nxp_tmu.c 10 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/*
 * Copyright 2017-2019 NXP
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <config.h>
#include <common.h>
#include <fuse.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/sys_proto.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <thermal.h>
#include <dm/device-internal.h>
#include <dm/device.h>

DECLARE_GLOBAL_DATA_PTR;

#define SITES_MAX	16
#define FLAGS_VER2 	0x1

#define TMR_DISABLE	0x0
#define TMR_ME		0x80000000
#define TMR_ALPF	0x0c000000
#define TMTMIR_DEFAULT	0x00000002
#define TIER_DISABLE	0x0

#define TER_EN			0x80000000
#define TER_ALPF		0x3

/*
 * NXP TMU Registers
 */
struct nxp_tmu_site_regs {
	u32 tritsr;		/* Immediate Temperature Site Register */
	u32 tratsr;		/* Average Temperature Site Register */
	u8 res0[0x8];
};

struct nxp_tmu_regs {
	u32 tmr;		/* Mode Register */
	u32 tsr;		/* Status Register */
	u32 tmtmir;		/* Temperature measurement interval Register */
	u8 res0[0x14];
	u32 tier;		/* Interrupt Enable Register */
	u32 tidr;		/* Interrupt Detect Register */
	u32 tiscr;		/* Interrupt Site Capture Register */
	u32 ticscr;		/* Interrupt Critical Site Capture Register */
	u8 res1[0x10];
	u32 tmhtcrh;		/* High Temperature Capture Register */
	u32 tmhtcrl;		/* Low Temperature Capture Register */
	u8 res2[0x8];
	u32 tmhtitr;		/* High Temperature Immediate Threshold */
	u32 tmhtatr;		/* High Temperature Average Threshold */
	u32 tmhtactr;	/* High Temperature Average Crit Threshold */
	u8 res3[0x24];
	u32 ttcfgr;		/* Temperature Configuration Register */
	u32 tscfgr;		/* Sensor Configuration Register */
	u8 res4[0x78];
	struct nxp_tmu_site_regs site[SITES_MAX];
	u8 res5[0x9f8];
	u32 ipbrr0;		/* IP Block Revision Register 0 */
	u32 ipbrr1;		/* IP Block Revision Register 1 */
	u8 res6[0x310];
	u32 ttr0cr;		/* Temperature Range 0 Control Register */
	u32 ttr1cr;		/* Temperature Range 1 Control Register */
	u32 ttr2cr;		/* Temperature Range 2 Control Register */
	u32 ttr3cr;		/* Temperature Range 3 Control Register */
};

struct nxp_tmu_regs_v2 {
	u32 ter;		/* TMU enable Register */
	u32 tsr;		/* Status Register */
	u32 tier;		/* Interrupt enable register */
	u32 tidr;		/* Interrupt detect  register */
	u32 tmhtitr;		/* Monitor high temperature immediate threshold register */
	u32 tmhtatr;		/* Monitor high temperature average threshold register */
	u32 tmhtactr;	/* TMU monitor high temperature average critical  threshold register */
	u32 tscr;		/* Sensor value capture register */
	u32 tritsr;		/* Report immediate temperature site register 0 */
	u32 tratsr;		/* Report average temperature site register 0 */
	u32 tasr;			/* Amplifier setting register */
	u32 ttmc;		/* Test MUX control */
	u32 tcaliv;
};

union tmu_regs {
	struct nxp_tmu_regs regs_v1;
	struct nxp_tmu_regs_v2 regs_v2;
};

struct nxp_tmu_plat {
	int critical;
	int alert;
	int polling_delay;
	int id;
	bool zone_node;
	union tmu_regs *regs;
};

static int read_temperature(struct udevice *dev, int *temp)
{
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	ulong drv_data = dev_get_driver_data(dev);
	u32 val;
	u32 retry = 10;
	u32 valid = 0;

	do {
		mdelay(100);
		retry--;

		if (drv_data & FLAGS_VER2) {
			val = readl(&pdata->regs->regs_v2.tritsr);

