main.c 25.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
/*
 * Copyright 2008-2014 Freescale Semiconductor, Inc.
 *
 * SPDX-License-Identifier:	GPL-2.0
 */

/*
 * Generic driver for Freescale DDR/DDR2/DDR3 memory controller.
 * Based on code from spd_sdram.c
 * Author: James Yang [at freescale.com]
 */

#include <common.h>
#include <i2c.h>
#include <fsl_ddr_sdram.h>
#include <fsl_ddr.h>

DECLARE_GLOBAL_DATA_PTR;

/*
 * CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY is the physical address from the view
 * of DDR controllers. It is the same as CONFIG_SYS_DDR_SDRAM_BASE for
 * all Power SoCs. But it could be different for ARM SoCs. For example,
 * fsl_lsch3 has a mapping mechanism to map DDR memory to ranges (in order) of
 * 0x00_8000_0000 ~ 0x00_ffff_ffff
 * 0x80_8000_0000 ~ 0xff_ffff_ffff
 */
#ifndef CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY
#define CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY CONFIG_SYS_DDR_SDRAM_BASE
#endif

#ifdef CONFIG_PPC
#include <asm/fsl_law.h>

void fsl_ddr_set_lawbar(
		const common_timing_params_t *memctl_common_params,
		unsigned int memctl_interleaved,
		unsigned int ctrl_num);
#endif

void fsl_ddr_set_intl3r(const unsigned int granule_size);
#if defined(SPD_EEPROM_ADDRESS) || \
    defined(SPD_EEPROM_ADDRESS1) || defined(SPD_EEPROM_ADDRESS2) || \
    defined(SPD_EEPROM_ADDRESS3) || defined(SPD_EEPROM_ADDRESS4)
#if (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS,
};
#elif (CONFIG_SYS_NUM_DDR_CTLRS == 1) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
};
#elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
};
#elif (CONFIG_SYS_NUM_DDR_CTLRS == 2) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
};
#elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 1)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
	[1][0] = SPD_EEPROM_ADDRESS2,	/* controller 2 */
	[2][0] = SPD_EEPROM_ADDRESS3,	/* controller 3 */
};
#elif (CONFIG_SYS_NUM_DDR_CTLRS == 3) && (CONFIG_DIMM_SLOTS_PER_CTLR == 2)
u8 spd_i2c_addr[CONFIG_SYS_NUM_DDR_CTLRS][CONFIG_DIMM_SLOTS_PER_CTLR] = {
	[0][0] = SPD_EEPROM_ADDRESS1,	/* controller 1 */
	[0][1] = SPD_EEPROM_ADDRESS2,	/* controller 1 */
	[1][0] = SPD_EEPROM_ADDRESS3,	/* controller 2 */
	[1][1] = SPD_EEPROM_ADDRESS4,	/* controller 2 */
	[2][0] = SPD_EEPROM_ADDRESS5,	/* controller 3 */
	[2][1] = SPD_EEPROM_ADDRESS6,	/* controller 3 */
};

#endif

#define SPD_SPA0_ADDRESS	0x36
#define SPD_SPA1_ADDRESS	0x37

static void __get_spd(generic_spd_eeprom_t *spd, u8 i2c_address)
{
	int ret;
#ifdef CONFIG_SYS_FSL_DDR4
	uint8_t dummy = 0;
#endif

	i2c_set_bus_num(CONFIG_SYS_SPD_BUS_NUM);

#ifdef CONFIG_SYS_FSL_DDR4
	/*
	 * DDR4 SPD has 384 to 512 bytes
	 * To access the lower 256 bytes, we need to set EE page address to 0
	 * To access the upper 256 bytes, we need to set EE page address to 1
	 * See Jedec standar No. 21-C for detail
	 */
	i2c_write(SPD_SPA0_ADDRESS, 0, 1, &dummy, 1);
	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd, 256);
	if (!ret) {
		i2c_write(SPD_SPA1_ADDRESS, 0, 1, &dummy, 1);
		ret = i2c_read(i2c_address, 0, 1,
			       (uchar *)((ulong)spd + 256),
			       min(256,
				   (int)sizeof(generic_spd_eeprom_t) - 256));
	}
#else
	ret = i2c_read(i2c_address, 0, 1, (uchar *)spd,
				sizeof(generic_spd_eeprom_t));
#endif

	if (ret) {
		if (i2c_address ==
#ifdef SPD_EEPROM_ADDRESS
				SPD_EEPROM_ADDRESS
#elif defined(SPD_EEPROM_ADDRESS1)
				SPD_EEPROM_ADDRESS1
#endif
				) {
			printf("DDR: failed to read SPD from address %u\n",
				i2c_address);
		} else {
			debug("DDR: failed to read SPD from address %u\n",
				i2c_address);
		}
		memset(spd, 0, sizeof(generic_spd_eeprom_t));
	}
}

