sequencer.c 105 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
/*
 * Copyright Altera Corporation (C) 2012-2015
 *
 * SPDX-License-Identifier:    BSD-3-Clause
 */

#include <common.h>
#include <asm/io.h>
#include <asm/arch/sdram.h>
#include <errno.h>
#include "sequencer.h"

static struct socfpga_sdr_rw_load_manager *sdr_rw_load_mgr_regs =
	(struct socfpga_sdr_rw_load_manager *)
		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0x800);
static struct socfpga_sdr_rw_load_jump_manager *sdr_rw_load_jump_mgr_regs =
	(struct socfpga_sdr_rw_load_jump_manager *)
		(SDR_PHYGRP_RWMGRGRP_ADDRESS | 0xC00);
static struct socfpga_sdr_reg_file *sdr_reg_file =
	(struct socfpga_sdr_reg_file *)SDR_PHYGRP_REGFILEGRP_ADDRESS;
static struct socfpga_sdr_scc_mgr *sdr_scc_mgr =
	(struct socfpga_sdr_scc_mgr *)
		(SDR_PHYGRP_SCCGRP_ADDRESS | 0xe00);
static struct socfpga_phy_mgr_cmd *phy_mgr_cmd =
	(struct socfpga_phy_mgr_cmd *)SDR_PHYGRP_PHYMGRGRP_ADDRESS;
static struct socfpga_phy_mgr_cfg *phy_mgr_cfg =
	(struct socfpga_phy_mgr_cfg *)
		(SDR_PHYGRP_PHYMGRGRP_ADDRESS | 0x40);
static struct socfpga_data_mgr *data_mgr =
	(struct socfpga_data_mgr *)SDR_PHYGRP_DATAMGRGRP_ADDRESS;
static struct socfpga_sdr_ctrl *sdr_ctrl =
	(struct socfpga_sdr_ctrl *)SDR_CTRLGRP_ADDRESS;

const struct socfpga_sdram_rw_mgr_config *rwcfg;
const struct socfpga_sdram_io_config *iocfg;
const struct socfpga_sdram_misc_config *misccfg;

#define DELTA_D		1

/*
 * In order to reduce ROM size, most of the selectable calibration steps are
 * decided at compile time based on the user's calibration mode selection,
 * as captured by the STATIC_CALIB_STEPS selection below.
 *
 * However, to support simulation-time selection of fast simulation mode, where
 * we skip everything except the bare minimum, we need a few of the steps to
 * be dynamic.  In those cases, we either use the DYNAMIC_CALIB_STEPS for the
 * check, which is based on the rtl-supplied value, or we dynamically compute
 * the value to use based on the dynamically-chosen calibration mode
 */

#define DLEVEL 0
#define STATIC_IN_RTL_SIM 0
#define STATIC_SKIP_DELAY_LOOPS 0

#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | \
	STATIC_SKIP_DELAY_LOOPS)

/* calibration steps requested by the rtl */
u16 dyn_calib_steps;

/*
 * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
 * instead of static, we use boolean logic to select between
 * non-skip and skip values
 *
 * The mask is set to include all bits when not-skipping, but is
 * zero when skipping
 */

u16 skip_delay_mask;	/* mask off bits when skipping/not-skipping */

#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
	((non_skip_value) & skip_delay_mask)

struct gbl_type *gbl;
struct param_type *param;

static void set_failing_group_stage(u32 group, u32 stage,
	u32 substage)
{
	/*
	 * Only set the global stage if there was not been any other
	 * failing group
	 */
	if (gbl->error_stage == CAL_STAGE_NIL)	{
		gbl->error_substage = substage;
		gbl->error_stage = stage;
		gbl->error_group = group;
	}
}

static void reg_file_set_group(u16 set_group)
{
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff0000, set_group << 16);
}

static void reg_file_set_stage(u8 set_stage)
{
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xffff, set_stage & 0xff);
}

static void reg_file_set_sub_stage(u8 set_sub_stage)
{
	set_sub_stage &= 0xff;
	clrsetbits_le32(&sdr_reg_file->cur_stage, 0xff00, set_sub_stage << 8);
}

/**
 * phy_mgr_initialize() - Initialize PHY Manager
 *
 * Initialize PHY Manager.
 */
static void phy_mgr_initialize(void)
{
	u32 ratio;

	debug("%s:%d\n", __func__, __LINE__);
	/* Calibration has control over path to memory */
	/*
	 * In Hard PHY this is a 2-bit control:
	 * 0: AFI Mux Select
	 * 1: DDIO Mux Select
	 */
	writel(0x3, &phy_mgr_cfg->mux_sel);

	/* USER memory clock is not stable we begin initialization  */
	writel(0, &phy_mgr_cfg->reset_mem_stbl);

	/* USER calibration status all set to zero */
	writel(0, &phy_mgr_cfg->cal_status);

	writel(0, &phy_mgr_cfg->cal_debug_info);

	/* Init params only if we do NOT skip calibration. */
	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL)
		return;

	ratio = rwcfg->mem_dq_per_read_dqs /
		rwcfg->mem_virtual_groups_per_read_dqs;
	param->read_correct_mask_vg = (1 << ratio) - 1;
	param->write_correct_mask_vg = (1 << ratio) - 1;
	param->read_correct_mask = (1 << rwcfg->mem_dq_per_read_dqs) - 1;
	param->write_correct_mask = (1 << rwcfg->mem_dq_per_write_dqs) - 1;
}

/**
 * set_rank_and_odt_mask() - Set Rank and ODT mask
 * @rank:	Rank mask
 * @odt_mode:	ODT mode, OFF or READ_WRITE
 *
 * Set Rank and ODT mask (On-Die Termination).
 */
static void set_rank_and_odt_mask(const u32 rank, const u32 odt_mode)
{
	u32 odt_mask_0 = 0;
	u32 odt_mask_1 = 0;
	u32 cs_and_odt_mask;

	if (odt_mode == RW_MGR_ODT_MODE_OFF) {
		odt_mask_0 = 0x0;
		odt_mask_1 = 0x0;
	} else {	/* RW_MGR_ODT_MODE_READ_WRITE */
		switch (rwcfg->mem_number_of_ranks) {
		case 1:	/* 1 Rank */
			/* Read: ODT = 0 ; Write: ODT = 1 */
			odt_mask_0 = 0x0;
			odt_mask_1 = 0x1;
			break;
		case 2:	/* 2 Ranks */
			if (rwcfg->mem_number_of_cs_per_dimm == 1) {
				/*
				 * - Dual-Slot , Single-Rank (1 CS per DIMM)
				 *   OR
				 * - RDIMM, 4 total CS (2 CS per DIMM, 2 DIMM)
				 *
				 * Since MEM_NUMBER_OF_RANKS is 2, they
				 * are both single rank with 2 CS each
				 * (special for RDIMM).
				 *
				 * Read: Turn on ODT on the opposite rank
				 * Write: Turn on ODT on all ranks
				 */
				odt_mask_0 = 0x3 & ~(1 << rank);
				odt_mask_1 = 0x3;
			} else {
				/*
				 * - Single-Slot , Dual-Rank (2 CS per DIMM)
				 *
				 * Read: Turn on ODT off on all ranks
				 * Write: Turn on ODT on active rank
				 */
				odt_mask_0 = 0x0;
				odt_mask_1 = 0x3 & (1 << rank);
			}
			break;
		case 4:	/* 4 Ranks */
			/* Read:
			 * ----------+-----------------------+
			 *           |         ODT           |
			 * Read From +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  0  |
			 *     1     |  1  |  0  |  0  |  0  |
			 *     2     |  0  |  0  |  0  |  1  |
			 *     3     |  0  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *
			 * Write:
			 * ----------+-----------------------+
			 *           |         ODT           |
			 * Write To  +-----------------------+
			 *   Rank    |  3  |  2  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 *     0     |  0  |  1  |  0  |  1  |
			 *     1     |  1  |  0  |  1  |  0  |
			 *     2     |  0  |  1  |  0  |  1  |
			 *     3     |  1  |  0  |  1  |  0  |
			 * ----------+-----+-----+-----+-----+
			 */
			switch (rank) {
			case 0:
				odt_mask_0 = 0x4;
				odt_mask_1 = 0x5;
				break;
			case 1:
				odt_mask_0 = 0x8;
				odt_mask_1 = 0xA;
				break;
			case 2:
				odt_mask_0 = 0x1;
				odt_mask_1 = 0x5;
				break;
			case 3:
				odt_mask_0 = 0x2;
				odt_mask_1 = 0xA;
				break;
			}
			break;
		}
	}

	cs_and_odt_mask = (0xFF & ~(1 << rank)) |
			  ((0xFF & odt_mask_0) << 8) |
			  ((0xFF & odt_mask_1) << 16);
	writel(cs_and_odt_mask, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);
}

/**
 * scc_mgr_set() - Set SCC Manager register
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register.
 */
static void scc_mgr_set(u32 off, u32 grp, u32 val)
{
	writel(val, SDR_PHYGRP_SCCGRP_ADDRESS | off | (grp << 2));
}

/**
 * scc_mgr_initialize() - Initialize SCC Manager registers
 *
 * Initialize SCC Manager registers.
 */
static void scc_mgr_initialize(void)
{
	/*
	 * Clear register file for HPS. 16 (2^4) is the size of the
	 * full register file in the scc mgr:
	 *	RFILE_DEPTH = 1 + log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
	 *                             MEM_IF_READ_DQS_WIDTH - 1);
	 */
	int i;

	for (i = 0; i < 16; i++) {
		debug_cond(DLEVEL == 1, "%s:%d: Clearing SCC RFILE index %u\n",
			   __func__, __LINE__, i);
		scc_mgr_set(SCC_MGR_HHP_RFILE_OFFSET, i, 0);
	}
}

static void scc_mgr_set_dqdqs_output_phase(u32 write_group, u32 phase)
{
	scc_mgr_set(SCC_MGR_DQDQS_OUT_PHASE_OFFSET, write_group, phase);
}

static void scc_mgr_set_dqs_bus_in_delay(u32 read_group, u32 delay)
{
	scc_mgr_set(SCC_MGR_DQS_IN_DELAY_OFFSET, read_group, delay);
}

static void scc_mgr_set_dqs_en_phase(u32 read_group, u32 phase)
{
	scc_mgr_set(SCC_MGR_DQS_EN_PHASE_OFFSET, read_group, phase);
}

static void scc_mgr_set_dqs_en_delay(u32 read_group, u32 delay)
{
	scc_mgr_set(SCC_MGR_DQS_EN_DELAY_OFFSET, read_group, delay);
}

static void scc_mgr_set_dqs_io_in_delay(u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
		    delay);
}

static void scc_mgr_set_dq_in_delay(u32 dq_in_group, u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_IN_DELAY_OFFSET, dq_in_group, delay);
}

static void scc_mgr_set_dq_out1_delay(u32 dq_in_group, u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, dq_in_group, delay);
}

static void scc_mgr_set_dqs_out1_delay(u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET, rwcfg->mem_dq_per_write_dqs,
		    delay);
}

static void scc_mgr_set_dm_out1_delay(u32 dm, u32 delay)
{
	scc_mgr_set(SCC_MGR_IO_OUT1_DELAY_OFFSET,
		    rwcfg->mem_dq_per_write_dqs + 1 + dm,
		    delay);
}

/* load up dqs config settings */
static void scc_mgr_load_dqs(u32 dqs)
{
	writel(dqs, &sdr_scc_mgr->dqs_ena);
}

/* load up dqs io config settings */
static void scc_mgr_load_dqs_io(void)
{
	writel(0, &sdr_scc_mgr->dqs_io_ena);
}

/* load up dq config settings */
static void scc_mgr_load_dq(u32 dq_in_group)
{
	writel(dq_in_group, &sdr_scc_mgr->dq_ena);
}

/* load up dm config settings */
static void scc_mgr_load_dm(u32 dm)
{
	writel(dm, &sdr_scc_mgr->dm_ena);
}

/**
 * scc_mgr_set_all_ranks() - Set SCC Manager register for all ranks
 * @off:	Base offset in SCC Manager space
 * @grp:	Read/Write group
 * @val:	Value to be set
 * @update:	If non-zero, trigger SCC Manager update for all ranks
 *
 * This function sets the SCC Manager (Scan Chain Control Manager) register
 * and optionally triggers the SCC update for all ranks.
 */
static void scc_mgr_set_all_ranks(const u32 off, const u32 grp, const u32 val,
				  const int update)
{
	u32 r;

	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		scc_mgr_set(off, grp, val);

		if (update || (r == 0)) {
			writel(grp, &sdr_scc_mgr->dqs_ena);
			writel(0, &sdr_scc_mgr->update);
		}
	}
}

static void scc_mgr_set_dqs_en_phase_all_ranks(u32 read_group, u32 phase)
{
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_PHASE_OFFSET,
			      read_group, phase, 0);
}

static void scc_mgr_set_dqdqs_output_phase_all_ranks(u32 write_group,
						     u32 phase)
{
	/*
	 * USER although the h/w doesn't support different phases per
	 * shadow register, for simplicity our scc manager modeling
	 * keeps different phase settings per shadow reg, and it's
	 * important for us to keep them in sync to match h/w.
	 * for efficiency, the scan chain update should occur only
	 * once to sr0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQDQS_OUT_PHASE_OFFSET,
			      write_group, phase, 0);
}

static void scc_mgr_set_dqs_en_delay_all_ranks(u32 read_group,
					       u32 delay)
{
	/*
	 * In shadow register mode, the T11 settings are stored in
	 * registers in the core, which are updated by the DQS_ENA
	 * signals. Not issuing the SCC_MGR_UPD command allows us to
	 * save lots of rank switching overhead, by calling
	 * select_shadow_regs_for_update with update_scan_chains
	 * set to 0.
	 */
	scc_mgr_set_all_ranks(SCC_MGR_DQS_EN_DELAY_OFFSET,
			      read_group, delay, 1);
}

/**
 * scc_mgr_set_oct_out1_delay() - Set OCT output delay
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * This function sets the OCT output delay in SCC manager.
 */
static void scc_mgr_set_oct_out1_delay(const u32 write_group, const u32 delay)
{
	const int ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const int base = write_group * ratio;
	int i;
	/*
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	 */
	for (i = 0; i < ratio; i++)
		scc_mgr_set(SCC_MGR_OCT_OUT1_DELAY_OFFSET, base + i, delay);
}

/**
 * scc_mgr_set_hhp_extras() - Set HHP extras.
 *
 * Load the fixed setting in the SCC manager HHP extras.
 */
static void scc_mgr_set_hhp_extras(void)
{
	/*
	 * Load the fixed setting in the SCC manager
	 * bits: 0:0 = 1'b1	- DQS bypass
	 * bits: 1:1 = 1'b1	- DQ bypass
	 * bits: 4:2 = 3'b001	- rfifo_mode
	 * bits: 6:5 = 2'b01	- rfifo clock_select
	 * bits: 7:7 = 1'b0	- separate gating from ungating setting
	 * bits: 8:8 = 1'b0	- separate OE from Output delay setting
	 */
	const u32 value = (0 << 8) | (0 << 7) | (1 << 5) |
			  (1 << 2) | (1 << 1) | (1 << 0);
	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS |
			 SCC_MGR_HHP_GLOBALS_OFFSET |
			 SCC_MGR_HHP_EXTRAS_OFFSET;

	debug_cond(DLEVEL == 1, "%s:%d Setting HHP Extras\n",
		   __func__, __LINE__);
	writel(value, addr);
	debug_cond(DLEVEL == 1, "%s:%d Done Setting HHP Extras\n",
		   __func__, __LINE__);
}