			/* Check if TEMP is in valid range, the V bit in TRITSR
			 * only reflects the RAW uncalibrated data
			 */
			valid =  ((val & 0xff) < 10 || (val & 0xff) > 125) ? 0 : 1;
		} else {
			val = readl(&pdata->regs->regs_v1.site[pdata->id].tritsr);
			valid = val & 0x80000000;
		}
	} while (!valid && retry > 0);

	if (retry > 0) {
		*temp = (val & 0xff) * 1000;
		return 0;
	} else {
		return -EINVAL;
	}
}

int nxp_tmu_get_temp(struct udevice *dev, int *temp)
{
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	int cpu_tmp = 0;
	int ret;

	ret = read_temperature(dev, &cpu_tmp);
	if (ret) {
		printf("invalid data\n");
		return ret;
	}

	while (cpu_tmp >= pdata->alert) {
		printf("CPU Temperature (%dC) has beyond alert (%dC), close to critical (%dC)",
		       cpu_tmp, pdata->alert, pdata->critical);
		puts(" waiting...\n");
		mdelay(pdata->polling_delay);
		ret = read_temperature(dev, &cpu_tmp);
		if (ret) {
			printf("invalid data\n");
			return ret;
		}
	}

	*temp = cpu_tmp / 1000;

	return 0;
}

static const struct dm_thermal_ops nxp_tmu_ops = {
	.get_temp	= nxp_tmu_get_temp,
};

static int nxp_tmu_calibration(struct udevice *dev)
{
	int i, val, len, ret;
	u32 range[4];
	const fdt32_t *calibration;
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	ulong drv_data = dev_get_driver_data(dev);

	debug("%s\n", __func__);

	if (drv_data & FLAGS_VER2)
		return 0;

	ret = fdtdec_get_int_array(gd->fdt_blob, dev_of_offset(dev),
		"fsl,tmu-range", range, 4);
	if (ret) {
		printf("TMU: missing calibration range, ret = %d.\n", ret);
		return ret;
	}

	/* Init temperature range registers */
	writel(range[0], &pdata->regs->regs_v1.ttr0cr);
	writel(range[1], &pdata->regs->regs_v1.ttr1cr);
	writel(range[2], &pdata->regs->regs_v1.ttr2cr);
	writel(range[3], &pdata->regs->regs_v1.ttr3cr);

	calibration = fdt_getprop(gd->fdt_blob, dev_of_offset(dev),
		"fsl,tmu-calibration", &len);
	if (calibration == NULL || len % 8) {
		printf("TMU: invalid calibration data.\n");
		return -ENODEV;
	}

	for (i = 0; i < len; i += 8, calibration += 2) {
		val = fdt32_to_cpu(*calibration);
		writel(val, &pdata->regs->regs_v1.ttcfgr);
		val = fdt32_to_cpu(*(calibration + 1));
		writel(val, &pdata->regs->regs_v1.tscfgr);
	}

	return 0;
}

void __weak nxp_tmu_arch_init(void *reg_base)
{
	return;
}

static void nxp_tmu_init(struct udevice *dev)
{
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	ulong drv_data = dev_get_driver_data(dev);

	debug("%s\n", __func__);

	if (drv_data & FLAGS_VER2) {
		/* Disable monitoring */
		writel(0x0, &pdata->regs->regs_v2.ter);

		/* Disable interrupt, using polling instead */
		writel(0x0, &pdata->regs->regs_v2.tier);
	} else {
		/* Disable monitoring */
		writel(TMR_DISABLE, &pdata->regs->regs_v1.tmr);

		/* Disable interrupt, using polling instead */
		writel(TIER_DISABLE, &pdata->regs->regs_v1.tier);

		/* Set update_interval */
		writel(TMTMIR_DEFAULT, &pdata->regs->regs_v1.tmtmir);
	}

	nxp_tmu_arch_init((void *)pdata->regs);
}

static int nxp_tmu_enable_msite(struct udevice *dev)
{
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	ulong drv_data = dev_get_driver_data(dev);
	u32 reg;

	debug("%s\n", __func__);

	if (!pdata->regs)
		return -EIO;

	if (drv_data & FLAGS_VER2) {
		reg = readl(&pdata->regs->regs_v2.ter);
		reg &= ~TER_EN;
		writel(reg, &pdata->regs->regs_v2.ter);

		reg &= ~TER_ALPF;
		reg |= 0x1;
		writel(reg, &pdata->regs->regs_v2.ter);

		/* Enable monitor */
		reg |= TER_EN;
		writel(reg, &pdata->regs->regs_v2.ter);
	} else {
		/* Clear the ME before setting MSITE and ALPF*/
		reg = readl(&pdata->regs->regs_v1.tmr);
		reg &= ~TMR_ME;
		writel(reg, &pdata->regs->regs_v1.tmr);

		reg |= 1 << (15 - pdata->id);
		reg |= TMR_ALPF;
		writel(reg, &pdata->regs->regs_v1.tmr);