__attribute__((weak, alias("__get_spd")))
void get_spd(generic_spd_eeprom_t *spd, u8 i2c_address);

/* This function allows boards to update SPD address */
__weak void update_spd_address(unsigned int ctrl_num,
			       unsigned int slot,
			       unsigned int *addr)
{
}

void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
	unsigned int i;
	unsigned int i2c_address = 0;

	if (ctrl_num >= CONFIG_SYS_NUM_DDR_CTLRS) {
		printf("%s unexpected ctrl_num = %u\n", __FUNCTION__, ctrl_num);
		return;
	}

	for (i = 0; i < dimm_slots_per_ctrl; i++) {
		i2c_address = spd_i2c_addr[ctrl_num][i];
		update_spd_address(ctrl_num, i, &i2c_address);
		get_spd(&(ctrl_dimms_spd[i]), i2c_address);
	}
}
#else
void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,
		      unsigned int ctrl_num, unsigned int dimm_slots_per_ctrl)
{
}
#endif /* SPD_EEPROM_ADDRESSx */

/*
 * ASSUMPTIONS:
 *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller
 *    - Same memory data bus width on all controllers
 *
 * NOTES:
 *
 * The memory controller and associated documentation use confusing
 * terminology when referring to the orgranization of DRAM.
 *
 * Here is a terminology translation table:
 *
 * memory controller/documention  |industry   |this code  |signals
 * -------------------------------|-----------|-----------|-----------------
 * physical bank/bank		  |rank       |rank	  |chip select (CS)
 * logical bank/sub-bank	  |bank       |bank	  |bank address (BA)
 * page/row			  |row	      |page	  |row address
 * ???				  |column     |column	  |column address
 *
 * The naming confusion is further exacerbated by the descriptions of the
 * memory controller interleaving feature, where accesses are interleaved
 * _BETWEEN_ two seperate memory controllers.  This is configured only in
 * CS0_CONFIG[INTLV_CTL] of each memory controller.
 *
 * memory controller documentation | number of chip selects
 *				   | per memory controller supported
 * --------------------------------|-----------------------------------------
 * cache line interleaving	   | 1 (CS0 only)
 * page interleaving		   | 1 (CS0 only)
 * bank interleaving		   | 1 (CS0 only)
 * superbank interleraving	   | depends on bank (chip select)
 *				   |   interleraving [rank interleaving]
 *				   |   mode used on every memory controller
 *
 * Even further confusing is the existence of the interleaving feature
 * _WITHIN_ each memory controller.  The feature is referred to in
 * documentation as chip select interleaving or bank interleaving,
 * although it is configured in the DDR_SDRAM_CFG field.
 *
 * Name of field		| documentation name	| this code
 * -----------------------------|-----------------------|------------------
 * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving
 *				|  interleaving
 */

const char *step_string_tbl[] = {
	"STEP_GET_SPD",
	"STEP_COMPUTE_DIMM_PARMS",
	"STEP_COMPUTE_COMMON_PARMS",
	"STEP_GATHER_OPTS",
	"STEP_ASSIGN_ADDRESSES",
	"STEP_COMPUTE_REGS",
	"STEP_PROGRAM_REGS",
	"STEP_ALL"
};

const char * step_to_string(unsigned int step) {

	unsigned int s = __ilog2(step);

	if ((1 << s) != step)
		return step_string_tbl[7];

	if (s >= ARRAY_SIZE(step_string_tbl)) {
		printf("Error for the step in %s\n", __func__);
		s = 0;
	}

	return step_string_tbl[s];
}

static unsigned long long __step_assign_addresses(fsl_ddr_info_t *pinfo,
			  unsigned int dbw_cap_adj[])
{
	unsigned int i, j;
	unsigned long long total_mem, current_mem_base, total_ctlr_mem;
	unsigned long long rank_density, ctlr_density = 0;
	unsigned int first_ctrl = pinfo->first_ctrl;
	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;