/**
 * scc_mgr_zero_all() - Zero all DQS config
 *
 * Zero all DQS config.
 */
static void scc_mgr_zero_all(void)
{
	int i, r;

	/*
	 * USER Zero all DQS config settings, across all groups and all
	 * shadow registers
	 */
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
			/*
			 * The phases actually don't exist on a per-rank basis,
			 * but there's no harm updating them several times, so
			 * let's keep the code simple.
			 */
			scc_mgr_set_dqs_bus_in_delay(i, iocfg->dqs_in_reserve);
			scc_mgr_set_dqs_en_phase(i, 0);
			scc_mgr_set_dqs_en_delay(i, 0);
		}

		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
			scc_mgr_set_dqdqs_output_phase(i, 0);
			/* Arria V/Cyclone V don't have out2. */
			scc_mgr_set_oct_out1_delay(i, iocfg->dqs_out_reserve);
		}
	}

	/* Multicast to all DQS group enables. */
	writel(0xff, &sdr_scc_mgr->dqs_ena);
	writel(0, &sdr_scc_mgr->update);
}

/**
 * scc_set_bypass_mode() - Set bypass mode and trigger SCC update
 * @write_group:	Write group
 *
 * Set bypass mode and trigger SCC update.
 */
static void scc_set_bypass_mode(const u32 write_group)
{
	/* Multicast to all DQ enables. */
	writel(0xff, &sdr_scc_mgr->dq_ena);
	writel(0xff, &sdr_scc_mgr->dm_ena);

	/* Update current DQS IO enable. */
	writel(0, &sdr_scc_mgr->dqs_io_ena);

	/* Update the DQS logic. */
	writel(write_group, &sdr_scc_mgr->dqs_ena);

	/* Hit update. */
	writel(0, &sdr_scc_mgr->update);
}

/**
 * scc_mgr_load_dqs_for_write_group() - Load DQS settings for Write Group
 * @write_group:	Write group
 *
 * Load DQS settings for Write Group, do not trigger SCC update.
 */
static void scc_mgr_load_dqs_for_write_group(const u32 write_group)
{
	const int ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const int base = write_group * ratio;
	int i;
	/*
	 * Load the setting in the SCC manager
	 * Although OCT affects only write data, the OCT delay is controlled
	 * by the DQS logic block which is instantiated once per read group.
	 * For protocols where a write group consists of multiple read groups,
	 * the setting must be set multiple times.
	 */
	for (i = 0; i < ratio; i++)
		writel(base + i, &sdr_scc_mgr->dqs_ena);
}

/**
 * scc_mgr_zero_group() - Zero all configs for a group
 *
 * Zero DQ, DM, DQS and OCT configs for a group.
 */
static void scc_mgr_zero_group(const u32 write_group, const int out_only)
{
	int i, r;

	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		/* Zero all DQ config settings. */
		for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
			scc_mgr_set_dq_out1_delay(i, 0);
			if (!out_only)
				scc_mgr_set_dq_in_delay(i, 0);
		}

		/* Multicast to all DQ enables. */
		writel(0xff, &sdr_scc_mgr->dq_ena);

		/* Zero all DM config settings. */
		for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
			scc_mgr_set_dm_out1_delay(i, 0);

		/* Multicast to all DM enables. */
		writel(0xff, &sdr_scc_mgr->dm_ena);

		/* Zero all DQS IO settings. */
		if (!out_only)
			scc_mgr_set_dqs_io_in_delay(0);

		/* Arria V/Cyclone V don't have out2. */
		scc_mgr_set_dqs_out1_delay(iocfg->dqs_out_reserve);
		scc_mgr_set_oct_out1_delay(write_group, iocfg->dqs_out_reserve);
		scc_mgr_load_dqs_for_write_group(write_group);

		/* Multicast to all DQS IO enables (only 1 in total). */
		writel(0, &sdr_scc_mgr->dqs_io_ena);

		/* Hit update to zero everything. */
		writel(0, &sdr_scc_mgr->update);
	}
}

/*
 * apply and load a particular input delay for the DQ pins in a group
 * group_bgn is the index of the first dq pin (in the write group)
 */
static void scc_mgr_apply_group_dq_in_delay(u32 group_bgn, u32 delay)
{
	u32 i, p;

	for (i = 0, p = group_bgn; i < rwcfg->mem_dq_per_read_dqs; i++, p++) {
		scc_mgr_set_dq_in_delay(p, delay);
		scc_mgr_load_dq(p);
	}
}

/**
 * scc_mgr_apply_group_dq_out1_delay() - Apply and load an output delay for the DQ pins in a group
 * @delay:		Delay value
 *
 * Apply and load a particular output delay for the DQ pins in a group.
 */
static void scc_mgr_apply_group_dq_out1_delay(const u32 delay)
{
	int i;

	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
		scc_mgr_set_dq_out1_delay(i, delay);
		scc_mgr_load_dq(i);
	}
}

/* apply and load a particular output delay for the DM pins in a group */
static void scc_mgr_apply_group_dm_out1_delay(u32 delay1)
{
	u32 i;

	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
		scc_mgr_set_dm_out1_delay(i, delay1);
		scc_mgr_load_dm(i);
	}
}


/* apply and load delay on both DQS and OCT out1 */
static void scc_mgr_apply_group_dqs_io_and_oct_out1(u32 write_group,
						    u32 delay)
{
	scc_mgr_set_dqs_out1_delay(delay);
	scc_mgr_load_dqs_io();

	scc_mgr_set_oct_out1_delay(write_group, delay);
	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side: DQ, DM, DQS, OCT
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side: DQ, DM, DQS, OCT.
 */
static void scc_mgr_apply_group_all_out_delay_add(const u32 write_group,
						  const u32 delay)
{
	u32 i, new_delay;

	/* DQ shift */
	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++)
		scc_mgr_load_dq(i);

	/* DM shift */
	for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++)
		scc_mgr_load_dm(i);

	/* DQS shift */
	new_delay = READ_SCC_DQS_IO_OUT2_DELAY + delay;
	if (new_delay > iocfg->io_out2_delay_max) {
		debug_cond(DLEVEL == 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay, new_delay,
			   iocfg->io_out2_delay_max,
			   new_delay - iocfg->io_out2_delay_max);
		new_delay -= iocfg->io_out2_delay_max;
		scc_mgr_set_dqs_out1_delay(new_delay);
	}

	scc_mgr_load_dqs_io();

	/* OCT shift */
	new_delay = READ_SCC_OCT_OUT2_DELAY + delay;
	if (new_delay > iocfg->io_out2_delay_max) {
		debug_cond(DLEVEL == 1,
			   "%s:%d (%u, %u) DQS: %u > %d; adding %u to OUT1\n",
			   __func__, __LINE__, write_group, delay,
			   new_delay, iocfg->io_out2_delay_max,
			   new_delay - iocfg->io_out2_delay_max);
		new_delay -= iocfg->io_out2_delay_max;
		scc_mgr_set_oct_out1_delay(write_group, new_delay);
	}

	scc_mgr_load_dqs_for_write_group(write_group);
}

/**
 * scc_mgr_apply_group_all_out_delay_add() - Apply a delay to the entire output side to all ranks
 * @write_group:	Write group
 * @delay:		Delay value
 *
 * Apply a delay to the entire output side (DQ, DM, DQS, OCT) to all ranks.
 */
static void
scc_mgr_apply_group_all_out_delay_add_all_ranks(const u32 write_group,
						const u32 delay)
{
	int r;

	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		scc_mgr_apply_group_all_out_delay_add(write_group, delay);
		writel(0, &sdr_scc_mgr->update);
	}
}

/**
 * set_jump_as_return() - Return instruction optimization
 *
 * Optimization used to recover some slots in ddr3 inst_rom could be
 * applied to other protocols if we wanted to
 */
static void set_jump_as_return(void)
{
	/*
	 * To save space, we replace return with jump to special shared
	 * RETURN instruction so we set the counter to large value so that
	 * we always jump.
	 */
	writel(0xff, &sdr_rw_load_mgr_regs->load_cntr0);
	writel(rwcfg->rreturn, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
}

/**
 * delay_for_n_mem_clocks() - Delay for N memory clocks
 * @clocks:	Length of the delay
 *
 * Delay for N memory clocks.
 */
static void delay_for_n_mem_clocks(const u32 clocks)
{
	u32 afi_clocks;
	u16 c_loop;
	u8 inner;
	u8 outer;

	debug("%s:%d: clocks=%u ... start\n", __func__, __LINE__, clocks);

	/* Scale (rounding up) to get afi clocks. */
	afi_clocks = DIV_ROUND_UP(clocks, misccfg->afi_rate_ratio);
	if (afi_clocks)	/* Temporary underflow protection */
		afi_clocks--;

	/*
	 * Note, we don't bother accounting for being off a little
	 * bit because of a few extra instructions in outer loops.
	 * Note, the loops have a test at the end, and do the test
	 * before the decrement, and so always perform the loop
	 * 1 time more than the counter value
	 */
	c_loop = afi_clocks >> 16;
	outer = c_loop ? 0xff : (afi_clocks >> 8);
	inner = outer ? 0xff : afi_clocks;

	/*
	 * rom instructions are structured as follows:
	 *
	 *    IDLE_LOOP2: jnz cntr0, TARGET_A
	 *    IDLE_LOOP1: jnz cntr1, TARGET_B
	 *                return
	 *
	 * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
	 * TARGET_B is set to IDLE_LOOP2 as well
	 *
	 * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
	 * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
	 *
	 * a little confusing, but it helps save precious space in the inst_rom
	 * and sequencer rom and keeps the delays more accurate and reduces
	 * overhead
	 */
	if (afi_clocks < 0x100) {
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
		       &sdr_rw_load_mgr_regs->load_cntr1);

		writel(rwcfg->idle_loop1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		writel(rwcfg->idle_loop1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
					  RW_MGR_RUN_SINGLE_GROUP_OFFSET);
	} else {
		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner),
		       &sdr_rw_load_mgr_regs->load_cntr0);

		writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer),
		       &sdr_rw_load_mgr_regs->load_cntr1);

		writel(rwcfg->idle_loop2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);

		writel(rwcfg->idle_loop2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		do {
			writel(rwcfg->idle_loop2,
			       SDR_PHYGRP_RWMGRGRP_ADDRESS |
			       RW_MGR_RUN_SINGLE_GROUP_OFFSET);
		} while (c_loop-- != 0);
	}
	debug("%s:%d clocks=%u ... end\n", __func__, __LINE__, clocks);
}

/**
 * rw_mgr_mem_init_load_regs() - Load instruction registers
 * @cntr0:	Counter 0 value
 * @cntr1:	Counter 1 value
 * @cntr2:	Counter 2 value
 * @jump:	Jump instruction value
 *
 * Load instruction registers.
 */
static void rw_mgr_mem_init_load_regs(u32 cntr0, u32 cntr1, u32 cntr2, u32 jump)
{
	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			   RW_MGR_RUN_SINGLE_GROUP_OFFSET;

	/* Load counters */
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr0),
	       &sdr_rw_load_mgr_regs->load_cntr0);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr1),
	       &sdr_rw_load_mgr_regs->load_cntr1);
	writel(SKIP_DELAY_LOOP_VALUE_OR_ZERO(cntr2),
	       &sdr_rw_load_mgr_regs->load_cntr2);

	/* Load jump address */
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add0);
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add1);
	writel(jump, &sdr_rw_load_jump_mgr_regs->load_jump_add2);

	/* Execute count instruction */
	writel(jump, grpaddr);
}

/**
 * rw_mgr_mem_load_user() - Load user calibration values
 * @fin1:	Final instruction 1
 * @fin2:	Final instruction 2
 * @precharge:	If 1, precharge the banks at the end
 *
 * Load user calibration values and optionally precharge the banks.
 */
static void rw_mgr_mem_load_user(const u32 fin1, const u32 fin2,
				 const int precharge)
{
	u32 grpaddr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
		      RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	u32 r;

	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);

		/* precharge all banks ... */
		if (precharge)
			writel(rwcfg->precharge_all, grpaddr);

		/*
		 * USER Use Mirror-ed commands for odd ranks if address
		 * mirrorring is on
		 */
		if ((rwcfg->mem_address_mirroring >> r) & 0x1) {
			set_jump_as_return();
			writel(rwcfg->mrs2_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs3_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs1_mirr, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(fin1, grpaddr);
		} else {
			set_jump_as_return();
			writel(rwcfg->mrs2, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs3, grpaddr);
			delay_for_n_mem_clocks(4);
			set_jump_as_return();
			writel(rwcfg->mrs1, grpaddr);
			set_jump_as_return();
			writel(fin2, grpaddr);
		}

		if (precharge)
			continue;

		set_jump_as_return();
		writel(rwcfg->zqcl, grpaddr);

		/* tZQinit = tDLLK = 512 ck cycles */
		delay_for_n_mem_clocks(512);
	}
}

/**
 * rw_mgr_mem_initialize() - Initialize RW Manager
 *
 * Initialize RW Manager.
 */
static void rw_mgr_mem_initialize(void)
{
	debug("%s:%d\n", __func__, __LINE__);

	/* The reset / cke part of initialization is broadcasted to all ranks */
	writel(RW_MGR_RANK_ALL, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_SET_CS_AND_ODT_MASK_OFFSET);

	/*
	 * Here's how you load register for a loop
	 * Counters are located @ 0x800
	 * Jump address are located @ 0xC00
	 * For both, registers 0 to 3 are selected using bits 3 and 2, like
	 * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
	 * I know this ain't pretty, but Avalon bus throws away the 2 least
	 * significant bits
	 */

	/* Start with memory RESET activated */

	/* tINIT = 200us */

	/*
	 * 200us @ 266MHz (3.75 ns) ~ 54000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation:
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 0 , a = 256 , b = 106 => a = FF,
	 * b = 6A
	 */
	rw_mgr_mem_init_load_regs(misccfg->tinit_cntr0_val,
				  misccfg->tinit_cntr1_val,
				  misccfg->tinit_cntr2_val,
				  rwcfg->init_reset_0_cke_0);

	/* Indicate that memory is stable. */
	writel(1, &phy_mgr_cfg->reset_mem_stbl);

	/*
	 * transition the RESET to high
	 * Wait for 500us
	 */

	/*
	 * 500us @ 266MHz (3.75 ns) ~ 134000 clock cycles
	 * If a and b are the number of iteration in 2 nested loops
	 * it takes the following number of cycles to complete the operation
	 * number_of_cycles = ((2 + n) * a + 2) * b
	 * where n is the number of instruction in the inner loop
	 * One possible solution is n = 2 , a = 131 , b = 256 => a = 83,
	 * b = FF
	 */
	rw_mgr_mem_init_load_regs(misccfg->treset_cntr0_val,
				  misccfg->treset_cntr1_val,
				  misccfg->treset_cntr2_val,
				  rwcfg->init_reset_1_cke_0);

	/* Bring up clock enable. */

	/* tXRP < 250 ck cycles */
	delay_for_n_mem_clocks(250);

	rw_mgr_mem_load_user(rwcfg->mrs0_dll_reset_mirr, rwcfg->mrs0_dll_reset,
			     0);
}

