevice *dev)
{
	struct ich_spi_priv *priv = dev_get_priv(dev);
	u32 fdod, speed;

	if (!CONFIG_IS_ENABLED(PCI))
		return false;
	/* Observe SPI Descriptor Component Section 0 */
	dm_pci_write_config32(priv->pch, 0xb0, 0x1000);

	/* Extract the Write/Erase SPI Frequency from descriptor */
	dm_pci_read_config32(priv->pch, 0xb4, &fdod);

	/* Bits 23:21 have the fast read clock frequency, 0=20MHz, 1=33MHz */
	speed = (fdod >> 21) & 7;

	return speed == 1;
}

static void spi_lock_down(struct ich_spi_platdata *plat, void *sbase)
{
	if (plat->ich_version == ICHV_7) {
		struct ich7_spi_regs *ich7_spi = sbase;

		setbits_le16(&ich7_spi->spis, SPIS_LOCK);
	} else if (plat->ich_version == ICHV_9) {
		struct ich9_spi_regs *ich9_spi = sbase;

		setbits_le16(&ich9_spi->hsfs, HSFS_FLOCKDN);
	}
}

static bool spi_lock_status(struct ich_spi_platdata *plat, void *sbase)
{
	int lock = 0;

	if (plat->ich_version == ICHV_7) {
		struct ich7_spi_regs *ich7_spi = sbase;

		lock = readw(&ich7_spi->spis) & SPIS_LOCK;
	} else if (plat->ich_version == ICHV_9) {
		struct ich9_spi_regs *ich9_spi = sbase;

		lock = readw(&ich9_spi->hsfs) & HSFS_FLOCKDN;
	}

	return lock != 0;
}

static int spi_setup_opcode(struct ich_spi_priv *ctlr, struct spi_trans *trans,
			    bool lock)
{
	uint16_t optypes;
	uint8_t opmenu[ctlr->menubytes];

	if (!lock) {
		/* The lock is off, so just use index 0. */
		ich_writeb(ctlr, trans->opcode, ctlr->opmenu);
		optypes = ich_readw(ctlr, ctlr->optype);
		optypes = (optypes & 0xfffc) | (trans->type & 0x3);
		ich_writew(ctlr, optypes, ctlr->optype);
		return 0;
	} else {
		/* The lock is on. See if what we need is on the menu. */
		uint8_t optype;
		uint16_t opcode_index;

		/* Write Enable is handled as atomic prefix */
		if (trans->opcode == SPI_OPCODE_WREN)
			return 0;

		read_reg(ctlr, ctlr->opmenu, opmenu, sizeof(opmenu));
		for (opcode_index = 0; opcode_index < ctlr->menubytes;
				opcode_index++) {
			if (opmenu[opcode_index] == trans->opcode)
				break;
		}

		if (opcode_index == ctlr->menubytes) {
			debug("ICH SPI: Opcode %x not found\n", trans->opcode);
			return -EINVAL;
		}

		optypes = ich_readw(ctlr, ctlr->optype);
		optype = (optypes >> (opcode_index * 2)) & 0x3;

		if (optype != trans->type) {
			debug("ICH SPI: Transaction doesn't fit type %d\n",
			      optype);
			return -ENOSPC;
		}
		return opcode_index;
	}
}

/*
 * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set
 * below is true) or 0. In case the wait was for the bit(s) to set - write
 * those bits back, which would cause resetting them.
 *
 * Return the last read status value on success or -1 on failure.
 */
static int ich_status_poll(struct ich_spi_priv *ctlr, u16 bitmask,
			   int wait_til_set)
{
	int timeout = 600000; /* This will result in 6s */
	u16 status = 0;

	while (timeout--) {
		status = ich_readw(ctlr, ctlr->status);
		if (wait_til_set ^ ((status & bitmask) == 0)) {
			if (wait_til_set) {
				ich_writew(ctlr, status & bitmask,
					   ctlr->status);
			}
			return status;
		}
		udelay(10);
	}
	debug("ICH SPI: SCIP timeout, read %x, expected %x, wts %x %x\n",
	      status, bitmask, wait_til_set, status & bitmask);

	return -ETIMEDOUT;
}

static void ich_spi_config_opcode(struct udevice *dev)
{
	struct ich_spi_priv *ctlr = dev_get_priv(dev);