	/*
	 * If a reduced data width is requested, but the SPD
	 * specifies a physically wider device, adjust the
	 * computed dimm capacities accordingly before
	 * assigning addresses.
	 */
	for (i = first_ctrl; i <= last_ctrl; i++) {
		unsigned int found = 0;

		switch (pinfo->memctl_opts[i].data_bus_width) {
		case 2:
			/* 16-bit */
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
				unsigned int dw;
				if (!pinfo->dimm_params[i][j].n_ranks)
					continue;
				dw = pinfo->dimm_params[i][j].primary_sdram_width;
				if ((dw == 72 || dw == 64)) {
					dbw_cap_adj[i] = 2;
					break;
				} else if ((dw == 40 || dw == 32)) {
					dbw_cap_adj[i] = 1;
					break;
				}
			}
			break;

		case 1:
			/* 32-bit */
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
				unsigned int dw;
				dw = pinfo->dimm_params[i][j].data_width;
				if (pinfo->dimm_params[i][j].n_ranks
				    && (dw == 72 || dw == 64)) {
					/*
					 * FIXME: can't really do it
					 * like this because this just
					 * further reduces the memory
					 */
					found = 1;
					break;
				}
			}
			if (found) {
				dbw_cap_adj[i] = 1;
			}
			break;

		case 0:
			/* 64-bit */
			break;

		default:
			printf("unexpected data bus width "
				"specified controller %u\n", i);
			return 1;
		}
		debug("dbw_cap_adj[%d]=%d\n", i, dbw_cap_adj[i]);
	}

	current_mem_base = pinfo->mem_base;
	total_mem = 0;
	if (pinfo->memctl_opts[first_ctrl].memctl_interleaving) {
		rank_density = pinfo->dimm_params[first_ctrl][0].rank_density >>
					dbw_cap_adj[first_ctrl];
		switch (pinfo->memctl_opts[first_ctrl].ba_intlv_ctl &
					FSL_DDR_CS0_CS1_CS2_CS3) {
		case FSL_DDR_CS0_CS1_CS2_CS3:
			ctlr_density = 4 * rank_density;
			break;
		case FSL_DDR_CS0_CS1:
		case FSL_DDR_CS0_CS1_AND_CS2_CS3:
			ctlr_density = 2 * rank_density;
			break;
		case FSL_DDR_CS2_CS3:
		default:
			ctlr_density = rank_density;
			break;
		}
		debug("rank density is 0x%llx, ctlr density is 0x%llx\n",
			rank_density, ctlr_density);
		for (i = first_ctrl; i <= last_ctrl; i++) {
			if (pinfo->memctl_opts[i].memctl_interleaving) {
				switch (pinfo->memctl_opts[i].memctl_interleaving_mode) {
				case FSL_DDR_256B_INTERLEAVING:
				case FSL_DDR_CACHE_LINE_INTERLEAVING:
				case FSL_DDR_PAGE_INTERLEAVING:
				case FSL_DDR_BANK_INTERLEAVING:
				case FSL_DDR_SUPERBANK_INTERLEAVING:
					total_ctlr_mem = 2 * ctlr_density;
					break;
				case FSL_DDR_3WAY_1KB_INTERLEAVING:
				case FSL_DDR_3WAY_4KB_INTERLEAVING:
				case FSL_DDR_3WAY_8KB_INTERLEAVING:
					total_ctlr_mem = 3 * ctlr_density;
					break;
				case FSL_DDR_4WAY_1KB_INTERLEAVING:
				case FSL_DDR_4WAY_4KB_INTERLEAVING:
				case FSL_DDR_4WAY_8KB_INTERLEAVING:
					total_ctlr_mem = 4 * ctlr_density;
					break;
				default:
					panic("Unknown interleaving mode");
				}
				pinfo->common_timing_params[i].base_address =
							current_mem_base;
				pinfo->common_timing_params[i].total_mem =
							total_ctlr_mem;
				total_mem = current_mem_base + total_ctlr_mem;
				debug("ctrl %d base 0x%llx\n", i, current_mem_base);
				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
			} else {
				/* when 3rd controller not interleaved */
				current_mem_base = total_mem;
				total_ctlr_mem = 0;
				pinfo->common_timing_params[i].base_address =
							current_mem_base;
				for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
					unsigned long long cap =
						pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
					pinfo->dimm_params[i][j].base_address =
						current_mem_base;
					debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
					current_mem_base += cap;
					total_ctlr_mem += cap;
				}
				debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
				pinfo->common_timing_params[i].total_mem =
							total_ctlr_mem;
				total_mem += total_ctlr_mem;
			}
		}
	} else {
		/*
		 * Simple linear assignment if memory
		 * controllers are not interleaved.
		 */
		for (i = first_ctrl; i <= last_ctrl; i++) {
			total_ctlr_mem = 0;
			pinfo->common_timing_params[i].base_address =
						current_mem_base;
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
				/* Compute DIMM base addresses. */
				unsigned long long cap =
					pinfo->dimm_params[i][j].capacity >> dbw_cap_adj[i];
				pinfo->dimm_params[i][j].base_address =
					current_mem_base;
				debug("ctrl %d dimm %d base 0x%llx\n", i, j, current_mem_base);
				current_mem_base += cap;
				total_ctlr_mem += cap;
			}
			debug("ctrl %d total 0x%llx\n", i, total_ctlr_mem);
			pinfo->common_timing_params[i].total_mem =
							total_ctlr_mem;
			total_mem += total_ctlr_mem;
		}
	}
	debug("Total mem by %s is 0x%llx\n", __func__, total_mem);