/**
 * rw_mgr_mem_handoff() - Hand off the memory to user
 *
 * At the end of calibration we have to program the user settings in
 * and hand off the memory to the user.
 */
static void rw_mgr_mem_handoff(void)
{
	rw_mgr_mem_load_user(rwcfg->mrs0_user_mirr, rwcfg->mrs0_user, 1);
	/*
	 * Need to wait tMOD (12CK or 15ns) time before issuing other
	 * commands, but we will have plenty of NIOS cycles before actual
	 * handoff so its okay.
	 */
}

/**
 * rw_mgr_mem_calibrate_write_test_issue() - Issue write test command
 * @group:	Write Group
 * @use_dm:	Use DM
 *
 * Issue write test command. Two variants are provided, one that just tests
 * a write pattern and another that tests datamask functionality.
 */
static void rw_mgr_mem_calibrate_write_test_issue(u32 group,
						  u32 test_dm)
{
	const u32 quick_write_mode =
		(STATIC_CALIB_STEPS & CALIB_SKIP_WRITES) &&
		misccfg->enable_super_quick_calibration;
	u32 mcc_instruction;
	u32 rw_wl_nop_cycles;

	/*
	 * Set counter and jump addresses for the right
	 * number of NOP cycles.
	 * The number of supported NOP cycles can range from -1 to infinity
	 * Three different cases are handled:
	 *
	 * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
	 *    mechanism will be used to insert the right number of NOPs
	 *
	 * 2. For a number of NOP cycles equals to 0, the micro-instruction
	 *    issuing the write command will jump straight to the
	 *    micro-instruction that turns on DQS (for DDRx), or outputs write
	 *    data (for RLD), skipping
	 *    the NOP micro-instruction all together
	 *
	 * 3. A number of NOP cycles equal to -1 indicates that DQS must be
	 *    turned on in the same micro-instruction that issues the write
	 *    command. Then we need
	 *    to directly jump to the micro-instruction that sends out the data
	 *
	 * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
	 *       (2 and 3). One jump-counter (0) is used to perform multiple
	 *       write-read operations.
	 *       one counter left to issue this command in "multiple-group" mode
	 */

	rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;

	if (rw_wl_nop_cycles == -1) {
		/*
		 * CNTR 2 - We want to execute the special write operation that
		 * turns on DQS right away and then skip directly to the
		 * instruction that sends out the data. We set the counter to a
		 * large number so that the jump is always taken.
		 */
		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);

		/* CNTR 3 - Not used */
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0_wl_1;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_data,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		} else {
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0_wl_1;
			writel(rwcfg->lfsr_wr_rd_bank_0_data,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		}
	} else if (rw_wl_nop_cycles == 0) {
		/*
		 * CNTR 2 - We want to skip the NOP operation and go straight
		 * to the DQS enable instruction. We set the counter to a large
		 * number so that the jump is always taken.
		 */
		writel(0xFF, &sdr_rw_load_mgr_regs->load_cntr2);

		/* CNTR 3 - Not used */
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_dqs,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
		} else {
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
			writel(rwcfg->lfsr_wr_rd_bank_0_dqs,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add2);
		}
	} else {
		/*
		 * CNTR 2 - In this case we want to execute the next instruction
		 * and NOT take the jump. So we set the counter to 0. The jump
		 * address doesn't count.
		 */
		writel(0x0, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(0x0, &sdr_rw_load_jump_mgr_regs->load_jump_add2);

		/*
		 * CNTR 3 - Set the nop counter to the number of cycles we
		 * need to loop for, minus 1.
		 */
		writel(rw_wl_nop_cycles - 1, &sdr_rw_load_mgr_regs->load_cntr3);
		if (test_dm) {
			mcc_instruction = rwcfg->lfsr_wr_rd_dm_bank_0;
			writel(rwcfg->lfsr_wr_rd_dm_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		} else {
			mcc_instruction = rwcfg->lfsr_wr_rd_bank_0;
			writel(rwcfg->lfsr_wr_rd_bank_0_nop,
			       &sdr_rw_load_jump_mgr_regs->load_jump_add3);
		}
	}

	writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
		  RW_MGR_RESET_READ_DATAPATH_OFFSET);

	if (quick_write_mode)
		writel(0x08, &sdr_rw_load_mgr_regs->load_cntr0);
	else
		writel(0x40, &sdr_rw_load_mgr_regs->load_cntr0);

	writel(mcc_instruction, &sdr_rw_load_jump_mgr_regs->load_jump_add0);

	/*
	 * CNTR 1 - This is used to ensure enough time elapses
	 * for read data to come back.
	 */
	writel(0x30, &sdr_rw_load_mgr_regs->load_cntr1);

	if (test_dm) {
		writel(rwcfg->lfsr_wr_rd_dm_bank_0_wait,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
	} else {
		writel(rwcfg->lfsr_wr_rd_bank_0_wait,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);
	}

	writel(mcc_instruction, (SDR_PHYGRP_RWMGRGRP_ADDRESS |
				RW_MGR_RUN_SINGLE_GROUP_OFFSET) +
				(group << 2));
}

/**
 * rw_mgr_mem_calibrate_write_test() - Test writes, check for single/multiple pass
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @use_dm:		Use DM
 * @all_correct:	All bits must be correct in the mask
 * @bit_chk:		Resulting bit mask after the test
 * @all_ranks:		Test all ranks
 *
 * Test writes, can check for a single bit pass or multiple bit pass.
 */
static int
rw_mgr_mem_calibrate_write_test(const u32 rank_bgn, const u32 write_group,
				const u32 use_dm, const u32 all_correct,
				u32 *bit_chk, const u32 all_ranks)
{
	const u32 rank_end = all_ranks ?
				rwcfg->mem_number_of_ranks :
				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 shift_ratio = rwcfg->mem_dq_per_write_dqs /
				rwcfg->mem_virtual_groups_per_write_dqs;
	const u32 correct_mask_vg = param->write_correct_mask_vg;

	u32 tmp_bit_chk, base_rw_mgr;
	int vg, r;

	*bit_chk = param->write_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		/* Set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		tmp_bit_chk = 0;
		for (vg = rwcfg->mem_virtual_groups_per_write_dqs - 1;
		     vg >= 0; vg--) {
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);

			rw_mgr_mem_calibrate_write_test_issue(
				write_group *
				rwcfg->mem_virtual_groups_per_write_dqs + vg,
				use_dm);

			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= shift_ratio;
			tmp_bit_chk |= (correct_mask_vg & ~(base_rw_mgr));
		}

		*bit_chk &= tmp_bit_chk;
	}

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
	if (all_correct) {
		debug_cond(DLEVEL == 2,
			   "write_test(%u,%u,ALL) : %u == %u => %i\n",
			   write_group, use_dm, *bit_chk,
			   param->write_correct_mask,
			   *bit_chk == param->write_correct_mask);
		return *bit_chk == param->write_correct_mask;
	} else {
		debug_cond(DLEVEL == 2,
			   "write_test(%u,%u,ONE) : %u != %i => %i\n",
			   write_group, use_dm, *bit_chk, 0, *bit_chk != 0);
		return *bit_chk != 0x00;
	}
}

/**
 * rw_mgr_mem_calibrate_read_test_patterns() - Read back test patterns
 * @rank_bgn:	Rank number
 * @group:	Read/Write Group
 * @all_ranks:	Test all ranks
 *
 * Performs a guaranteed read on the patterns we are going to use during a
 * read test to ensure memory works.
 */
static int
rw_mgr_mem_calibrate_read_test_patterns(const u32 rank_bgn, const u32 group,
					const u32 all_ranks)
{
	const u32 addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
			 RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	const u32 addr_offset =
			 (group * rwcfg->mem_virtual_groups_per_read_dqs) << 2;
	const u32 rank_end = all_ranks ?
				rwcfg->mem_number_of_ranks :
				(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 shift_ratio = rwcfg->mem_dq_per_read_dqs /
				rwcfg->mem_virtual_groups_per_read_dqs;
	const u32 correct_mask_vg = param->read_correct_mask_vg;

	u32 tmp_bit_chk, base_rw_mgr, bit_chk;
	int vg, r;
	int ret = 0;

	bit_chk = param->read_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		/* Set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts of read commands */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(rwcfg->guaranteed_read,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);

		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->guaranteed_read_cont,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		tmp_bit_chk = 0;
		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1;
		     vg >= 0; vg--) {
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);
			writel(rwcfg->guaranteed_read,
			       addr + addr_offset + (vg << 2));

			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= shift_ratio;
			tmp_bit_chk |= correct_mask_vg & ~base_rw_mgr;
		}

		bit_chk &= tmp_bit_chk;
	}

	writel(rwcfg->clear_dqs_enable, addr + (group << 2));

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);

	if (bit_chk != param->read_correct_mask)
		ret = -EIO;

	debug_cond(DLEVEL == 1,
		   "%s:%d test_load_patterns(%u,ALL) => (%u == %u) => %i\n",
		   __func__, __LINE__, group, bit_chk,
		   param->read_correct_mask, ret);

	return ret;
}

/**
 * rw_mgr_mem_calibrate_read_load_patterns() - Load up the patterns for read test
 * @rank_bgn:	Rank number
 * @all_ranks:	Test all ranks
 *
 * Load up the patterns we are going to use during a read test.
 */
static void rw_mgr_mem_calibrate_read_load_patterns(const u32 rank_bgn,
						    const int all_ranks)
{
	const u32 rank_end = all_ranks ?
			rwcfg->mem_number_of_ranks :
			(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	u32 r;

	debug("%s:%d\n", __func__, __LINE__);

	for (r = rank_bgn; r < rank_end; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		/* Load up a constant bursts */
		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr0);

		writel(rwcfg->guaranteed_write_wait0,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);

		writel(0x20, &sdr_rw_load_mgr_regs->load_cntr1);

		writel(rwcfg->guaranteed_write_wait1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr2);

		writel(rwcfg->guaranteed_write_wait2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);

		writel(0x04, &sdr_rw_load_mgr_regs->load_cntr3);

		writel(rwcfg->guaranteed_write_wait3,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);

		writel(rwcfg->guaranteed_write, SDR_PHYGRP_RWMGRGRP_ADDRESS |
						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
	}

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}

/**
 * rw_mgr_mem_calibrate_read_test() - Perform READ test on single rank
 * @rank_bgn:		Rank number
 * @group:		Read/Write group
 * @num_tries:		Number of retries of the test
 * @all_correct:	All bits must be correct in the mask
 * @bit_chk:		Resulting bit mask after the test
 * @all_groups:		Test all R/W groups
 * @all_ranks:		Test all ranks
 *
 * Try a read and see if it returns correct data back. Test has dummy reads
 * inserted into the mix used to align DQS enable. Test has more thorough
 * checks than the regular read test.
 */
static int
rw_mgr_mem_calibrate_read_test(const u32 rank_bgn, const u32 group,
			       const u32 num_tries, const u32 all_correct,
			       u32 *bit_chk,
			       const u32 all_groups, const u32 all_ranks)
{
	const u32 rank_end = all_ranks ? rwcfg->mem_number_of_ranks :
		(rank_bgn + NUM_RANKS_PER_SHADOW_REG);
	const u32 quick_read_mode =
		((STATIC_CALIB_STEPS & CALIB_SKIP_DELAY_SWEEPS) &&
		 misccfg->enable_super_quick_calibration);
	u32 correct_mask_vg = param->read_correct_mask_vg;
	u32 tmp_bit_chk;
	u32 base_rw_mgr;
	u32 addr;

	int r, vg, ret;

	*bit_chk = param->read_correct_mask;

	for (r = rank_bgn; r < rank_end; r++) {
		/* set rank */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);

		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr1);

		writel(rwcfg->read_b2b_wait1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		writel(0x10, &sdr_rw_load_mgr_regs->load_cntr2);
		writel(rwcfg->read_b2b_wait2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add2);

		if (quick_read_mode)
			writel(0x1, &sdr_rw_load_mgr_regs->load_cntr0);
			/* need at least two (1+1) reads to capture failures */
		else if (all_groups)
			writel(0x06, &sdr_rw_load_mgr_regs->load_cntr0);
		else
			writel(0x32, &sdr_rw_load_mgr_regs->load_cntr0);

		writel(rwcfg->read_b2b,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);
		if (all_groups)
			writel(rwcfg->mem_if_read_dqs_width *
			       rwcfg->mem_virtual_groups_per_read_dqs - 1,
			       &sdr_rw_load_mgr_regs->load_cntr3);
		else
			writel(0x0, &sdr_rw_load_mgr_regs->load_cntr3);

		writel(rwcfg->read_b2b,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add3);

		tmp_bit_chk = 0;
		for (vg = rwcfg->mem_virtual_groups_per_read_dqs - 1; vg >= 0;
		     vg--) {
			/* Reset the FIFOs to get pointers to known state. */
			writel(0, &phy_mgr_cmd->fifo_reset);
			writel(0, SDR_PHYGRP_RWMGRGRP_ADDRESS |
				  RW_MGR_RESET_READ_DATAPATH_OFFSET);

			if (all_groups) {
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
				       RW_MGR_RUN_ALL_GROUPS_OFFSET;
			} else {
				addr = SDR_PHYGRP_RWMGRGRP_ADDRESS |
				       RW_MGR_RUN_SINGLE_GROUP_OFFSET;
			}

			writel(rwcfg->read_b2b, addr +
			       ((group *
				 rwcfg->mem_virtual_groups_per_read_dqs +
				 vg) << 2));

			base_rw_mgr = readl(SDR_PHYGRP_RWMGRGRP_ADDRESS);
			tmp_bit_chk <<= rwcfg->mem_dq_per_read_dqs /
					rwcfg->mem_virtual_groups_per_read_dqs;
			tmp_bit_chk |= correct_mask_vg & ~(base_rw_mgr);
		}

		*bit_chk &= tmp_bit_chk;
	}

	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_RUN_SINGLE_GROUP_OFFSET;
	writel(rwcfg->clear_dqs_enable, addr + (group << 2));

	set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);

	if (all_correct) {
		ret = (*bit_chk == param->read_correct_mask);
		debug_cond(DLEVEL == 2,
			   "%s:%d read_test(%u,ALL,%u) => (%u == %u) => %i\n",
			   __func__, __LINE__, group, all_groups, *bit_chk,
			   param->read_correct_mask, ret);
	} else	{
		ret = (*bit_chk != 0x00);
		debug_cond(DLEVEL == 2,
			   "%s:%d read_test(%u,ONE,%u) => (%u != %u) => %i\n",
			   __func__, __LINE__, group, all_groups, *bit_chk,
			   0, ret);
	}

	return ret;
}

/**
 * rw_mgr_mem_calibrate_read_test_all_ranks() - Perform READ test on all ranks
 * @grp:		Read/Write group
 * @num_tries:		Number of retries of the test
 * @all_correct:	All bits must be correct in the mask
 * @all_groups:		Test all R/W groups
 *
 * Perform a READ test across all memory ranks.
 */
static int
rw_mgr_mem_calibrate_read_test_all_ranks(const u32 grp, const u32 num_tries,
					 const u32 all_correct,
					 const u32 all_groups)
{
	u32 bit_chk;
	return rw_mgr_mem_calibrate_read_test(0, grp, num_tries, all_correct,
					      &bit_chk, all_groups, 1);
}