	/*
	 * PREOP, OPTYPE, OPMENU1/OPMENU2 registers can be locked down
	 * to prevent accidental or intentional writes. Before they get
	 * locked down, these registers should be initialized properly.
	 */
	ich_writew(ctlr, SPI_OPPREFIX, ctlr->preop);
	ich_writew(ctlr, SPI_OPTYPE, ctlr->optype);
	ich_writel(ctlr, SPI_OPMENU_LOWER, ctlr->opmenu);
	ich_writel(ctlr, SPI_OPMENU_UPPER, ctlr->opmenu + sizeof(u32));
}

static int ich_spi_exec_op_swseq(struct spi_slave *slave,
				 const struct spi_mem_op *op)
{
	struct udevice *bus = dev_get_parent(slave->dev);
	struct ich_spi_platdata *plat = dev_get_platdata(bus);
	struct ich_spi_priv *ctlr = dev_get_priv(bus);
	uint16_t control;
	int16_t opcode_index;
	int with_address;
	int status;
	struct spi_trans *trans = &ctlr->trans;
	bool lock = spi_lock_status(plat, ctlr->base);
	int ret = 0;

	trans->in = NULL;
	trans->out = NULL;
	trans->type = 0xFF;

	if (op->data.nbytes) {
		if (op->data.dir == SPI_MEM_DATA_IN) {
			trans->in = op->data.buf.in;
			trans->bytesin = op->data.nbytes;
		} else {
			trans->out = op->data.buf.out;
			trans->bytesout = op->data.nbytes;
		}
	}

	if (trans->opcode != op->cmd.opcode)
		trans->opcode = op->cmd.opcode;

	if (lock && trans->opcode == SPI_OPCODE_WRDIS)
		return 0;

	if (trans->opcode == SPI_OPCODE_WREN) {
		/*
		 * Treat Write Enable as Atomic Pre-Op if possible
		 * in order to prevent the Management Engine from
		 * issuing a transaction between WREN and DATA.
		 */
		if (!lock)
			ich_writew(ctlr, trans->opcode, ctlr->preop);
		return 0;
	}

	ret = ich_status_poll(ctlr, SPIS_SCIP, 0);
	if (ret < 0)
		return ret;

	if (plat->ich_version == ICHV_7)
		ich_writew(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);
	else
		ich_writeb(ctlr, SPIS_CDS | SPIS_FCERR, ctlr->status);

	/* Try to guess spi transaction type */
	if (op->data.dir == SPI_MEM_DATA_OUT) {
		if (op->addr.nbytes)
			trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
		else
			trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
	} else {
		if (op->addr.nbytes)
			trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
		else
			trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
	}
	/* Special erase case handling */
	if (op->addr.nbytes && !op->data.buswidth)
		trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;

	opcode_index = spi_setup_opcode(ctlr, trans, lock);
	if (opcode_index < 0)
		return -EINVAL;

	if (op->addr.nbytes) {
		trans->offset = op->addr.val;
		with_address = 1;
	}

	if (ctlr->speed && ctlr->max_speed >= 33000000) {
		int byte;

		byte = ich_readb(ctlr, ctlr->speed);
		if (ctlr->cur_speed >= 33000000)
			byte |= SSFC_SCF_33MHZ;
		else
			byte &= ~SSFC_SCF_33MHZ;
		ich_writeb(ctlr, byte, ctlr->speed);
	}

	/* Preset control fields */
	control = SPIC_SCGO | ((opcode_index & 0x07) << 4);