	return total_mem;
}

/* Use weak function to allow board file to override the address assignment */
__attribute__((weak, alias("__step_assign_addresses")))
unsigned long long step_assign_addresses(fsl_ddr_info_t *pinfo,
			  unsigned int dbw_cap_adj[]);

unsigned long long
fsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step,
				       unsigned int size_only)
{
	unsigned int i, j;
	unsigned long long total_mem = 0;
	int assert_reset = 0;
	unsigned int first_ctrl =  pinfo->first_ctrl;
	unsigned int last_ctrl = first_ctrl + pinfo->num_ctrls - 1;
	__maybe_unused int retval;
	__maybe_unused bool goodspd = false;
	__maybe_unused int dimm_slots_per_ctrl = pinfo->dimm_slots_per_ctrl;

	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;
	common_timing_params_t *timing_params = pinfo->common_timing_params;
	if (pinfo->board_need_mem_reset)
		assert_reset = pinfo->board_need_mem_reset();

	/* data bus width capacity adjust shift amount */
	unsigned int dbw_capacity_adjust[CONFIG_SYS_NUM_DDR_CTLRS];

	for (i = first_ctrl; i <= last_ctrl; i++)
		dbw_capacity_adjust[i] = 0;

	debug("starting at step %u (%s)\n",
	      start_step, step_to_string(start_step));

	switch (start_step) {
	case STEP_GET_SPD:
#if defined(CONFIG_DDR_SPD) || defined(CONFIG_SPD_EEPROM)
		/* STEP 1:  Gather all DIMM SPD data */
		for (i = first_ctrl; i <= last_ctrl; i++) {
			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i,
					dimm_slots_per_ctrl);
		}

	case STEP_COMPUTE_DIMM_PARMS:
		/* STEP 2:  Compute DIMM parameters from SPD data */

		for (i = first_ctrl; i <= last_ctrl; i++) {
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
				generic_spd_eeprom_t *spd =
					&(pinfo->spd_installed_dimms[i][j]);
				dimm_params_t *pdimm =
					&(pinfo->dimm_params[i][j]);
				retval = compute_dimm_parameters(
							i, spd, pdimm, j);
#ifdef CONFIG_SYS_DDR_RAW_TIMING
				if (!j && retval) {
					printf("SPD error on controller %d! "
					"Trying fallback to raw timing "
					"calculation\n", i);
					retval = fsl_ddr_get_dimm_params(pdimm,
									 i, j);
				}
#else
				if (retval == 2) {
					printf("Error: compute_dimm_parameters"
					" non-zero returned FATAL value "
					"for memctl=%u dimm=%u\n", i, j);
					return 0;
				}
#endif
				if (retval) {
					debug("Warning: compute_dimm_parameters"
					" non-zero return value for memctl=%u "
					"dimm=%u\n", i, j);
				} else {
					goodspd = true;
				}
			}
		}
		if (!goodspd) {
			/*
			 * No valid SPD found
			 * Throw an error if this is for main memory, i.e.
			 * first_ctrl == 0. Otherwise, siliently return 0
			 * as the memory size.
			 */
			if (first_ctrl == 0)
				printf("Error: No valid SPD detected.\n");