/**
 * rw_mgr_incr_vfifo() - Increase VFIFO value
 * @grp:	Read/Write group
 *
 * Increase VFIFO value.
 */
static void rw_mgr_incr_vfifo(const u32 grp)
{
	writel(grp, &phy_mgr_cmd->inc_vfifo_hard_phy);
}

/**
 * rw_mgr_decr_vfifo() - Decrease VFIFO value
 * @grp:	Read/Write group
 *
 * Decrease VFIFO value.
 */
static void rw_mgr_decr_vfifo(const u32 grp)
{
	u32 i;

	for (i = 0; i < misccfg->read_valid_fifo_size - 1; i++)
		rw_mgr_incr_vfifo(grp);
}

/**
 * find_vfifo_failing_read() - Push VFIFO to get a failing read
 * @grp:	Read/Write group
 *
 * Push VFIFO until a failing read happens.
 */
static int find_vfifo_failing_read(const u32 grp)
{
	u32 v, ret, fail_cnt = 0;

	for (v = 0; v < misccfg->read_valid_fifo_size; v++) {
		debug_cond(DLEVEL == 2, "%s:%d: vfifo %u\n",
			   __func__, __LINE__, v);
		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
						PASS_ONE_BIT, 0);
		if (!ret) {
			fail_cnt++;

			if (fail_cnt == 2)
				return v;
		}

		/* Fiddle with FIFO. */
		rw_mgr_incr_vfifo(grp);
	}

	/* No failing read found! Something must have gone wrong. */
	debug_cond(DLEVEL == 2, "%s:%d: vfifo failed\n", __func__, __LINE__);
	return 0;
}

/**
 * sdr_find_phase_delay() - Find DQS enable phase or delay
 * @working:	If 1, look for working phase/delay, if 0, look for non-working
 * @delay:	If 1, look for delay, if 0, look for phase
 * @grp:	Read/Write group
 * @work:	Working window position
 * @work_inc:	Working window increment
 * @pd:		DQS Phase/Delay Iterator
 *
 * Find working or non-working DQS enable phase setting.
 */
static int sdr_find_phase_delay(int working, int delay, const u32 grp,
				u32 *work, const u32 work_inc, u32 *pd)
{
	const u32 max = delay ? iocfg->dqs_en_delay_max :
				iocfg->dqs_en_phase_max;
	u32 ret;

	for (; *pd <= max; (*pd)++) {
		if (delay)
			scc_mgr_set_dqs_en_delay_all_ranks(grp, *pd);
		else
			scc_mgr_set_dqs_en_phase_all_ranks(grp, *pd);

		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
					PASS_ONE_BIT, 0);
		if (!working)
			ret = !ret;

		if (ret)
			return 0;

		if (work)
			*work += work_inc;
	}

	return -EINVAL;
}
/**
 * sdr_find_phase() - Find DQS enable phase
 * @working:	If 1, look for working phase, if 0, look for non-working phase
 * @grp:	Read/Write group
 * @work:	Working window position
 * @i:		Iterator
 * @p:		DQS Phase Iterator
 *
 * Find working or non-working DQS enable phase setting.
 */
static int sdr_find_phase(int working, const u32 grp, u32 *work,
			  u32 *i, u32 *p)
{
	const u32 end = misccfg->read_valid_fifo_size + (working ? 0 : 1);
	int ret;

	for (; *i < end; (*i)++) {
		if (working)
			*p = 0;

		ret = sdr_find_phase_delay(working, 0, grp, work,
					   iocfg->delay_per_opa_tap, p);
		if (!ret)
			return 0;

		if (*p > iocfg->dqs_en_phase_max) {
			/* Fiddle with FIFO. */
			rw_mgr_incr_vfifo(grp);
			if (!working)
				*p = 0;
		}
	}

	return -EINVAL;
}

/**
 * sdr_working_phase() - Find working DQS enable phase
 * @grp:	Read/Write group
 * @work_bgn:	Working window start position
 * @d:		dtaps output value
 * @p:		DQS Phase Iterator
 * @i:		Iterator
 *
 * Find working DQS enable phase setting.
 */
static int sdr_working_phase(const u32 grp, u32 *work_bgn, u32 *d,
			     u32 *p, u32 *i)
{
	const u32 dtaps_per_ptap = iocfg->delay_per_opa_tap /
				   iocfg->delay_per_dqs_en_dchain_tap;
	int ret;

	*work_bgn = 0;

	for (*d = 0; *d <= dtaps_per_ptap; (*d)++) {
		*i = 0;
		scc_mgr_set_dqs_en_delay_all_ranks(grp, *d);
		ret = sdr_find_phase(1, grp, work_bgn, i, p);
		if (!ret)
			return 0;
		*work_bgn += iocfg->delay_per_dqs_en_dchain_tap;
	}

	/* Cannot find working solution */
	debug_cond(DLEVEL == 2, "%s:%d find_dqs_en_phase: no vfifo/ptap/dtap\n",
		   __func__, __LINE__);
	return -EINVAL;
}

/**
 * sdr_backup_phase() - Find DQS enable backup phase
 * @grp:	Read/Write group
 * @work_bgn:	Working window start position
 * @p:		DQS Phase Iterator
 *
 * Find DQS enable backup phase setting.
 */
static void sdr_backup_phase(const u32 grp, u32 *work_bgn, u32 *p)
{
	u32 tmp_delay, d;
	int ret;

	/* Special case code for backing up a phase */
	if (*p == 0) {
		*p = iocfg->dqs_en_phase_max;
		rw_mgr_decr_vfifo(grp);
	} else {
		(*p)--;
	}
	tmp_delay = *work_bgn - iocfg->delay_per_opa_tap;
	scc_mgr_set_dqs_en_phase_all_ranks(grp, *p);

	for (d = 0; d <= iocfg->dqs_en_delay_max && tmp_delay < *work_bgn;
	     d++) {
		scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

		ret = rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
					PASS_ONE_BIT, 0);
		if (ret) {
			*work_bgn = tmp_delay;
			break;
		}

		tmp_delay += iocfg->delay_per_dqs_en_dchain_tap;
	}

	/* Restore VFIFO to old state before we decremented it (if needed). */
	(*p)++;
	if (*p > iocfg->dqs_en_phase_max) {
		*p = 0;
		rw_mgr_incr_vfifo(grp);
	}

	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
}

/**
 * sdr_nonworking_phase() - Find non-working DQS enable phase
 * @grp:	Read/Write group
 * @work_end:	Working window end position
 * @p:		DQS Phase Iterator
 * @i:		Iterator
 *
 * Find non-working DQS enable phase setting.
 */
static int sdr_nonworking_phase(const u32 grp, u32 *work_end, u32 *p, u32 *i)
{
	int ret;

	(*p)++;
	*work_end += iocfg->delay_per_opa_tap;
	if (*p > iocfg->dqs_en_phase_max) {
		/* Fiddle with FIFO. */
		*p = 0;
		rw_mgr_incr_vfifo(grp);
	}

	ret = sdr_find_phase(0, grp, work_end, i, p);
	if (ret) {
		/* Cannot see edge of failing read. */
		debug_cond(DLEVEL == 2, "%s:%d: end: failed\n",
			   __func__, __LINE__);
	}

	return ret;
}

/**
 * sdr_find_window_center() - Find center of the working DQS window.
 * @grp:	Read/Write group
 * @work_bgn:	First working settings
 * @work_end:	Last working settings
 *
 * Find center of the working DQS enable window.
 */
static int sdr_find_window_center(const u32 grp, const u32 work_bgn,
				  const u32 work_end)
{
	u32 work_mid;
	int tmp_delay = 0;
	int i, p, d;

	work_mid = (work_bgn + work_end) / 2;

	debug_cond(DLEVEL == 2, "work_bgn=%d work_end=%d work_mid=%d\n",
		   work_bgn, work_end, work_mid);
	/* Get the middle delay to be less than a VFIFO delay */
	tmp_delay = (iocfg->dqs_en_phase_max + 1) * iocfg->delay_per_opa_tap;

	debug_cond(DLEVEL == 2, "vfifo ptap delay %d\n", tmp_delay);
	work_mid %= tmp_delay;
	debug_cond(DLEVEL == 2, "new work_mid %d\n", work_mid);

	tmp_delay = rounddown(work_mid, iocfg->delay_per_opa_tap);
	if (tmp_delay > iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap)
		tmp_delay = iocfg->dqs_en_phase_max * iocfg->delay_per_opa_tap;
	p = tmp_delay / iocfg->delay_per_opa_tap;

	debug_cond(DLEVEL == 2, "new p %d, tmp_delay=%d\n", p, tmp_delay);

	d = DIV_ROUND_UP(work_mid - tmp_delay,
			 iocfg->delay_per_dqs_en_dchain_tap);
	if (d > iocfg->dqs_en_delay_max)
		d = iocfg->dqs_en_delay_max;
	tmp_delay += d * iocfg->delay_per_dqs_en_dchain_tap;

	debug_cond(DLEVEL == 2, "new d %d, tmp_delay=%d\n", d, tmp_delay);

	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
	scc_mgr_set_dqs_en_delay_all_ranks(grp, d);

	/*
	 * push vfifo until we can successfully calibrate. We can do this
	 * because the largest possible margin in 1 VFIFO cycle.
	 */
	for (i = 0; i < misccfg->read_valid_fifo_size; i++) {
		debug_cond(DLEVEL == 2, "find_dqs_en_phase: center\n");
		if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1,
							     PASS_ONE_BIT,
							     0)) {
			debug_cond(DLEVEL == 2,
				   "%s:%d center: found: ptap=%u dtap=%u\n",
				   __func__, __LINE__, p, d);
			return 0;
		}

		/* Fiddle with FIFO. */
		rw_mgr_incr_vfifo(grp);
	}

	debug_cond(DLEVEL == 2, "%s:%d center: failed.\n",
		   __func__, __LINE__);
	return -EINVAL;
}

/**
 * rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase() - Find a good DQS enable to use
 * @grp:	Read/Write Group
 *
 * Find a good DQS enable to use.
 */
static int rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(const u32 grp)
{
	u32 d, p, i;
	u32 dtaps_per_ptap;
	u32 work_bgn, work_end;
	u32 found_passing_read, found_failing_read = 0, initial_failing_dtap;
	int ret;

	debug("%s:%d %u\n", __func__, __LINE__, grp);

	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);

	scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
	scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);

	/* Step 0: Determine number of delay taps for each phase tap. */
	dtaps_per_ptap = iocfg->delay_per_opa_tap /
			 iocfg->delay_per_dqs_en_dchain_tap;

	/* Step 1: First push vfifo until we get a failing read. */
	find_vfifo_failing_read(grp);

	/* Step 2: Find first working phase, increment in ptaps. */
	work_bgn = 0;
	ret = sdr_working_phase(grp, &work_bgn, &d, &p, &i);
	if (ret)
		return ret;

	work_end = work_bgn;

	/*
	 * If d is 0 then the working window covers a phase tap and we can
	 * follow the old procedure. Otherwise, we've found the beginning
	 * and we need to increment the dtaps until we find the end.
	 */
	if (d == 0) {
		/*
		 * Step 3a: If we have room, back off by one and
		 *          increment in dtaps.
		 */
		sdr_backup_phase(grp, &work_bgn, &p);

		/*
		 * Step 4a: go forward from working phase to non working
		 * phase, increment in ptaps.
		 */
		ret = sdr_nonworking_phase(grp, &work_end, &p, &i);
		if (ret)
			return ret;

		/* Step 5a: Back off one from last, increment in dtaps. */

		/* Special case code for backing up a phase */
		if (p == 0) {
			p = iocfg->dqs_en_phase_max;
			rw_mgr_decr_vfifo(grp);
		} else {
			p = p - 1;
		}

		work_end -= iocfg->delay_per_opa_tap;
		scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

		d = 0;

		debug_cond(DLEVEL == 2, "%s:%d p: ptap=%u\n",
			   __func__, __LINE__, p);
	}

	/* The dtap increment to find the failing edge is done here. */
	sdr_find_phase_delay(0, 1, grp, &work_end,
			     iocfg->delay_per_dqs_en_dchain_tap, &d);

	/* Go back to working dtap */
	if (d != 0)
		work_end -= iocfg->delay_per_dqs_en_dchain_tap;

	debug_cond(DLEVEL == 2,
		   "%s:%d p/d: ptap=%u dtap=%u end=%u\n",
		   __func__, __LINE__, p, d - 1, work_end);

	if (work_end < work_bgn) {
		/* nil range */
		debug_cond(DLEVEL == 2, "%s:%d end-2: failed\n",
			   __func__, __LINE__);
		return -EINVAL;
	}

	debug_cond(DLEVEL == 2, "%s:%d found range [%u,%u]\n",
		   __func__, __LINE__, work_bgn, work_end);

	/*
	 * We need to calculate the number of dtaps that equal a ptap.
	 * To do that we'll back up a ptap and re-find the edge of the
	 * window using dtaps
	 */
	debug_cond(DLEVEL == 2, "%s:%d calculate dtaps_per_ptap for tracking\n",
		   __func__, __LINE__);

	/* Special case code for backing up a phase */
	if (p == 0) {
		p = iocfg->dqs_en_phase_max;
		rw_mgr_decr_vfifo(grp);
		debug_cond(DLEVEL == 2, "%s:%d backedup cycle/phase: p=%u\n",
			   __func__, __LINE__, p);
	} else {
		p = p - 1;
		debug_cond(DLEVEL == 2, "%s:%d backedup phase only: p=%u",
			   __func__, __LINE__, p);
	}

	scc_mgr_set_dqs_en_phase_all_ranks(grp, p);

	/*
	 * Increase dtap until we first see a passing read (in case the
	 * window is smaller than a ptap), and then a failing read to
	 * mark the edge of the window again.
	 */

	/* Find a passing read. */
	debug_cond(DLEVEL == 2, "%s:%d find passing read\n",
		   __func__, __LINE__);

	initial_failing_dtap = d;

	found_passing_read = !sdr_find_phase_delay(1, 1, grp, NULL, 0, &d);
	if (found_passing_read) {
		/* Find a failing read. */
		debug_cond(DLEVEL == 2, "%s:%d find failing read\n",
			   __func__, __LINE__);
		d++;
		found_failing_read = !sdr_find_phase_delay(0, 1, grp, NULL, 0,
							   &d);
	} else {
		debug_cond(DLEVEL == 1,
			   "%s:%d failed to calculate dtaps per ptap. Fall back on static value\n",
			   __func__, __LINE__);
	}

	/*
	 * The dynamically calculated dtaps_per_ptap is only valid if we
	 * found a passing/failing read. If we didn't, it means d hit the max
	 * (iocfg->dqs_en_delay_max). Otherwise, dtaps_per_ptap retains its
	 * statically calculated value.
	 */
	if (found_passing_read && found_failing_read)
		dtaps_per_ptap = d - initial_failing_dtap;

	writel(dtaps_per_ptap, &sdr_reg_file->dtaps_per_ptap);
	debug_cond(DLEVEL == 2, "%s:%d dtaps_per_ptap=%u - %u = %u",
		   __func__, __LINE__, d, initial_failing_dtap, dtaps_per_ptap);