		/* Enable ME */
		reg |= TMR_ME;
		writel(reg, &pdata->regs->regs_v1.tmr);
	}

	return 0;
}

static int nxp_tmu_probe(struct udevice *dev)
{
	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);

	debug("%s dev name %s\n", __func__, dev->name);

	if (pdata->zone_node) {
		nxp_tmu_init(dev);
		nxp_tmu_calibration(dev);
	} else {
		nxp_tmu_enable_msite(dev);
	}

	return 0;
}

static int nxp_tmu_bind(struct udevice *dev)
{
	int ret;
	int offset;
	const char *name;
	const void *prop;

	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);

	debug("%s dev name %s\n", __func__, dev->name);

	prop = fdt_getprop(gd->fdt_blob, dev_of_offset(dev), "compatible", NULL);
	if (!prop)
		return 0;
	else
		pdata->zone_node = 1;

	offset = fdt_subnode_offset(gd->fdt_blob, 0, "thermal-zones");
	fdt_for_each_subnode(offset, gd->fdt_blob, offset) {
		/* Bind the subnode to this driver */
		name = fdt_get_name(gd->fdt_blob, offset, NULL);

		ret = device_bind_with_driver_data(dev, dev->driver, name,
						   dev->driver_data, offset_to_ofnode(offset), NULL);
		if (ret)
			printf("Error binding driver '%s': %d\n", dev->driver->name,
				ret);
	}
	return 0;
}

static int nxp_tmu_ofdata_to_platdata(struct udevice *dev)
{
	int ret;
	int trips_np;

	struct nxp_tmu_plat *pdata = dev_get_platdata(dev);
	struct fdtdec_phandle_args args;

	debug("%s dev name %s\n", __func__, dev->name);

	if (pdata->zone_node) {
		pdata->regs = (union tmu_regs *)fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev), "reg");

		if ((fdt_addr_t)pdata->regs == FDT_ADDR_T_NONE)
			return -EINVAL;
		return 0;
	} else {
		struct nxp_tmu_plat *p_parent_data = dev_get_platdata(dev->parent);
		if (p_parent_data->zone_node)
			pdata->regs = p_parent_data->regs;
	}

	ret = fdtdec_parse_phandle_with_args(gd->fdt_blob, dev_of_offset(dev), "thermal-sensors",
					 "#thermal-sensor-cells",
					 0, 0, &args);
	if (ret)
		return ret;

	if (args.node != dev_of_offset(dev->parent))
		return -EFAULT;

	if (args.args_count >= 1)
		pdata->id = args.args[0];
	else
		pdata->id = 0;

	debug("args.args_count %d, id %d\n", args.args_count, pdata->id);

	pdata->polling_delay = fdtdec_get_int(gd->fdt_blob, dev_of_offset(dev), "polling-delay", 1000);

	trips_np = fdt_subnode_offset(gd->fdt_blob, dev_of_offset(dev), "trips");
	fdt_for_each_subnode(trips_np, gd->fdt_blob, trips_np) {
		const char *type;
		type = fdt_getprop(gd->fdt_blob, trips_np, "type", NULL);
		if (type) {
			if (strcmp(type, "critical") == 0)
				pdata->critical = fdtdec_get_int(gd->fdt_blob, trips_np, "temperature", 85);
			else if (strcmp(type, "passive") == 0)
				pdata->alert = fdtdec_get_int(gd->fdt_blob, trips_np, "temperature", 80);
		}
	}

	debug("id %d polling_delay %d, critical %d, alert %d\n",
		pdata->id, pdata->polling_delay, pdata->critical, pdata->alert);

	return 0;
}

static const struct udevice_id nxp_tmu_ids[] = {
	{ .compatible = "fsl,imx8mq-tmu", },
	{ .compatible = "fsl,imx8mm-tmu", .data=FLAGS_VER2, },
	{ }
};

U_BOOT_DRIVER(nxp_tmu) = {
	.name	= "nxp_tmu",
	.id	= UCLASS_THERMAL,
	.ops	= &nxp_tmu_ops,
	.of_match = nxp_tmu_ids,
	.bind = nxp_tmu_bind,
	.probe	= nxp_tmu_probe,
	.ofdata_to_platdata = nxp_tmu_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct nxp_tmu_plat),
	.flags  = DM_FLAG_PRE_RELOC,
};