			return 0;
		}
#elif defined(CONFIG_SYS_DDR_RAW_TIMING)
	case STEP_COMPUTE_DIMM_PARMS:
		for (i = first_ctrl; i <= last_ctrl; i++) {
			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {
				dimm_params_t *pdimm =
					&(pinfo->dimm_params[i][j]);
				fsl_ddr_get_dimm_params(pdimm, i, j);
			}
		}
		debug("Filling dimm parameters from board specific file\n");
#endif
	case STEP_COMPUTE_COMMON_PARMS:
		/*
		 * STEP 3: Compute a common set of timing parameters
		 * suitable for all of the DIMMs on each memory controller
		 */
		for (i = first_ctrl; i <= last_ctrl; i++) {
			debug("Computing lowest common DIMM"
				" parameters for memctl=%u\n", i);
			compute_lowest_common_dimm_parameters
				(i,
				 pinfo->dimm_params[i],
				 &timing_params[i],
				 CONFIG_DIMM_SLOTS_PER_CTLR);
		}

	case STEP_GATHER_OPTS:
		/* STEP 4:  Gather configuration requirements from user */
		for (i = first_ctrl; i <= last_ctrl; i++) {
			debug("Reloading memory controller "
				"configuration options for memctl=%u\n", i);
			/*
			 * This "reloads" the memory controller options
			 * to defaults.  If the user "edits" an option,
			 * next_step points to the step after this,
			 * which is currently STEP_ASSIGN_ADDRESSES.
			 */
			populate_memctl_options(
					&timing_params[i],
					&pinfo->memctl_opts[i],
					pinfo->dimm_params[i], i);
			/*
			 * For RDIMMs, JEDEC spec requires clocks to be stable
			 * before reset signal is deasserted. For the boards
			 * using fixed parameters, this function should be
			 * be called from board init file.
			 */
			if (timing_params[i].all_dimms_registered)
				assert_reset = 1;
		}
		if (assert_reset && !size_only) {
			if (pinfo->board_mem_reset) {
				debug("Asserting mem reset\n");
				pinfo->board_mem_reset();
			} else {
				debug("Asserting mem reset missing\n");
			}
		}

	case STEP_ASSIGN_ADDRESSES:
		/* STEP 5:  Assign addresses to chip selects */
		check_interleaving_options(pinfo);
		total_mem = step_assign_addresses(pinfo, dbw_capacity_adjust);
		debug("Total mem %llu assigned\n", total_mem);

	case STEP_COMPUTE_REGS:
		/* STEP 6:  compute controller register values */
		debug("FSL Memory ctrl register computation\n");
		for (i = first_ctrl; i <= last_ctrl; i++) {
			if (timing_params[i].ndimms_present == 0) {
				memset(&ddr_reg[i], 0,
					sizeof(fsl_ddr_cfg_regs_t));
				continue;
			}

			compute_fsl_memctl_config_regs
				(i,
				 &pinfo->memctl_opts[i],
				 &ddr_reg[i], &timing_params[i],
				 pinfo->dimm_params[i],
				 dbw_capacity_adjust[i],
				 size_only);
		}

	default:
		break;
	}

	{
		/*
		 * Compute the amount of memory available just by
		 * looking for the highest valid CSn_BNDS value.
		 * This allows us to also experiment with using
		 * only CS0 when using dual-rank DIMMs.
		 */
		unsigned int max_end = 0;

		for (i = first_ctrl; i <= last_ctrl; i++) {
			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {
				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];
				if (reg->cs[j].config & 0x80000000) {
					unsigned int end;
					/*
					 * 0xfffffff is a special value we put
					 * for unused bnds
					 */
					if (reg->cs[j].bnds == 0xffffffff)
						continue;
					end = reg->cs[j].bnds & 0xffff;
					if (end > max_end) {
						max_end = end;
					}
				}
			}
		}

		total_mem = 1 + (((unsigned long long)max_end << 24ULL) |
			    0xFFFFFFULL) - pinfo->mem_base;
	}

	return total_mem;
}

phys_size_t __fsl_ddr_sdram(fsl_ddr_info_t *pinfo)
{
	unsigned int i, first_ctrl, last_ctrl;
#ifdef CONFIG_PPC
	unsigned int law_memctl = LAW_TRGT_IF_DDR_1;
#endif
	unsigned long long total_memory;
	int deassert_reset = 0;

	first_ctrl = pinfo->first_ctrl;
	last_ctrl = first_ctrl + pinfo->num_ctrls - 1;