	/* Step 6: Find the centre of the window. */
	ret = sdr_find_window_center(grp, work_bgn, work_end);

	return ret;
}

/**
 * search_stop_check() - Check if the detected edge is valid
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @d:			DQS delay
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @bit_chk:		Resulting bit mask after the test
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @use_read_test:	Perform read test
 *
 * Test if the found edge is valid.
 */
static u32 search_stop_check(const int write, const int d, const int rank_bgn,
			     const u32 write_group, const u32 read_group,
			     u32 *bit_chk, u32 *sticky_bit_chk,
			     const u32 use_read_test)
{
	const u32 ratio = rwcfg->mem_if_read_dqs_width /
			  rwcfg->mem_if_write_dqs_width;
	const u32 correct_mask = write ? param->write_correct_mask :
					 param->read_correct_mask;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	u32 ret;
	/*
	 * Stop searching when the read test doesn't pass AND when
	 * we've seen a passing read on every bit.
	 */
	if (write) {			/* WRITE-ONLY */
		ret = !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group,
							 0, PASS_ONE_BIT,
							 bit_chk, 0);
	} else if (use_read_test) {	/* READ-ONLY */
		ret = !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group,
							NUM_READ_PB_TESTS,
							PASS_ONE_BIT, bit_chk,
							0, 0);
	} else {			/* READ-ONLY */
		rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0,
						PASS_ONE_BIT, bit_chk, 0);
		*bit_chk = *bit_chk >> (per_dqs *
			(read_group - (write_group * ratio)));
		ret = (*bit_chk == 0);
	}
	*sticky_bit_chk = *sticky_bit_chk | *bit_chk;
	ret = ret && (*sticky_bit_chk == correct_mask);
	debug_cond(DLEVEL == 2,
		   "%s:%d center(left): dtap=%u => %u == %u && %u",
		   __func__, __LINE__, d,
		   *sticky_bit_chk, correct_mask, ret);
	return ret;
}

/**
 * search_left_edge() - Find left edge of DQ/DQS working phase
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @test_bgn:		Rank number to begin the test
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @use_read_test:	Perform read test
 *
 * Find left edge of DQ/DQS working phase.
 */
static void search_left_edge(const int write, const int rank_bgn,
	const u32 write_group, const u32 read_group, const u32 test_bgn,
	u32 *sticky_bit_chk,
	int *left_edge, int *right_edge, const u32 use_read_test)
{
	const u32 delay_max = write ? iocfg->io_out1_delay_max :
				      iocfg->io_in_delay_max;
	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
				    iocfg->dqs_in_delay_max;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	u32 stop, bit_chk;
	int i, d;

	for (d = 0; d <= dqs_max; d++) {
		if (write)
			scc_mgr_apply_group_dq_out1_delay(d);
		else
			scc_mgr_apply_group_dq_in_delay(test_bgn, d);

		writel(0, &sdr_scc_mgr->update);

		stop = search_stop_check(write, d, rank_bgn, write_group,
					 read_group, &bit_chk, sticky_bit_chk,
					 use_read_test);
		if (stop == 1)
			break;

		/* stop != 1 */
		for (i = 0; i < per_dqs; i++) {
			if (bit_chk & 1) {
				/*
				 * Remember a passing test as
				 * the left_edge.
				 */
				left_edge[i] = d;
			} else {
				/*
				 * If a left edge has not been seen
				 * yet, then a future passing test
				 * will mark this edge as the right
				 * edge.
				 */
				if (left_edge[i] == delay_max + 1)
					right_edge[i] = -(d + 1);
			}
			bit_chk >>= 1;
		}
	}

	/* Reset DQ delay chains to 0 */
	if (write)
		scc_mgr_apply_group_dq_out1_delay(0);
	else
		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);

	*sticky_bit_chk = 0;
	for (i = per_dqs - 1; i >= 0; i--) {
		debug_cond(DLEVEL == 2,
			   "%s:%d vfifo_center: left_edge[%u]: %d right_edge[%u]: %d\n",
			   __func__, __LINE__, i, left_edge[i],
			   i, right_edge[i]);

		/*
		 * Check for cases where we haven't found the left edge,
		 * which makes our assignment of the the right edge invalid.
		 * Reset it to the illegal value.
		 */
		if ((left_edge[i] == delay_max + 1) &&
		    (right_edge[i] != delay_max + 1)) {
			right_edge[i] = delay_max + 1;
			debug_cond(DLEVEL == 2,
				   "%s:%d vfifo_center: reset right_edge[%u]: %d\n",
				   __func__, __LINE__, i, right_edge[i]);
		}

		/*
		 * Reset sticky bit
		 * READ: except for bits where we have seen both
		 *       the left and right edge.
		 * WRITE: except for bits where we have seen the
		 *        left edge.
		 */
		*sticky_bit_chk <<= 1;
		if (write) {
			if (left_edge[i] != delay_max + 1)
				*sticky_bit_chk |= 1;
		} else {
			if ((left_edge[i] != delay_max + 1) &&
			    (right_edge[i] != delay_max + 1))
				*sticky_bit_chk |= 1;
		}
	}
}

/**
 * search_right_edge() - Find right edge of DQ/DQS working phase
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @read_group:		Read Group
 * @start_dqs:		DQS start phase
 * @start_dqs_en:	DQS enable start phase
 * @sticky_bit_chk:	Resulting sticky bit mask after the test
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @use_read_test:	Perform read test
 *
 * Find right edge of DQ/DQS working phase.
 */
static int search_right_edge(const int write, const int rank_bgn,
	const u32 write_group, const u32 read_group,
	const int start_dqs, const int start_dqs_en,
	u32 *sticky_bit_chk,
	int *left_edge, int *right_edge, const u32 use_read_test)
{
	const u32 delay_max = write ? iocfg->io_out1_delay_max :
				      iocfg->io_in_delay_max;
	const u32 dqs_max = write ? iocfg->io_out1_delay_max :
				    iocfg->dqs_in_delay_max;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	u32 stop, bit_chk;
	int i, d;

	for (d = 0; d <= dqs_max - start_dqs; d++) {
		if (write) {	/* WRITE-ONLY */
			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
								d + start_dqs);
		} else {	/* READ-ONLY */
			scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
			if (iocfg->shift_dqs_en_when_shift_dqs) {
				u32 delay = d + start_dqs_en;
				if (delay > iocfg->dqs_en_delay_max)
					delay = iocfg->dqs_en_delay_max;
				scc_mgr_set_dqs_en_delay(read_group, delay);
			}
			scc_mgr_load_dqs(read_group);
		}

		writel(0, &sdr_scc_mgr->update);

		stop = search_stop_check(write, d, rank_bgn, write_group,
					 read_group, &bit_chk, sticky_bit_chk,
					 use_read_test);
		if (stop == 1) {
			if (write && (d == 0)) {	/* WRITE-ONLY */
				for (i = 0; i < rwcfg->mem_dq_per_write_dqs;
				     i++) {
					/*
					 * d = 0 failed, but it passed when
					 * testing the left edge, so it must be
					 * marginal, set it to -1
					 */
					if (right_edge[i] == delay_max + 1 &&
					    left_edge[i] != delay_max + 1)
						right_edge[i] = -1;
				}
			}
			break;
		}

		/* stop != 1 */
		for (i = 0; i < per_dqs; i++) {
			if (bit_chk & 1) {
				/*
				 * Remember a passing test as
				 * the right_edge.
				 */
				right_edge[i] = d;
			} else {
				if (d != 0) {
					/*
					 * If a right edge has not
					 * been seen yet, then a future
					 * passing test will mark this
					 * edge as the left edge.
					 */
					if (right_edge[i] == delay_max + 1)
						left_edge[i] = -(d + 1);
				} else {
					/*
					 * d = 0 failed, but it passed
					 * when testing the left edge,
					 * so it must be marginal, set
					 * it to -1
					 */
					if (right_edge[i] == delay_max + 1 &&
					    left_edge[i] != delay_max + 1)
						right_edge[i] = -1;
					/*
					 * If a right edge has not been
					 * seen yet, then a future
					 * passing test will mark this
					 * edge as the left edge.
					 */
					else if (right_edge[i] == delay_max + 1)
						left_edge[i] = -(d + 1);
				}
			}

			debug_cond(DLEVEL == 2, "%s:%d center[r,d=%u]: ",
				   __func__, __LINE__, d);
			debug_cond(DLEVEL == 2,
				   "bit_chk_test=%i left_edge[%u]: %d ",
				   bit_chk & 1, i, left_edge[i]);
			debug_cond(DLEVEL == 2, "right_edge[%u]: %d\n", i,
				   right_edge[i]);
			bit_chk >>= 1;
		}
	}

	/* Check that all bits have a window */
	for (i = 0; i < per_dqs; i++) {
		debug_cond(DLEVEL == 2,
			   "%s:%d write_center: left_edge[%u]: %d right_edge[%u]: %d",
			   __func__, __LINE__, i, left_edge[i],
			   i, right_edge[i]);
		if ((left_edge[i] == dqs_max + 1) ||
		    (right_edge[i] == dqs_max + 1))
			return i + 1;	/* FIXME: If we fail, retval > 0 */
	}

	return 0;
}

/**
 * get_window_mid_index() - Find the best middle setting of DQ/DQS phase
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @mid_min:		Best DQ/DQS phase middle setting
 *
 * Find index and value of the middle of the DQ/DQS working phase.
 */
static int get_window_mid_index(const int write, int *left_edge,
				int *right_edge, int *mid_min)
{
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	int i, mid, min_index;

	/* Find middle of window for each DQ bit */
	*mid_min = left_edge[0] - right_edge[0];
	min_index = 0;
	for (i = 1; i < per_dqs; i++) {
		mid = left_edge[i] - right_edge[i];
		if (mid < *mid_min) {
			*mid_min = mid;
			min_index = i;
		}
	}

	/*
	 * -mid_min/2 represents the amount that we need to move DQS.
	 * If mid_min is odd and positive we'll need to add one to make
	 * sure the rounding in further calculations is correct (always
	 * bias to the right), so just add 1 for all positive values.
	 */
	if (*mid_min > 0)
		(*mid_min)++;
	*mid_min = *mid_min / 2;

	debug_cond(DLEVEL == 1, "%s:%d vfifo_center: *mid_min=%d (index=%u)\n",
		   __func__, __LINE__, *mid_min, min_index);
	return min_index;
}

/**
 * center_dq_windows() - Center the DQ/DQS windows
 * @write:		Perform read (Stage 2) or write (Stage 3) calibration
 * @left_edge:		Left edge of the DQ/DQS phase
 * @right_edge:		Right edge of the DQ/DQS phase
 * @mid_min:		Adjusted DQ/DQS phase middle setting
 * @orig_mid_min:	Original DQ/DQS phase middle setting
 * @min_index:		DQ/DQS phase middle setting index
 * @test_bgn:		Rank number to begin the test
 * @dq_margin:		Amount of shift for the DQ
 * @dqs_margin:		Amount of shift for the DQS
 *
 * Align the DQ/DQS windows in each group.
 */
static void center_dq_windows(const int write, int *left_edge, int *right_edge,
			      const int mid_min, const int orig_mid_min,
			      const int min_index, const int test_bgn,
			      int *dq_margin, int *dqs_margin)
{
	const u32 delay_max = write ? iocfg->io_out1_delay_max :
				      iocfg->io_in_delay_max;
	const u32 per_dqs = write ? rwcfg->mem_dq_per_write_dqs :
				    rwcfg->mem_dq_per_read_dqs;
	const u32 delay_off = write ? SCC_MGR_IO_OUT1_DELAY_OFFSET :
				      SCC_MGR_IO_IN_DELAY_OFFSET;
	const u32 addr = SDR_PHYGRP_SCCGRP_ADDRESS | delay_off;

	u32 temp_dq_io_delay1, temp_dq_io_delay2;
	int shift_dq, i, p;

	/* Initialize data for export structures */
	*dqs_margin = delay_max + 1;
	*dq_margin  = delay_max + 1;

	/* add delay to bring centre of all DQ windows to the same "level" */
	for (i = 0, p = test_bgn; i < per_dqs; i++, p++) {
		/* Use values before divide by 2 to reduce round off error */
		shift_dq = (left_edge[i] - right_edge[i] -
			(left_edge[min_index] - right_edge[min_index]))/2  +
			(orig_mid_min - mid_min);

		debug_cond(DLEVEL == 2,
			   "vfifo_center: before: shift_dq[%u]=%d\n",
			   i, shift_dq);

		temp_dq_io_delay1 = readl(addr + (p << 2));
		temp_dq_io_delay2 = readl(addr + (i << 2));

		if (shift_dq + temp_dq_io_delay1 > delay_max)
			shift_dq = delay_max - temp_dq_io_delay2;
		else if (shift_dq + temp_dq_io_delay1 < 0)
			shift_dq = -temp_dq_io_delay1;

		debug_cond(DLEVEL == 2,
			   "vfifo_center: after: shift_dq[%u]=%d\n",
			   i, shift_dq);

		if (write)
			scc_mgr_set_dq_out1_delay(i,
						  temp_dq_io_delay1 + shift_dq);
		else
			scc_mgr_set_dq_in_delay(p,
						temp_dq_io_delay1 + shift_dq);

		scc_mgr_load_dq(p);

		debug_cond(DLEVEL == 2,
			   "vfifo_center: margin[%u]=[%d,%d]\n", i,
			   left_edge[i] - shift_dq + (-mid_min),
			   right_edge[i] + shift_dq - (-mid_min));

		/* To determine values for export structures */
		if (left_edge[i] - shift_dq + (-mid_min) < *dq_margin)
			*dq_margin = left_edge[i] - shift_dq + (-mid_min);

		if (right_edge[i] + shift_dq - (-mid_min) < *dqs_margin)
			*dqs_margin = right_edge[i] + shift_dq - (-mid_min);
	}
}

/**
 * rw_mgr_mem_calibrate_vfifo_center() - Per-bit deskew DQ and centering
 * @rank_bgn:		Rank number
 * @rw_group:		Read/Write Group
 * @test_bgn:		Rank at which the test begins
 * @use_read_test:	Perform a read test
 * @update_fom:		Update FOM
 *
 * Per-bit deskew DQ and centering.
 */
static int rw_mgr_mem_calibrate_vfifo_center(const u32 rank_bgn,
			const u32 rw_group, const u32 test_bgn,
			const int use_read_test, const int update_fom)
{
	const u32 addr =
		SDR_PHYGRP_SCCGRP_ADDRESS + SCC_MGR_DQS_IN_DELAY_OFFSET +
		(rw_group << 2);
	/*
	 * Store these as signed since there are comparisons with
	 * signed numbers.
	 */
	u32 sticky_bit_chk;
	int32_t left_edge[rwcfg->mem_dq_per_read_dqs];
	int32_t right_edge[rwcfg->mem_dq_per_read_dqs];
	int32_t orig_mid_min, mid_min;
	int32_t new_dqs, start_dqs, start_dqs_en = 0, final_dqs_en;
	int32_t dq_margin, dqs_margin;
	int i, min_index;
	int ret;

	debug("%s:%d: %u %u", __func__, __LINE__, rw_group, test_bgn);

	start_dqs = readl(addr);
	if (iocfg->shift_dqs_en_when_shift_dqs)
		start_dqs_en = readl(addr - iocfg->dqs_en_delay_offset);

	/* set the left and right edge of each bit to an illegal value */
	/* use (iocfg->io_in_delay_max + 1) as an illegal value */
	sticky_bit_chk = 0;
	for (i = 0; i < rwcfg->mem_dq_per_read_dqs; i++) {
		left_edge[i]  = iocfg->io_in_delay_max + 1;
		right_edge[i] = iocfg->io_in_delay_max + 1;
	}