	/* Issue atomic preop cycle if needed */
	if (ich_readw(ctlr, ctlr->preop))
		control |= SPIC_ACS;

	if (!trans->bytesout && !trans->bytesin) {
		/* SPI addresses are 24 bit only */
		if (with_address) {
			ich_writel(ctlr, trans->offset & 0x00FFFFFF,
				   ctlr->addr);
		}
		/*
		 * This is a 'no data' command (like Write Enable), its
		 * bitesout size was 1, decremented to zero while executing
		 * spi_setup_opcode() above. Tell the chip to send the
		 * command.
		 */
		ich_writew(ctlr, control, ctlr->control);

		/* wait for the result */
		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
		if (status < 0)
			return status;

		if (status & SPIS_FCERR) {
			debug("ICH SPI: Command transaction error\n");
			return -EIO;
		}

		return 0;
	}

	while (trans->bytesout || trans->bytesin) {
		uint32_t data_length;

		/* SPI addresses are 24 bit only */
		ich_writel(ctlr, trans->offset & 0x00FFFFFF, ctlr->addr);

		if (trans->bytesout)
			data_length = min(trans->bytesout, ctlr->databytes);
		else
			data_length = min(trans->bytesin, ctlr->databytes);

		/* Program data into FDATA0 to N */
		if (trans->bytesout) {
			write_reg(ctlr, trans->out, ctlr->data, data_length);
			trans->bytesout -= data_length;
		}

		/* Add proper control fields' values */
		control &= ~((ctlr->databytes - 1) << 8);
		control |= SPIC_DS;
		control |= (data_length - 1) << 8;

		/* write it */
		ich_writew(ctlr, control, ctlr->control);

		/* Wait for Cycle Done Status or Flash Cycle Error */
		status = ich_status_poll(ctlr, SPIS_CDS | SPIS_FCERR, 1);
		if (status < 0)
			return status;

		if (status & SPIS_FCERR) {
			debug("ICH SPI: Data transaction error %x\n", status);
			return -EIO;
		}

		if (trans->bytesin) {
			read_reg(ctlr, ctlr->data, trans->in, data_length);
			trans->bytesin -= data_length;
		}
	}

	/* Clear atomic preop now that xfer is done */
	if (!lock)
		ich_writew(ctlr, 0, ctlr->preop);

	return 0;
}

/*
 * Ensure read/write xfer len is not greater than SPIBAR_FDATA_FIFO_SIZE and
 * that the operation does not cross page boundary.
 */
static uint get_xfer_len(u32 offset, int len, int page_size)
{
	uint xfer_len = min(len, SPIBAR_FDATA_FIFO_SIZE);
	uint bytes_left = ALIGN(offset, page_size) - offset;

	if (bytes_left)
		xfer_len = min(xfer_len, bytes_left);

	return xfer_len;
}

/* Fill FDATAn FIFO in preparation for a write transaction */
static void fill_xfer_fifo(struct fast_spi_regs *regs, const void *data,
			   uint len)
{
	memcpy(regs->fdata, data, len);
}

/* Drain FDATAn FIFO after a read transaction populates data */
static void drain_xfer_fifo(struct fast_spi_regs *regs, void *dest, uint len)
{
	memcpy(dest, regs->fdata, len);
}

/* Fire up a transfer using the hardware sequencer */
static void start_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
			     uint offset, uint len)
{
	/* Make sure all W1C status bits get cleared */
	u32 hsfsts;

	hsfsts = readl(&regs->hsfsts_ctl);
	hsfsts &= ~(HSFSTS_FCYCLE_MASK | HSFSTS_FDBC_MASK);
	hsfsts |= HSFSTS_AEL | HSFSTS_FCERR | HSFSTS_FDONE;