	/* Compute it once normally. */
#ifdef CONFIG_FSL_DDR_INTERACTIVE
	if (tstc() && (getc() == 'd')) {	/* we got a key press of 'd' */
		total_memory = fsl_ddr_interactive(pinfo, 0);
	} else if (fsl_ddr_interactive_env_var_exists()) {
		total_memory = fsl_ddr_interactive(pinfo, 1);
	} else
#endif
		total_memory = fsl_ddr_compute(pinfo, STEP_GET_SPD, 0);

	/* setup 3-way interleaving before enabling DDRC */
	switch (pinfo->memctl_opts[first_ctrl].memctl_interleaving_mode) {
	case FSL_DDR_3WAY_1KB_INTERLEAVING:
	case FSL_DDR_3WAY_4KB_INTERLEAVING:
	case FSL_DDR_3WAY_8KB_INTERLEAVING:
		fsl_ddr_set_intl3r(
			pinfo->memctl_opts[first_ctrl].
			memctl_interleaving_mode);
		break;
	default:
		break;
	}

	/*
	 * Program configuration registers.
	 * JEDEC specs requires clocks to be stable before deasserting reset
	 * for RDIMMs. Clocks start after chip select is enabled and clock
	 * control register is set. During step 1, all controllers have their
	 * registers set but not enabled. Step 2 proceeds after deasserting
	 * reset through board FPGA or GPIO.
	 * For non-registered DIMMs, initialization can go through but it is
	 * also OK to follow the same flow.
	 */
	if (pinfo->board_need_mem_reset)
		deassert_reset = pinfo->board_need_mem_reset();
	for (i = first_ctrl; i <= last_ctrl; i++) {
		if (pinfo->common_timing_params[i].all_dimms_registered)
			deassert_reset = 1;
	}
	for (i = first_ctrl; i <= last_ctrl; i++) {
		debug("Programming controller %u\n", i);
		if (pinfo->common_timing_params[i].ndimms_present == 0) {
			debug("No dimms present on controller %u; "
					"skipping programming\n", i);
			continue;
		}
		/*
		 * The following call with step = 1 returns before enabling
		 * the controller. It has to finish with step = 2 later.
		 */
		fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]), i,
					deassert_reset ? 1 : 0);
	}
	if (deassert_reset) {
		/* Use board FPGA or GPIO to deassert reset signal */
		if (pinfo->board_mem_de_reset) {
			debug("Deasserting mem reset\n");
			pinfo->board_mem_de_reset();
		} else {
			debug("Deasserting mem reset missing\n");
		}
		for (i = first_ctrl; i <= last_ctrl; i++) {
			/* Call with step = 2 to continue initialization */
			fsl_ddr_set_memctl_regs(&(pinfo->fsl_ddr_config_reg[i]),
						i, 2);
		}
	}

#ifdef CONFIG_FSL_DDR_SYNC_REFRESH
	fsl_ddr_sync_memctl_refresh(first_ctrl, last_ctrl);
#endif