	/* Search for the left edge of the window for each bit */
	search_left_edge(0, rank_bgn, rw_group, rw_group, test_bgn,
			 &sticky_bit_chk,
			 left_edge, right_edge, use_read_test);


	/* Search for the right edge of the window for each bit */
	ret = search_right_edge(0, rank_bgn, rw_group, rw_group,
				start_dqs, start_dqs_en,
				&sticky_bit_chk,
				left_edge, right_edge, use_read_test);
	if (ret) {
		/*
		 * Restore delay chain settings before letting the loop
		 * in rw_mgr_mem_calibrate_vfifo to retry different
		 * dqs/ck relationships.
		 */
		scc_mgr_set_dqs_bus_in_delay(rw_group, start_dqs);
		if (iocfg->shift_dqs_en_when_shift_dqs)
			scc_mgr_set_dqs_en_delay(rw_group, start_dqs_en);

		scc_mgr_load_dqs(rw_group);
		writel(0, &sdr_scc_mgr->update);

		debug_cond(DLEVEL == 1,
			   "%s:%d vfifo_center: failed to find edge [%u]: %d %d",
			   __func__, __LINE__, i, left_edge[i], right_edge[i]);
		if (use_read_test) {
			set_failing_group_stage(rw_group *
				rwcfg->mem_dq_per_read_dqs + i,
				CAL_STAGE_VFIFO,
				CAL_SUBSTAGE_VFIFO_CENTER);
		} else {
			set_failing_group_stage(rw_group *
				rwcfg->mem_dq_per_read_dqs + i,
				CAL_STAGE_VFIFO_AFTER_WRITES,
				CAL_SUBSTAGE_VFIFO_CENTER);
		}
		return -EIO;
	}

	min_index = get_window_mid_index(0, left_edge, right_edge, &mid_min);

	/* Determine the amount we can change DQS (which is -mid_min) */
	orig_mid_min = mid_min;
	new_dqs = start_dqs - mid_min;
	if (new_dqs > iocfg->dqs_in_delay_max)
		new_dqs = iocfg->dqs_in_delay_max;
	else if (new_dqs < 0)
		new_dqs = 0;

	mid_min = start_dqs - new_dqs;
	debug_cond(DLEVEL == 1, "vfifo_center: new mid_min=%d new_dqs=%d\n",
		   mid_min, new_dqs);

	if (iocfg->shift_dqs_en_when_shift_dqs) {
		if (start_dqs_en - mid_min > iocfg->dqs_en_delay_max)
			mid_min += start_dqs_en - mid_min -
				   iocfg->dqs_en_delay_max;
		else if (start_dqs_en - mid_min < 0)
			mid_min += start_dqs_en - mid_min;
	}
	new_dqs = start_dqs - mid_min;

	debug_cond(DLEVEL == 1,
		   "vfifo_center: start_dqs=%d start_dqs_en=%d new_dqs=%d mid_min=%d\n",
		   start_dqs,
		   iocfg->shift_dqs_en_when_shift_dqs ? start_dqs_en : -1,
		   new_dqs, mid_min);

	/* Add delay to bring centre of all DQ windows to the same "level". */
	center_dq_windows(0, left_edge, right_edge, mid_min, orig_mid_min,
			  min_index, test_bgn, &dq_margin, &dqs_margin);

	/* Move DQS-en */
	if (iocfg->shift_dqs_en_when_shift_dqs) {
		final_dqs_en = start_dqs_en - mid_min;
		scc_mgr_set_dqs_en_delay(rw_group, final_dqs_en);
		scc_mgr_load_dqs(rw_group);
	}

	/* Move DQS */
	scc_mgr_set_dqs_bus_in_delay(rw_group, new_dqs);
	scc_mgr_load_dqs(rw_group);
	debug_cond(DLEVEL == 2,
		   "%s:%d vfifo_center: dq_margin=%d dqs_margin=%d",
		   __func__, __LINE__, dq_margin, dqs_margin);

	/*
	 * Do not remove this line as it makes sure all of our decisions
	 * have been applied. Apply the update bit.
	 */
	writel(0, &sdr_scc_mgr->update);

	if ((dq_margin < 0) || (dqs_margin < 0))
		return -EINVAL;

	return 0;
}

/**
 * rw_mgr_mem_calibrate_guaranteed_write() - Perform guaranteed write into the device
 * @rw_group:	Read/Write Group
 * @phase:	DQ/DQS phase
 *
 * Because initially no communication ca be reliably performed with the memory
 * device, the sequencer uses a guaranteed write mechanism to write data into
 * the memory device.
 */
static int rw_mgr_mem_calibrate_guaranteed_write(const u32 rw_group,
						 const u32 phase)
{
	int ret;

	/* Set a particular DQ/DQS phase. */
	scc_mgr_set_dqdqs_output_phase_all_ranks(rw_group, phase);

	debug_cond(DLEVEL == 1, "%s:%d guaranteed write: g=%u p=%u\n",
		   __func__, __LINE__, rw_group, phase);

	/*
	 * Altera EMI_RM 2015.05.04 :: Figure 1-25
	 * Load up the patterns used by read calibration using the
	 * current DQDQS phase.
	 */
	rw_mgr_mem_calibrate_read_load_patterns(0, 1);

	if (gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)
		return 0;

	/*
	 * Altera EMI_RM 2015.05.04 :: Figure 1-26
	 * Back-to-Back reads of the patterns used for calibration.
	 */
	ret = rw_mgr_mem_calibrate_read_test_patterns(0, rw_group, 1);
	if (ret)
		debug_cond(DLEVEL == 1,
			   "%s:%d Guaranteed read test failed: g=%u p=%u\n",
			   __func__, __LINE__, rw_group, phase);
	return ret;
}

/**
 * rw_mgr_mem_calibrate_dqs_enable_calibration() - DQS Enable Calibration
 * @rw_group:	Read/Write Group
 * @test_bgn:	Rank at which the test begins
 *
 * DQS enable calibration ensures reliable capture of the DQ signal without
 * glitches on the DQS line.
 */
static int rw_mgr_mem_calibrate_dqs_enable_calibration(const u32 rw_group,
						       const u32 test_bgn)
{
	/*
	 * Altera EMI_RM 2015.05.04 :: Figure 1-27
	 * DQS and DQS Eanble Signal Relationships.
	 */

	/* We start at zero, so have one less dq to devide among */
	const u32 delay_step = iocfg->io_in_delay_max /
			       (rwcfg->mem_dq_per_read_dqs - 1);
	int ret;
	u32 i, p, d, r;

	debug("%s:%d (%u,%u)\n", __func__, __LINE__, rw_group, test_bgn);

	/* Try different dq_in_delays since the DQ path is shorter than DQS. */
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		for (i = 0, p = test_bgn, d = 0;
		     i < rwcfg->mem_dq_per_read_dqs;
		     i++, p++, d += delay_step) {
			debug_cond(DLEVEL == 1,
				   "%s:%d: g=%u r=%u i=%u p=%u d=%u\n",
				   __func__, __LINE__, rw_group, r, i, p, d);

			scc_mgr_set_dq_in_delay(p, d);
			scc_mgr_load_dq(p);
		}

		writel(0, &sdr_scc_mgr->update);
	}

	/*
	 * Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
	 * dq_in_delay values
	 */
	ret = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(rw_group);

	debug_cond(DLEVEL == 1,
		   "%s:%d: g=%u found=%u; Reseting delay chain to zero\n",
		   __func__, __LINE__, rw_group, !ret);

	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		scc_mgr_apply_group_dq_in_delay(test_bgn, 0);
		writel(0, &sdr_scc_mgr->update);
	}

	return ret;
}

/**
 * rw_mgr_mem_calibrate_dq_dqs_centering() - Centering DQ/DQS
 * @rw_group:		Read/Write Group
 * @test_bgn:		Rank at which the test begins
 * @use_read_test:	Perform a read test
 * @update_fom:		Update FOM
 *
 * The centerin DQ/DQS stage attempts to align DQ and DQS signals on reads
 * within a group.
 */
static int
rw_mgr_mem_calibrate_dq_dqs_centering(const u32 rw_group, const u32 test_bgn,
				      const int use_read_test,
				      const int update_fom)

{
	int ret, grp_calibrated;
	u32 rank_bgn, sr;

	/*
	 * Altera EMI_RM 2015.05.04 :: Figure 1-28
	 * Read per-bit deskew can be done on a per shadow register basis.
	 */
	grp_calibrated = 1;
	for (rank_bgn = 0, sr = 0;
	     rank_bgn < rwcfg->mem_number_of_ranks;
	     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
		ret = rw_mgr_mem_calibrate_vfifo_center(rank_bgn, rw_group,
							test_bgn,
							use_read_test,
							update_fom);
		if (!ret)
			continue;

		grp_calibrated = 0;
	}

	if (!grp_calibrated)
		return -EIO;

	return 0;
}

/**
 * rw_mgr_mem_calibrate_vfifo() - Calibrate the read valid prediction FIFO
 * @rw_group:		Read/Write Group
 * @test_bgn:		Rank at which the test begins
 *
 * Stage 1: Calibrate the read valid prediction FIFO.
 *
 * This function implements UniPHY calibration Stage 1, as explained in
 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 *
 * - read valid prediction will consist of finding:
 *   - DQS enable phase and DQS enable delay (DQS Enable Calibration)
 *   - DQS input phase  and DQS input delay (DQ/DQS Centering)
 *  - we also do a per-bit deskew on the DQ lines.
 */
static int rw_mgr_mem_calibrate_vfifo(const u32 rw_group, const u32 test_bgn)
{
	u32 p, d;
	u32 dtaps_per_ptap;
	u32 failed_substage;

	int ret;

	debug("%s:%d: %u %u\n", __func__, __LINE__, rw_group, test_bgn);

	/* Update info for sims */
	reg_file_set_group(rw_group);
	reg_file_set_stage(CAL_STAGE_VFIFO);
	reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);

	failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;

	/* USER Determine number of delay taps for each phase tap. */
	dtaps_per_ptap = DIV_ROUND_UP(iocfg->delay_per_opa_tap,
				      iocfg->delay_per_dqs_en_dchain_tap) - 1;

	for (d = 0; d <= dtaps_per_ptap; d += 2) {
		/*
		 * In RLDRAMX we may be messing the delay of pins in
		 * the same write rw_group but outside of the current read
		 * the rw_group, but that's ok because we haven't calibrated
		 * output side yet.
		 */
		if (d > 0) {
			scc_mgr_apply_group_all_out_delay_add_all_ranks(
								rw_group, d);
		}

		for (p = 0; p <= iocfg->dqdqs_out_phase_max; p++) {
			/* 1) Guaranteed Write */
			ret = rw_mgr_mem_calibrate_guaranteed_write(rw_group, p);
			if (ret)
				break;

			/* 2) DQS Enable Calibration */
			ret = rw_mgr_mem_calibrate_dqs_enable_calibration(rw_group,
									  test_bgn);
			if (ret) {
				failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
				continue;
			}

			/* 3) Centering DQ/DQS */
			/*
			 * If doing read after write calibration, do not update
			 * FOM now. Do it then.
			 */
			ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group,
								test_bgn, 1, 0);
			if (ret) {
				failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
				continue;
			}

			/* All done. */
			goto cal_done_ok;
		}
	}

	/* Calibration Stage 1 failed. */
	set_failing_group_stage(rw_group, CAL_STAGE_VFIFO, failed_substage);
	return 0;

	/* Calibration Stage 1 completed OK. */
cal_done_ok:
	/*
	 * Reset the delay chains back to zero if they have moved > 1
	 * (check for > 1 because loop will increase d even when pass in
	 * first case).
	 */
	if (d > 2)
		scc_mgr_zero_group(rw_group, 1);

	return 1;
}

/**
 * rw_mgr_mem_calibrate_vfifo_end() - DQ/DQS Centering.
 * @rw_group:		Read/Write Group
 * @test_bgn:		Rank at which the test begins
 *
 * Stage 3: DQ/DQS Centering.
 *
 * This function implements UniPHY calibration Stage 3, as explained in
 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 */
static int rw_mgr_mem_calibrate_vfifo_end(const u32 rw_group,
					  const u32 test_bgn)
{
	int ret;

	debug("%s:%d %u %u", __func__, __LINE__, rw_group, test_bgn);

	/* Update info for sims. */
	reg_file_set_group(rw_group);
	reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
	reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);

	ret = rw_mgr_mem_calibrate_dq_dqs_centering(rw_group, test_bgn, 0, 1);
	if (ret)
		set_failing_group_stage(rw_group,
					CAL_STAGE_VFIFO_AFTER_WRITES,
					CAL_SUBSTAGE_VFIFO_CENTER);
	return ret;
}

/**
 * rw_mgr_mem_calibrate_lfifo() - Minimize latency
 *
 * Stage 4: Minimize latency.
 *
 * This function implements UniPHY calibration Stage 4, as explained in
 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 * Calibrate LFIFO to find smallest read latency.
 */
static u32 rw_mgr_mem_calibrate_lfifo(void)
{
	int found_one = 0;

	debug("%s:%d\n", __func__, __LINE__);

	/* Update info for sims. */
	reg_file_set_stage(CAL_STAGE_LFIFO);
	reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);

	/* Load up the patterns used by read calibration for all ranks */
	rw_mgr_mem_calibrate_read_load_patterns(0, 1);

	do {
		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
		debug_cond(DLEVEL == 2, "%s:%d lfifo: read_lat=%u",
			   __func__, __LINE__, gbl->curr_read_lat);

		if (!rw_mgr_mem_calibrate_read_test_all_ranks(0, NUM_READ_TESTS,
							      PASS_ALL_BITS, 1))
			break;

		found_one = 1;
		/*
		 * Reduce read latency and see if things are
		 * working correctly.
		 */
		gbl->curr_read_lat--;
	} while (gbl->curr_read_lat > 0);

	/* Reset the fifos to get pointers to known state. */
	writel(0, &phy_mgr_cmd->fifo_reset);

	if (found_one) {
		/* Add a fudge factor to the read latency that was determined */
		gbl->curr_read_lat += 2;
		writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
		debug_cond(DLEVEL == 2,
			   "%s:%d lfifo: success: using read_lat=%u\n",
			   __func__, __LINE__, gbl->curr_read_lat);
	} else {
		set_failing_group_stage(0xff, CAL_STAGE_LFIFO,
					CAL_SUBSTAGE_READ_LATENCY);

		debug_cond(DLEVEL == 2,
			   "%s:%d lfifo: failed at initial read_lat=%u\n",
			   __func__, __LINE__, gbl->curr_read_lat);
	}

	return found_one;
}

/**
 * search_window() - Search for the/part of the window with DM/DQS shift
 * @search_dm:		If 1, search for the DM shift, if 0, search for DQS shift
 * @rank_bgn:		Rank number
 * @write_group:	Write Group
 * @bgn_curr:		Current window begin
 * @end_curr:		Current window end
 * @bgn_best:		Current best window begin
 * @end_best:		Current best window end
 * @win_best:		Size of the best window
 * @new_dqs:		New DQS value (only applicable if search_dm = 0).
 *
 * Search for the/part of the window with DM/DQS shift.
 */
static void search_window(const int search_dm,
			  const u32 rank_bgn, const u32 write_group,
			  int *bgn_curr, int *end_curr, int *bgn_best,
			  int *end_best, int *win_best, int new_dqs)
{
	u32 bit_chk;
	const int max = iocfg->io_out1_delay_max - new_dqs;
	int d, di;