	/* Set up transaction parameters */
	hsfsts |= hsfsts_cycle << HSFSTS_FCYCLE_SHIFT;
	hsfsts |= ((len - 1) << HSFSTS_FDBC_SHIFT) & HSFSTS_FDBC_MASK;
	hsfsts |= HSFSTS_FGO;

	writel(offset, &regs->faddr);
	writel(hsfsts, &regs->hsfsts_ctl);
}

static int wait_for_hwseq_xfer(struct fast_spi_regs *regs, uint offset)
{
	ulong start;
	u32 hsfsts;

	start = get_timer(0);
	do {
		hsfsts = readl(&regs->hsfsts_ctl);
		if (hsfsts & HSFSTS_FCERR) {
			debug("SPI transaction error at offset %x HSFSTS = %08x\n",
			      offset, hsfsts);
			return -EIO;
		}
		if (hsfsts & HSFSTS_AEL)
			return -EPERM;

		if (hsfsts & HSFSTS_FDONE)
			return 0;
	} while (get_timer(start) < SPIBAR_HWSEQ_XFER_TIMEOUT_MS);

	debug("SPI transaction timeout at offset %x HSFSTS = %08x, timer %d\n",
	      offset, hsfsts, (uint)get_timer(start));

	return -ETIMEDOUT;
}

/**
 * exec_sync_hwseq_xfer() - Execute flash transfer by hardware sequencing
 *
 * This waits until complete or timeout
 *
 * @regs: SPI registers
 * @hsfsts_cycle: Cycle type (enum hsfsts_cycle_t)
 * @offset: Offset to access
 * @len: Number of bytes to transfer (can be 0)
 * @return 0 if OK, -EIO on flash-cycle error (FCERR), -EPERM on access error
 *	(AEL), -ETIMEDOUT on timeout
 */
static int exec_sync_hwseq_xfer(struct fast_spi_regs *regs, uint hsfsts_cycle,
				uint offset, uint len)
{
	start_hwseq_xfer(regs, hsfsts_cycle, offset, len);

	return wait_for_hwseq_xfer(regs, offset);
}

static int ich_spi_exec_op_hwseq(struct spi_slave *slave,
				 const struct spi_mem_op *op)
{
	struct spi_flash *flash = dev_get_uclass_priv(slave->dev);
	struct udevice *bus = dev_get_parent(slave->dev);
	struct ich_spi_priv *priv = dev_get_priv(bus);
	struct fast_spi_regs *regs = priv->base;
	uint page_size;
	uint offset;
	int cycle;
	uint len;
	bool out;
	int ret;
	u8 *buf;

	offset = op->addr.val;
	len = op->data.nbytes;

	switch (op->cmd.opcode) {
	case SPINOR_OP_RDID:
		cycle = HSFSTS_CYCLE_RDID;
		break;
	case SPINOR_OP_READ_FAST:
		cycle = HSFSTS_CYCLE_READ;
		break;
	case SPINOR_OP_PP:
		cycle = HSFSTS_CYCLE_WRITE;
		break;
	case SPINOR_OP_WREN:
		/* Nothing needs to be done */
		return 0;
	case SPINOR_OP_WRSR:
		cycle = HSFSTS_CYCLE_WR_STATUS;
		break;
	case SPINOR_OP_RDSR:
		cycle = HSFSTS_CYCLE_RD_STATUS;
		break;
	case SPINOR_OP_WRDI:
		return 0;  /* ignore */
	case SPINOR_OP_BE_4K:
		cycle = HSFSTS_CYCLE_4K_ERASE;
		ret = exec_sync_hwseq_xfer(regs, cycle, offset, 0);
		return ret;
	default:
		debug("Unknown cycle %x\n", op->cmd.opcode);
		return -EINVAL;
	};

	out = op->data.dir == SPI_MEM_DATA_OUT;
	buf = out ? (u8 *)op->data.buf.out : op->data.buf.in;
	page_size = flash->page_size ? : 256;

	while (len) {
		uint xfer_len = get_xfer_len(offset, len, page_size);

		if (out)
			fill_xfer_fifo(regs, buf, xfer_len);

		ret = exec_sync_hwseq_xfer(regs, cycle, offset, xfer_len);
		if (ret)
			return ret;

		if (!out)
			drain_xfer_fifo(regs, buf, xfer_len);

		offset += xfer_len;
		buf += xfer_len;
		len -= xfer_len;
	}

	return 0;
}

static int ich_spi_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
{
	struct udevice *bus = dev_get_parent(slave->dev);
	struct ich_spi_platdata *plat = dev_get_platdata(bus);
	int ret;

	bootstage_start(BOOTSTAGE_ID_ACCUM_SPI, "fast_spi");
	if (plat->hwseq)
		ret = ich_spi_exec_op_hwseq(slave, op);
	else
		ret = ich_spi_exec_op_swseq(slave, op);
	bootstage_accum(BOOTSTAGE_ID_ACCUM_SPI);

	return ret;
}

static int ich_get_mmap_bus(struct udevice *bus, ulong *map_basep,
			    uint *map_sizep, uint *offsetp)
{
	pci_dev_t spi_bdf;