	/* Search for the/part of the window with DM/DQS shift. */
	for (di = max; di >= 0; di -= DELTA_D) {
		if (search_dm) {
			d = di;
			scc_mgr_apply_group_dm_out1_delay(d);
		} else {
			/* For DQS, we go from 0...max */
			d = max - di;
			/*
			 * Note: This only shifts DQS, so are we limiting
			 *       ourselves to width of DQ unnecessarily.
			 */
			scc_mgr_apply_group_dqs_io_and_oct_out1(write_group,
								d + new_dqs);
		}

		writel(0, &sdr_scc_mgr->update);

		if (rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
						    PASS_ALL_BITS, &bit_chk,
						    0)) {
			/* Set current end of the window. */
			*end_curr = search_dm ? -d : d;

			/*
			 * If a starting edge of our window has not been seen
			 * this is our current start of the DM window.
			 */
			if (*bgn_curr == iocfg->io_out1_delay_max + 1)
				*bgn_curr = search_dm ? -d : d;

			/*
			 * If current window is bigger than best seen.
			 * Set best seen to be current window.
			 */
			if ((*end_curr - *bgn_curr + 1) > *win_best) {
				*win_best = *end_curr - *bgn_curr + 1;
				*bgn_best = *bgn_curr;
				*end_best = *end_curr;
			}
		} else {
			/* We just saw a failing test. Reset temp edge. */
			*bgn_curr = iocfg->io_out1_delay_max + 1;
			*end_curr = iocfg->io_out1_delay_max + 1;

			/* Early exit is only applicable to DQS. */
			if (search_dm)
				continue;

			/*
			 * Early exit optimization: if the remaining delay
			 * chain space is less than already seen largest
			 * window we can exit.
			 */
			if (*win_best - 1 > iocfg->io_out1_delay_max - new_dqs - d)
				break;
		}
	}
}

/*
 * rw_mgr_mem_calibrate_writes_center() - Center all windows
 * @rank_bgn:		Rank number
 * @write_group:	Write group
 * @test_bgn:		Rank at which the test begins
 *
 * Center all windows. Do per-bit-deskew to possibly increase size of
 * certain windows.
 */
static int
rw_mgr_mem_calibrate_writes_center(const u32 rank_bgn, const u32 write_group,
				   const u32 test_bgn)
{
	int i;
	u32 sticky_bit_chk;
	u32 min_index;
	int left_edge[rwcfg->mem_dq_per_write_dqs];
	int right_edge[rwcfg->mem_dq_per_write_dqs];
	int mid;
	int mid_min, orig_mid_min;
	int new_dqs, start_dqs;
	int dq_margin, dqs_margin, dm_margin;
	int bgn_curr = iocfg->io_out1_delay_max + 1;
	int end_curr = iocfg->io_out1_delay_max + 1;
	int bgn_best = iocfg->io_out1_delay_max + 1;
	int end_best = iocfg->io_out1_delay_max + 1;
	int win_best = 0;

	int ret;

	debug("%s:%d %u %u", __func__, __LINE__, write_group, test_bgn);

	dm_margin = 0;

	start_dqs = readl((SDR_PHYGRP_SCCGRP_ADDRESS |
			  SCC_MGR_IO_OUT1_DELAY_OFFSET) +
			  (rwcfg->mem_dq_per_write_dqs << 2));

	/* Per-bit deskew. */

	/*
	 * Set the left and right edge of each bit to an illegal value.
	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
	 */
	sticky_bit_chk = 0;
	for (i = 0; i < rwcfg->mem_dq_per_write_dqs; i++) {
		left_edge[i]  = iocfg->io_out1_delay_max + 1;
		right_edge[i] = iocfg->io_out1_delay_max + 1;
	}

	/* Search for the left edge of the window for each bit. */
	search_left_edge(1, rank_bgn, write_group, 0, test_bgn,
			 &sticky_bit_chk,
			 left_edge, right_edge, 0);

	/* Search for the right edge of the window for each bit. */
	ret = search_right_edge(1, rank_bgn, write_group, 0,
				start_dqs, 0,
				&sticky_bit_chk,
				left_edge, right_edge, 0);
	if (ret) {
		set_failing_group_stage(test_bgn + ret - 1, CAL_STAGE_WRITES,
					CAL_SUBSTAGE_WRITES_CENTER);
		return -EINVAL;
	}

	min_index = get_window_mid_index(1, left_edge, right_edge, &mid_min);

	/* Determine the amount we can change DQS (which is -mid_min). */
	orig_mid_min = mid_min;
	new_dqs = start_dqs;
	mid_min = 0;
	debug_cond(DLEVEL == 1,
		   "%s:%d write_center: start_dqs=%d new_dqs=%d mid_min=%d\n",
		   __func__, __LINE__, start_dqs, new_dqs, mid_min);

	/* Add delay to bring centre of all DQ windows to the same "level". */
	center_dq_windows(1, left_edge, right_edge, mid_min, orig_mid_min,
			  min_index, 0, &dq_margin, &dqs_margin);

	/* Move DQS */
	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
	writel(0, &sdr_scc_mgr->update);

	/* Centre DM */
	debug_cond(DLEVEL == 2, "%s:%d write_center: DM\n", __func__, __LINE__);

	/*
	 * Set the left and right edge of each bit to an illegal value.
	 * Use (iocfg->io_out1_delay_max + 1) as an illegal value.
	 */
	left_edge[0]  = iocfg->io_out1_delay_max + 1;
	right_edge[0] = iocfg->io_out1_delay_max + 1;

	/* Search for the/part of the window with DM shift. */
	search_window(1, rank_bgn, write_group, &bgn_curr, &end_curr,
		      &bgn_best, &end_best, &win_best, 0);

	/* Reset DM delay chains to 0. */
	scc_mgr_apply_group_dm_out1_delay(0);

	/*
	 * Check to see if the current window nudges up aganist 0 delay.
	 * If so we need to continue the search by shifting DQS otherwise DQS
	 * search begins as a new search.
	 */
	if (end_curr != 0) {
		bgn_curr = iocfg->io_out1_delay_max + 1;
		end_curr = iocfg->io_out1_delay_max + 1;
	}

	/* Search for the/part of the window with DQS shifts. */
	search_window(0, rank_bgn, write_group, &bgn_curr, &end_curr,
		      &bgn_best, &end_best, &win_best, new_dqs);

	/* Assign left and right edge for cal and reporting. */
	left_edge[0] = -1 * bgn_best;
	right_edge[0] = end_best;

	debug_cond(DLEVEL == 2, "%s:%d dm_calib: left=%d right=%d\n",
		   __func__, __LINE__, left_edge[0], right_edge[0]);

	/* Move DQS (back to orig). */
	scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);

	/* Move DM */

	/* Find middle of window for the DM bit. */
	mid = (left_edge[0] - right_edge[0]) / 2;

	/* Only move right, since we are not moving DQS/DQ. */
	if (mid < 0)
		mid = 0;

	/* dm_marign should fail if we never find a window. */
	if (win_best == 0)
		dm_margin = -1;
	else
		dm_margin = left_edge[0] - mid;

	scc_mgr_apply_group_dm_out1_delay(mid);
	writel(0, &sdr_scc_mgr->update);

	debug_cond(DLEVEL == 2,
		   "%s:%d dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
		   __func__, __LINE__, left_edge[0], right_edge[0],
		   mid, dm_margin);
	/* Export values. */
	gbl->fom_out += dq_margin + dqs_margin;

	debug_cond(DLEVEL == 2,
		   "%s:%d write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
		   __func__, __LINE__, dq_margin, dqs_margin, dm_margin);

	/*
	 * Do not remove this line as it makes sure all of our
	 * decisions have been applied.
	 */
	writel(0, &sdr_scc_mgr->update);

	if ((dq_margin < 0) || (dqs_margin < 0) || (dm_margin < 0))
		return -EINVAL;

	return 0;
}

/**
 * rw_mgr_mem_calibrate_writes() - Write Calibration Part One
 * @rank_bgn:		Rank number
 * @group:		Read/Write Group
 * @test_bgn:		Rank at which the test begins
 *
 * Stage 2: Write Calibration Part One.
 *
 * This function implements UniPHY calibration Stage 2, as explained in
 * detail in Altera EMI_RM 2015.05.04 , "UniPHY Calibration Stages".
 */
static int rw_mgr_mem_calibrate_writes(const u32 rank_bgn, const u32 group,
				       const u32 test_bgn)
{
	int ret;

	/* Update info for sims */
	debug("%s:%d %u %u\n", __func__, __LINE__, group, test_bgn);

	reg_file_set_group(group);
	reg_file_set_stage(CAL_STAGE_WRITES);
	reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);

	ret = rw_mgr_mem_calibrate_writes_center(rank_bgn, group, test_bgn);
	if (ret)
		set_failing_group_stage(group, CAL_STAGE_WRITES,
					CAL_SUBSTAGE_WRITES_CENTER);

	return ret;
}

/**
 * mem_precharge_and_activate() - Precharge all banks and activate
 *
 * Precharge all banks and activate row 0 in bank "000..." and bank "111...".
 */
static void mem_precharge_and_activate(void)
{
	int r;

	for (r = 0; r < rwcfg->mem_number_of_ranks; r++) {
		/* Set rank. */
		set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);

		/* Precharge all banks. */
		writel(rwcfg->precharge_all, SDR_PHYGRP_RWMGRGRP_ADDRESS |
					     RW_MGR_RUN_SINGLE_GROUP_OFFSET);

		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr0);
		writel(rwcfg->activate_0_and_1_wait1,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add0);

		writel(0x0F, &sdr_rw_load_mgr_regs->load_cntr1);
		writel(rwcfg->activate_0_and_1_wait2,
		       &sdr_rw_load_jump_mgr_regs->load_jump_add1);

		/* Activate rows. */
		writel(rwcfg->activate_0_and_1, SDR_PHYGRP_RWMGRGRP_ADDRESS |
						RW_MGR_RUN_SINGLE_GROUP_OFFSET);
	}
}

/**
 * mem_init_latency() - Configure memory RLAT and WLAT settings
 *
 * Configure memory RLAT and WLAT parameters.
 */
static void mem_init_latency(void)
{
	/*
	 * For AV/CV, LFIFO is hardened and always runs at full rate
	 * so max latency in AFI clocks, used here, is correspondingly
	 * smaller.
	 */
	const u32 max_latency = (1 << misccfg->max_latency_count_width) - 1;
	u32 rlat, wlat;

	debug("%s:%d\n", __func__, __LINE__);

	/*
	 * Read in write latency.
	 * WL for Hard PHY does not include additive latency.
	 */
	wlat = readl(&data_mgr->t_wl_add);
	wlat += readl(&data_mgr->mem_t_add);

	gbl->rw_wl_nop_cycles = wlat - 1;

	/* Read in readl latency. */
	rlat = readl(&data_mgr->t_rl_add);

	/* Set a pretty high read latency initially. */
	gbl->curr_read_lat = rlat + 16;
	if (gbl->curr_read_lat > max_latency)
		gbl->curr_read_lat = max_latency;

	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);

	/* Advertise write latency. */
	writel(wlat, &phy_mgr_cfg->afi_wlat);
}

/**
 * @mem_skip_calibrate() - Set VFIFO and LFIFO to instant-on settings
 *
 * Set VFIFO and LFIFO to instant-on settings in skip calibration mode.
 */
static void mem_skip_calibrate(void)
{
	u32 vfifo_offset;
	u32 i, j, r;

	debug("%s:%d\n", __func__, __LINE__);
	/* Need to update every shadow register set used by the interface */
	for (r = 0; r < rwcfg->mem_number_of_ranks;
	     r += NUM_RANKS_PER_SHADOW_REG) {
		/*
		 * Set output phase alignment settings appropriate for
		 * skip calibration.
		 */
		for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
			scc_mgr_set_dqs_en_phase(i, 0);
			if (iocfg->dll_chain_length == 6)
				scc_mgr_set_dqdqs_output_phase(i, 6);
			else
				scc_mgr_set_dqdqs_output_phase(i, 7);
			/*
			 * Case:33398
			 *
			 * Write data arrives to the I/O two cycles before write
			 * latency is reached (720 deg).
			 *   -> due to bit-slip in a/c bus
			 *   -> to allow board skew where dqs is longer than ck
			 *      -> how often can this happen!?
			 *      -> can claim back some ptaps for high freq
			 *       support if we can relax this, but i digress...
			 *
			 * The write_clk leads mem_ck by 90 deg
			 * The minimum ptap of the OPA is 180 deg
			 * Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
			 * The write_clk is always delayed by 2 ptaps
			 *
			 * Hence, to make DQS aligned to CK, we need to delay
			 * DQS by:
			 *    (720 - 90 - 180 - 2) *
			 *      (360 / iocfg->dll_chain_length)
			 *
			 * Dividing the above by (360 / iocfg->dll_chain_length)
			 * gives us the number of ptaps, which simplies to:
			 *
			 *    (1.25 * iocfg->dll_chain_length - 2)
			 */
			scc_mgr_set_dqdqs_output_phase(i,
				       ((125 * iocfg->dll_chain_length) / 100) - 2);
		}
		writel(0xff, &sdr_scc_mgr->dqs_ena);
		writel(0xff, &sdr_scc_mgr->dqs_io_ena);

		for (i = 0; i < rwcfg->mem_if_write_dqs_width; i++) {
			writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
				  SCC_MGR_GROUP_COUNTER_OFFSET);
		}
		writel(0xff, &sdr_scc_mgr->dq_ena);
		writel(0xff, &sdr_scc_mgr->dm_ena);
		writel(0, &sdr_scc_mgr->update);
	}

	/* Compensate for simulation model behaviour */
	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
		scc_mgr_set_dqs_bus_in_delay(i, 10);
		scc_mgr_load_dqs(i);
	}
	writel(0, &sdr_scc_mgr->update);

	/*
	 * ArriaV has hard FIFOs that can only be initialized by incrementing
	 * in sequencer.
	 */
	vfifo_offset = misccfg->calib_vfifo_offset;
	for (j = 0; j < vfifo_offset; j++)
		writel(0xff, &phy_mgr_cmd->inc_vfifo_hard_phy);
	writel(0, &phy_mgr_cmd->fifo_reset);

	/*
	 * For Arria V and Cyclone V with hard LFIFO, we get the skip-cal
	 * setting from generation-time constant.
	 */
	gbl->curr_read_lat = misccfg->calib_lfifo_offset;
	writel(gbl->curr_read_lat, &phy_mgr_cfg->phy_rlat);
}

/**
 * mem_calibrate() - Memory calibration entry point.
 *
 * Perform memory calibration.
 */
static u32 mem_calibrate(void)
{
	u32 i;
	u32 rank_bgn, sr;
	u32 write_group, write_test_bgn;
	u32 read_group, read_test_bgn;
	u32 run_groups, current_run;
	u32 failing_groups = 0;
	u32 group_failed = 0;

	const u32 rwdqs_ratio = rwcfg->mem_if_read_dqs_width /
				rwcfg->mem_if_write_dqs_width;

	debug("%s:%d\n", __func__, __LINE__);

	/* Initialize the data settings */
	gbl->error_substage = CAL_SUBSTAGE_NIL;
	gbl->error_stage = CAL_STAGE_NIL;
	gbl->error_group = 0xff;
	gbl->fom_in = 0;
	gbl->fom_out = 0;

	/* Initialize WLAT and RLAT. */
	mem_init_latency();

	/* Initialize bit slips. */
	mem_precharge_and_activate();

	for (i = 0; i < rwcfg->mem_if_read_dqs_width; i++) {
		writel(i, SDR_PHYGRP_SCCGRP_ADDRESS |
			  SCC_MGR_GROUP_COUNTER_OFFSET);
		/* Only needed once to set all groups, pins, DQ, DQS, DM. */
		if (i == 0)
			scc_mgr_set_hhp_extras();

		scc_set_bypass_mode(i);
	}

	/* Calibration is skipped. */
	if ((dyn_calib_steps & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
		/*
		 * Set VFIFO and LFIFO to instant-on settings in skip
		 * calibration mode.
		 */
		mem_skip_calibrate();

		/*
		 * Do not remove this line as it makes sure all of our
		 * decisions have been applied.
		 */
		writel(0, &sdr_scc_mgr->update);
		return 1;
	}

	/* Calibration is not skipped. */
	for (i = 0; i < NUM_CALIB_REPEAT; i++) {
		/*
		 * Zero all delay chain/phase settings for all
		 * groups and all shadow register sets.
		 */
		scc_mgr_zero_all();

		run_groups = ~0;

		for (write_group = 0, write_test_bgn = 0; write_group
			< rwcfg->mem_if_write_dqs_width; write_group++,
			write_test_bgn += rwcfg->mem_dq_per_write_dqs) {
			/* Initialize the group failure */
			group_failed = 0;

			current_run = run_groups & ((1 <<
				RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
			run_groups = run_groups >>
				RW_MGR_NUM_DQS_PER_WRITE_GROUP;

			if (current_run == 0)
				continue;

			writel(write_group, SDR_PHYGRP_SCCGRP_ADDRESS |
					    SCC_MGR_GROUP_COUNTER_OFFSET);
			scc_mgr_zero_group(write_group, 0);

			for (read_group = write_group * rwdqs_ratio,
			     read_test_bgn = 0;
			     read_group < (write_group + 1) * rwdqs_ratio;
			     read_group++,
			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
				if (STATIC_CALIB_STEPS & CALIB_SKIP_VFIFO)
					continue;

				/* Calibrate the VFIFO */
				if (rw_mgr_mem_calibrate_vfifo(read_group,
							       read_test_bgn))
					continue;

				if (!(gbl->phy_debug_mode_flags &
				      PHY_DEBUG_SWEEP_ALL_GROUPS))
					return 0;

				/* The group failed, we're done. */
				goto grp_failed;
			}

			/* Calibrate the output side */
			for (rank_bgn = 0, sr = 0;
			     rank_bgn < rwcfg->mem_number_of_ranks;
			     rank_bgn += NUM_RANKS_PER_SHADOW_REG, sr++) {
				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
					continue;

				/* Not needed in quick mode! */
				if (STATIC_CALIB_STEPS &
				    CALIB_SKIP_DELAY_SWEEPS)
					continue;

				/* Calibrate WRITEs */
				if (!rw_mgr_mem_calibrate_writes(rank_bgn,
								 write_group,
								 write_test_bgn))
					continue;

				group_failed = 1;
				if (!(gbl->phy_debug_mode_flags &
				      PHY_DEBUG_SWEEP_ALL_GROUPS))
					return 0;
			}

			/* Some group failed, we're done. */
			if (group_failed)
				goto grp_failed;

			for (read_group = write_group * rwdqs_ratio,
			     read_test_bgn = 0;
			     read_group < (write_group + 1) * rwdqs_ratio;
			     read_group++,
			     read_test_bgn += rwcfg->mem_dq_per_read_dqs) {
				if (STATIC_CALIB_STEPS & CALIB_SKIP_WRITES)
					continue;

				if (!rw_mgr_mem_calibrate_vfifo_end(read_group,
								    read_test_bgn))
					continue;

				if (!(gbl->phy_debug_mode_flags &
				      PHY_DEBUG_SWEEP_ALL_GROUPS))
					return 0;

				/* The group failed, we're done. */
				goto grp_failed;
			}

			/* No group failed, continue as usual. */
			continue;

grp_failed:		/* A group failed, increment the counter. */
			failing_groups++;
		}

		/*
		 * USER If there are any failing groups then report
		 * the failure.
		 */
		if (failing_groups != 0)
			return 0;

		if (STATIC_CALIB_STEPS & CALIB_SKIP_LFIFO)
			continue;

		/* Calibrate the LFIFO */
		if (!rw_mgr_mem_calibrate_lfifo())
			return 0;
	}

	/*
	 * Do not remove this line as it makes sure all of our decisions
	 * have been applied.
	 */
	writel(0, &sdr_scc_mgr->update);
	return 1;
}

/**
 * run_mem_calibrate() - Perform memory calibration
 *
 * This function triggers the entire memory calibration procedure.
 */
static int run_mem_calibrate(void)
{
	int pass;
	u32 ctrl_cfg;

	debug("%s:%d\n", __func__, __LINE__);

	/* Reset pass/fail status shown on afi_cal_success/fail */
	writel(PHY_MGR_CAL_RESET, &phy_mgr_cfg->cal_status);

	/* Stop tracking manager. */
	ctrl_cfg = readl(&sdr_ctrl->ctrl_cfg);
	writel(ctrl_cfg & ~SDR_CTRLGRP_CTRLCFG_DQSTRKEN_MASK,
	       &sdr_ctrl->ctrl_cfg);

	phy_mgr_initialize();
	rw_mgr_mem_initialize();

	/* Perform the actual memory calibration. */
	pass = mem_calibrate();

	mem_precharge_and_activate();
	writel(0, &phy_mgr_cmd->fifo_reset);

	/* Handoff. */
	rw_mgr_mem_handoff();
	/*
	 * In Hard PHY this is a 2-bit control:
	 * 0: AFI Mux Select
	 * 1: DDIO Mux Select
	 */
	writel(0x2, &phy_mgr_cfg->mux_sel);

	/* Start tracking manager. */
	writel(ctrl_cfg, &sdr_ctrl->ctrl_cfg);

	return pass;
}

/**
 * debug_mem_calibrate() - Report result of memory calibration
 * @pass:	Value indicating whether calibration passed or failed
 *
 * This function reports the results of the memory calibration
 * and writes debug information into the register file.
 */
static void debug_mem_calibrate(int pass)
{
	u32 debug_info;

	if (pass) {
		printf("%s: CALIBRATION PASSED\n", __FILE__);

		gbl->fom_in /= 2;
		gbl->fom_out /= 2;

		if (gbl->fom_in > 0xff)
			gbl->fom_in = 0xff;

		if (gbl->fom_out > 0xff)
			gbl->fom_out = 0xff;

		/* Update the FOM in the register file */
		debug_info = gbl->fom_in;
		debug_info |= gbl->fom_out << 8;
		writel(debug_info, &sdr_reg_file->fom);

		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
		writel(PHY_MGR_CAL_SUCCESS, &phy_mgr_cfg->cal_status);
	} else {
		printf("%s: CALIBRATION FAILED\n", __FILE__);

		debug_info = gbl->error_stage;
		debug_info |= gbl->error_substage << 8;
		debug_info |= gbl->error_group << 16;

		writel(debug_info, &sdr_reg_file->failing_stage);
		writel(debug_info, &phy_mgr_cfg->cal_debug_info);
		writel(PHY_MGR_CAL_FAIL, &phy_mgr_cfg->cal_status);

		/* Update the failing group/stage in the register file */
		debug_info = gbl->error_stage;
		debug_info |= gbl->error_substage << 8;
		debug_info |= gbl->error_group << 16;
		writel(debug_info, &sdr_reg_file->failing_stage);
	}

	printf("%s: Calibration complete\n", __FILE__);
}

/**
 * hc_initialize_rom_data() - Initialize ROM data
 *
 * Initialize ROM data.
 */
static void hc_initialize_rom_data(void)
{
	unsigned int nelem = 0;
	const u32 *rom_init;
	u32 i, addr;

	socfpga_get_seq_inst_init(&rom_init, &nelem);
	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_INST_ROM_WRITE_OFFSET;
	for (i = 0; i < nelem; i++)
		writel(rom_init[i], addr + (i << 2));

	socfpga_get_seq_ac_init(&rom_init, &nelem);
	addr = SDR_PHYGRP_RWMGRGRP_ADDRESS | RW_MGR_AC_ROM_WRITE_OFFSET;
	for (i = 0; i < nelem; i++)
		writel(rom_init[i], addr + (i << 2));
}

/**
 * initialize_reg_file() - Initialize SDR register file
 *
 * Initialize SDR register file.
 */
static void initialize_reg_file(void)
{
	/* Initialize the register file with the correct data */
	writel(misccfg->reg_file_init_seq_signature, &sdr_reg_file->signature);
	writel(0, &sdr_reg_file->debug_data_addr);
	writel(0, &sdr_reg_file->cur_stage);
	writel(0, &sdr_reg_file->fom);
	writel(0, &sdr_reg_file->failing_stage);
	writel(0, &sdr_reg_file->debug1);
	writel(0, &sdr_reg_file->debug2);
}

/**
 * initialize_hps_phy() - Initialize HPS PHY
 *
 * Initialize HPS PHY.
 */
static void initialize_hps_phy(void)
{
	u32 reg;
	/*
	 * Tracking also gets configured here because it's in the
	 * same register.
	 */
	u32 trk_sample_count = 7500;
	u32 trk_long_idle_sample_count = (10 << 16) | 100;
	/*
	 * Format is number of outer loops in the 16 MSB, sample
	 * count in 16 LSB.
	 */

	reg = 0;
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
	/*
	 * This field selects the intrinsic latency to RDATA_EN/FULL path.
	 * 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
	 */
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
		trk_sample_count);
	writel(reg, &sdr_ctrl->phy_ctrl0);

	reg = 0;
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
		trk_sample_count >>
		SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
		trk_long_idle_sample_count);
	writel(reg, &sdr_ctrl->phy_ctrl1);

	reg = 0;
	reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
		trk_long_idle_sample_count >>
		SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
	writel(reg, &sdr_ctrl->phy_ctrl2);
}

/**
 * initialize_tracking() - Initialize tracking
 *
 * Initialize the register file with usable initial data.
 */
static void initialize_tracking(void)
{
	/*
	 * Initialize the register file with the correct data.
	 * Compute usable version of value in case we skip full
	 * computation later.
	 */
	writel(DIV_ROUND_UP(iocfg->delay_per_opa_tap,
			    iocfg->delay_per_dchain_tap) - 1,
	       &sdr_reg_file->dtaps_per_ptap);

	/* trk_sample_count */
	writel(7500, &sdr_reg_file->trk_sample_count);

	/* longidle outer loop [15:0] */
	writel((10 << 16) | (100 << 0), &sdr_reg_file->trk_longidle);

	/*
	 * longidle sample count [31:24]
	 * trfc, worst case of 933Mhz 4Gb [23:16]
	 * trcd, worst case [15:8]
	 * vfifo wait [7:0]
	 */
	writel((243 << 24) | (14 << 16) | (10 << 8) | (4 << 0),
	       &sdr_reg_file->delays);

	/* mux delay */
	writel((rwcfg->idle << 24) | (rwcfg->activate_1 << 16) |
	       (rwcfg->sgle_read << 8) | (rwcfg->precharge_all << 0),
	       &sdr_reg_file->trk_rw_mgr_addr);

	writel(rwcfg->mem_if_read_dqs_width,
	       &sdr_reg_file->trk_read_dqs_width);

	/* trefi [7:0] */
	writel((rwcfg->refresh_all << 24) | (1000 << 0),
	       &sdr_reg_file->trk_rfsh);
}

int sdram_calibration_full(void)
{
	struct param_type my_param;
	struct gbl_type my_gbl;
	u32 pass;

	memset(&my_param, 0, sizeof(my_param));
	memset(&my_gbl, 0, sizeof(my_gbl));

	param = &my_param;
	gbl = &my_gbl;

	rwcfg = socfpga_get_sdram_rwmgr_config();
	iocfg = socfpga_get_sdram_io_config();
	misccfg = socfpga_get_sdram_misc_config();

	/* Set the calibration enabled by default */
	gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
	/*
	 * Only sweep all groups (regardless of fail state) by default
	 * Set enabled read test by default.
	 */
#if DISABLE_GUARANTEED_READ
	gbl->phy_debug_mode_flags |= PHY_DEBUG_DISABLE_GUARANTEED_READ;
#endif
	/* Initialize the register file */
	initialize_reg_file();

	/* Initialize any PHY CSR */
	initialize_hps_phy();

	scc_mgr_initialize();

	initialize_tracking();

	printf("%s: Preparing to start memory calibration\n", __FILE__);

	debug("%s:%d\n", __func__, __LINE__);
	debug_cond(DLEVEL == 1,
		   "DDR3 FULL_RATE ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u ",
		   rwcfg->mem_number_of_ranks, rwcfg->mem_number_of_cs_per_dimm,
		   rwcfg->mem_dq_per_read_dqs, rwcfg->mem_dq_per_write_dqs,
		   rwcfg->mem_virtual_groups_per_read_dqs,
		   rwcfg->mem_virtual_groups_per_write_dqs);
	debug_cond(DLEVEL == 1,
		   "dqs=%u,%u dq=%u dm=%u ptap_delay=%u dtap_delay=%u ",
		   rwcfg->mem_if_read_dqs_width, rwcfg->mem_if_write_dqs_width,
		   rwcfg->mem_data_width, rwcfg->mem_data_mask_width,
		   iocfg->delay_per_opa_tap, iocfg->delay_per_dchain_tap);
	debug_cond(DLEVEL == 1, "dtap_dqsen_delay=%u, dll=%u",
		   iocfg->delay_per_dqs_en_dchain_tap, iocfg->dll_chain_length);
	debug_cond(DLEVEL == 1,
		   "max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u ",
		   iocfg->dqs_en_phase_max, iocfg->dqdqs_out_phase_max,
		   iocfg->dqs_en_delay_max, iocfg->dqs_in_delay_max);
	debug_cond(DLEVEL == 1, "io_in_d=%u io_out1_d=%u io_out2_d=%u ",
		   iocfg->io_in_delay_max, iocfg->io_out1_delay_max,
		   iocfg->io_out2_delay_max);
	debug_cond(DLEVEL == 1, "dqs_in_reserve=%u dqs_out_reserve=%u\n",
		   iocfg->dqs_in_reserve, iocfg->dqs_out_reserve);

	hc_initialize_rom_data();

	/* update info for sims */
	reg_file_set_stage(CAL_STAGE_NIL);
	reg_file_set_group(0);

	/*
	 * Load global needed for those actions that require
	 * some dynamic calibration support.
	 */
	dyn_calib_steps = STATIC_CALIB_STEPS;
	/*
	 * Load global to allow dynamic selection of delay loop settings
	 * based on calibration mode.
	 */
	if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS))
		skip_delay_mask = 0xff;
	else
		skip_delay_mask = 0x0;

	pass = run_mem_calibrate();
	debug_mem_calibrate(pass);
	return pass;
}