#if !CONFIG_IS_ENABLED(OF_PLATDATA)
	struct pci_child_platdata *pplat = dev_get_parent_platdata(bus);

	spi_bdf = pplat->devfn;
#else
	struct ich_spi_platdata *plat = dev_get_platdata(bus);

	/*
	 * We cannot rely on plat->bdf being set up yet since this method can
	 * be called before the device is probed. Use the of-platdata directly
	 * instead.
	 */
	spi_bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
#endif

	return fast_spi_get_bios_mmap(spi_bdf, map_basep, map_sizep, offsetp);
}

static int ich_get_mmap(struct udevice *dev, ulong *map_basep, uint *map_sizep,
			uint *offsetp)
{
	struct udevice *bus = dev_get_parent(dev);

	return ich_get_mmap_bus(bus, map_basep, map_sizep, offsetp);
}

static int ich_spi_adjust_size(struct spi_slave *slave, struct spi_mem_op *op)
{
	unsigned int page_offset;
	int addr = op->addr.val;
	unsigned int byte_count = op->data.nbytes;

	if (hweight32(ICH_BOUNDARY) == 1) {
		page_offset = addr & (ICH_BOUNDARY - 1);
	} else {
		u64 aux = addr;

		page_offset = do_div(aux, ICH_BOUNDARY);
	}

	if (op->data.dir == SPI_MEM_DATA_IN) {
		if (slave->max_read_size) {
			op->data.nbytes = min(ICH_BOUNDARY - page_offset,
					      slave->max_read_size);
		}
	} else if (slave->max_write_size) {
		op->data.nbytes = min(ICH_BOUNDARY - page_offset,
				      slave->max_write_size);
	}

	op->data.nbytes = min(op->data.nbytes, byte_count);

	return 0;
}

static int ich_protect_lockdown(struct udevice *dev)
{
	struct ich_spi_platdata *plat = dev_get_platdata(dev);
	struct ich_spi_priv *priv = dev_get_priv(dev);
	int ret = -ENOSYS;

	/* Disable the BIOS write protect so write commands are allowed */
	if (priv->pch)
		ret = pch_set_spi_protect(priv->pch, false);
	if (ret == -ENOSYS) {
		u8 bios_cntl;

		bios_cntl = ich_readb(priv, priv->bcr);
		bios_cntl &= ~BIT(5);	/* clear Enable InSMM_STS (EISS) */
		bios_cntl |= 1;		/* Write Protect Disable (WPD) */
		ich_writeb(priv, bios_cntl, priv->bcr);
	} else if (ret) {
		debug("%s: Failed to disable write-protect: err=%d\n",
		      __func__, ret);
		return ret;
	}

	/* Lock down SPI controller settings if required */
	if (plat->lockdown) {
		ich_spi_config_opcode(dev);
		spi_lock_down(plat, priv->base);
	}

	return 0;
}

static int ich_init_controller(struct udevice *dev,
			       struct ich_spi_platdata *plat,
			       struct ich_spi_priv *ctlr)
{
	if (spl_phase() == PHASE_TPL) {
		struct ich_spi_platdata *plat = dev_get_platdata(dev);
		int ret;

		ret = fast_spi_early_init(plat->bdf, plat->mmio_base);
		if (ret)
			return ret;
	}

	ctlr->base = (void *)plat->mmio_base;
	if (plat->ich_version == ICHV_7) {
		struct ich7_spi_regs *ich7_spi = ctlr->base;

		ctlr->opmenu = offsetof(struct ich7_spi_regs, opmenu);
		ctlr->menubytes = sizeof(ich7_spi->opmenu);
		ctlr->optype = offsetof(struct ich7_spi_regs, optype);
		ctlr->addr = offsetof(struct ich7_spi_regs, spia);
		ctlr->data = offsetof(struct ich7_spi_regs, spid);
		ctlr->databytes = sizeof(ich7_spi->spid);
		ctlr->status = offsetof(struct ich7_spi_regs, spis);
		ctlr->control = offsetof(struct ich7_spi_regs, spic);
		ctlr->bbar = offsetof(struct ich7_spi_regs, bbar);
		ctlr->preop = offsetof(struct ich7_spi_regs, preop);
	} else if (plat->ich_version == ICHV_9) {
		struct ich9_spi_regs *ich9_spi = ctlr->base;

		ctlr->opmenu = offsetof(struct ich9_spi_regs, opmenu);
		ctlr->menubytes = sizeof(ich9_spi->opmenu);
		ctlr->optype = offsetof(struct ich9_spi_regs, optype);
		ctlr->addr = offsetof(struct ich9_spi_regs, faddr);
		ctlr->data = offsetof(struct ich9_spi_regs, fdata);
		ctlr->databytes = sizeof(ich9_spi->fdata);
		ctlr->status = offsetof(struct ich9_spi_regs, ssfs);
		ctlr->control = offsetof(struct ich9_spi_regs, ssfc);
		ctlr->speed = ctlr->control + 2;
		ctlr->bbar = offsetof(struct ich9_spi_regs, bbar);
		ctlr->preop = offsetof(struct ich9_spi_regs, preop);
		ctlr->bcr = offsetof(struct ich9_spi_regs, bcr);
		ctlr->pr = &ich9_spi->pr[0];
	} else if (plat->ich_version == ICHV_APL) {
	} else {
		debug("ICH SPI: Unrecognised ICH version %d\n",
		      plat->ich_version);
		return -EINVAL;
	}

	/* Work out the maximum speed we can support */
	ctlr->max_speed = 20000000;
	if (plat->ich_version == ICHV_9 && ich9_can_do_33mhz(dev))
		ctlr->max_speed = 33000000;
	debug("ICH SPI: Version ID %d detected at %lx, speed %ld\n",
	      plat->ich_version, plat->mmio_base, ctlr->max_speed);

	ich_set_bbar(ctlr, 0);

	return 0;
}

static int ich_cache_bios_region(struct udevice *dev)
{
	ulong map_base;
	uint map_size;
	uint offset;
	ulong base;
	int ret;

	ret = ich_get_mmap_bus(dev, &map_base, &map_size, &offset);
	if (ret)
		return ret;

	/* Don't use WRBACK since we are not supposed to write to SPI flash */
	base = SZ_4G - map_size;
	mtrr_set_next_var(MTRR_TYPE_WRPROT, base, map_size);
	log_debug("BIOS cache base=%lx, size=%x\n", base, (uint)map_size);

	return 0;
}

static int ich_spi_probe(struct udevice *dev)
{
	struct ich_spi_platdata *plat = dev_get_platdata(dev);
	struct ich_spi_priv *priv = dev_get_priv(dev);
	int ret;

	ret = ich_init_controller(dev, plat, priv);
	if (ret)
		return ret;

	if (spl_phase() == PHASE_TPL) {
		/* Cache the BIOS to speed things up */
		ret = ich_cache_bios_region(dev);
		if (ret)
			return ret;
	} else {
		ret = ich_protect_lockdown(dev);
		if (ret)
			return ret;
	}
	priv->cur_speed = priv->max_speed;

	return 0;
}

static int ich_spi_remove(struct udevice *bus)
{
	/*
	 * Configure SPI controller so that the Linux MTD driver can fully
	 * access the SPI NOR chip
	 */
	ich_spi_config_opcode(bus);

	return 0;
}

static int ich_spi_set_speed(struct udevice *bus, uint speed)
{
	struct ich_spi_priv *priv = dev_get_priv(bus);

	priv->cur_speed = speed;

	return 0;
}

static int ich_spi_set_mode(struct udevice *bus, uint mode)
{
	debug("%s: mode=%d\n", __func__, mode);

	return 0;
}

static int ich_spi_child_pre_probe(struct udevice *dev)
{
	struct udevice *bus = dev_get_parent(dev);
	struct ich_spi_platdata *plat = dev_get_platdata(bus);
	struct ich_spi_priv *priv = dev_get_priv(bus);
	struct spi_slave *slave = dev_get_parent_priv(dev);

	/*
	 * Yes this controller can only write a small number of bytes at
	 * once! The limit is typically 64 bytes. For hardware sequencing a
	 * a loop is used to get around this.
	 */
	if (!plat->hwseq)
		slave->max_write_size = priv->databytes;
	/*
	 * ICH 7 SPI controller only supports array read command
	 * and byte program command for SST flash
	 */
	if (plat->ich_version == ICHV_7)
		slave->mode = SPI_RX_SLOW | SPI_TX_BYTE;

	return 0;
}

static int ich_spi_ofdata_to_platdata(struct udevice *dev)
{
	struct ich_spi_platdata *plat = dev_get_platdata(dev);

#if !CONFIG_IS_ENABLED(OF_PLATDATA)
	struct ich_spi_priv *priv = dev_get_priv(dev);

	/* Find a PCH if there is one */
	uclass_first_device(UCLASS_PCH, &priv->pch);
	if (!priv->pch)
		priv->pch = dev_get_parent(dev);

	plat->ich_version = dev_get_driver_data(dev);
	plat->lockdown = dev_read_bool(dev, "intel,spi-lock-down");
	if (plat->ich_version == ICHV_APL) {
		plat->mmio_base = dm_pci_read_bar32(dev, 0);
	} else  {
		/* SBASE is similar */
		pch_get_spi_base(priv->pch, &plat->mmio_base);
	}
	/*
	 * Use an int so that the property is present in of-platdata even
	 * when false.
	 */
	plat->hwseq = dev_read_u32_default(dev, "intel,hardware-seq", 0);
#else
	plat->ich_version = ICHV_APL;
	plat->mmio_base = plat->dtplat.early_regs[0];
	plat->bdf = pci_ofplat_get_devfn(plat->dtplat.reg[0]);
	plat->hwseq = plat->dtplat.intel_hardware_seq;
#endif
	debug("%s: mmio_base=%lx\n", __func__, plat->mmio_base);

	return 0;
}

static const struct spi_controller_mem_ops ich_controller_mem_ops = {
	.adjust_op_size	= ich_spi_adjust_size,
	.supports_op	= NULL,
	.exec_op	= ich_spi_exec_op,
};

static const struct dm_spi_ops ich_spi_ops = {
	/* xfer is not supported */
	.set_speed	= ich_spi_set_speed,
	.set_mode	= ich_spi_set_mode,
	.mem_ops	= &ich_controller_mem_ops,
	.get_mmap	= ich_get_mmap,
	/*
	 * cs_info is not needed, since we require all chip selects to be
	 * in the device tree explicitly
	 */
};

static const struct udevice_id ich_spi_ids[] = {
	{ .compatible = "intel,ich7-spi", ICHV_7 },
	{ .compatible = "intel,ich9-spi", ICHV_9 },
	{ .compatible = "intel,fast-spi", ICHV_APL },
	{ }
};

U_BOOT_DRIVER(intel_fast_spi) = {
	.name	= "intel_fast_spi",
	.id	= UCLASS_SPI,
	.of_match = ich_spi_ids,
	.ops	= &ich_spi_ops,
	.ofdata_to_platdata = ich_spi_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct ich_spi_platdata),
	.priv_auto_alloc_size = sizeof(struct ich_spi_priv),
	.child_pre_probe = ich_spi_child_pre_probe,
	.probe	= ich_spi_probe,
	.remove	= ich_spi_remove,
	.flags	= DM_FLAG_OS_PREPARE,
};