#ifdef CONFIG_PPC
	/* program LAWs */
	for (i = first_ctrl; i <= last_ctrl; i++) {
		if (pinfo->memctl_opts[i].memctl_interleaving) {
			switch (pinfo->memctl_opts[i].
				memctl_interleaving_mode) {
			case FSL_DDR_CACHE_LINE_INTERLEAVING:
			case FSL_DDR_PAGE_INTERLEAVING:
			case FSL_DDR_BANK_INTERLEAVING:
			case FSL_DDR_SUPERBANK_INTERLEAVING:
				if (i % 2)
					break;
				if (i == 0) {
					law_memctl = LAW_TRGT_IF_DDR_INTRLV;
					fsl_ddr_set_lawbar(
						&pinfo->common_timing_params[i],
						law_memctl, i);
				}
#if CONFIG_SYS_NUM_DDR_CTLRS > 3
				else if (i == 2) {
					law_memctl = LAW_TRGT_IF_DDR_INTLV_34;
					fsl_ddr_set_lawbar(
						&pinfo->common_timing_params[i],
						law_memctl, i);
				}
#endif
				break;
			case FSL_DDR_3WAY_1KB_INTERLEAVING:
			case FSL_DDR_3WAY_4KB_INTERLEAVING:
			case FSL_DDR_3WAY_8KB_INTERLEAVING:
				law_memctl = LAW_TRGT_IF_DDR_INTLV_123;
				if (i == 0) {
					fsl_ddr_set_lawbar(
						&pinfo->common_timing_params[i],
						law_memctl, i);
				}
				break;
			case FSL_DDR_4WAY_1KB_INTERLEAVING:
			case FSL_DDR_4WAY_4KB_INTERLEAVING:
			case FSL_DDR_4WAY_8KB_INTERLEAVING:
				law_memctl = LAW_TRGT_IF_DDR_INTLV_1234;
				if (i == 0)
					fsl_ddr_set_lawbar(
						&pinfo->common_timing_params[i],
						law_memctl, i);
				/* place holder for future 4-way interleaving */
				break;
			default:
				break;
			}
		} else {
			switch (i) {
			case 0:
				law_memctl = LAW_TRGT_IF_DDR_1;
				break;
			case 1:
				law_memctl = LAW_TRGT_IF_DDR_2;
				break;
			case 2:
				law_memctl = LAW_TRGT_IF_DDR_3;
				break;
			case 3:
				law_memctl = LAW_TRGT_IF_DDR_4;
				break;
			default:
				break;
			}
			fsl_ddr_set_lawbar(&pinfo->common_timing_params[i],
					   law_memctl, i);
		}
	}
#endif

	debug("total_memory by %s = %llu\n", __func__, total_memory);

#if !defined(CONFIG_PHYS_64BIT)
	/* Check for 4G or more.  Bad. */
	if ((first_ctrl == 0) && (total_memory >= (1ull << 32))) {
		puts("Detected ");
		print_size(total_memory, " of memory\n");
		printf("       This U-Boot only supports < 4G of DDR\n");
		printf("       You could rebuild it with CONFIG_PHYS_64BIT\n");
		printf("       "); /* re-align to match init_dram print */
		total_memory = CONFIG_MAX_MEM_MAPPED;
	}
#endif

	return total_memory;
}

/*
 * fsl_ddr_sdram(void) -- this is the main function to be
 * called by dram_init() in the board file.
 *
 * It returns amount of memory configured in bytes.
 */
phys_size_t fsl_ddr_sdram(void)
{
	fsl_ddr_info_t info;

	/* Reset info structure. */
	memset(&info, 0, sizeof(fsl_ddr_info_t));
	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
	info.first_ctrl = 0;
	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
	info.board_need_mem_reset = board_need_mem_reset;
	info.board_mem_reset = board_assert_mem_reset;
	info.board_mem_de_reset = board_deassert_mem_reset;
	remove_unused_controllers(&info);

	return __fsl_ddr_sdram(&info);
}

#ifdef CONFIG_SYS_FSL_OTHER_DDR_NUM_CTRLS
phys_size_t fsl_other_ddr_sdram(unsigned long long base,
				unsigned int first_ctrl,
				unsigned int num_ctrls,
				unsigned int dimm_slots_per_ctrl,
				int (*board_need_reset)(void),
				void (*board_reset)(void),
				void (*board_de_reset)(void))
{
	fsl_ddr_info_t info;

	/* Reset info structure. */
	memset(&info, 0, sizeof(fsl_ddr_info_t));
	info.mem_base = base;
	info.first_ctrl = first_ctrl;
	info.num_ctrls = num_ctrls;
	info.dimm_slots_per_ctrl = dimm_slots_per_ctrl;
	info.board_need_mem_reset = board_need_reset;
	info.board_mem_reset = board_reset;
	info.board_mem_de_reset = board_de_reset;

	return __fsl_ddr_sdram(&info);
}
#endif

/*
 * fsl_ddr_sdram_size(first_ctrl, last_intlv) - This function only returns the
 * size of the total memory without setting ddr control registers.
 */
phys_size_t
fsl_ddr_sdram_size(void)
{
	fsl_ddr_info_t  info;
	unsigned long long total_memory = 0;

	memset(&info, 0 , sizeof(fsl_ddr_info_t));
	info.mem_base = CONFIG_SYS_FSL_DDR_SDRAM_BASE_PHY;
	info.first_ctrl = 0;
	info.num_ctrls = CONFIG_SYS_FSL_DDR_MAIN_NUM_CTRLS;
	info.dimm_slots_per_ctrl = CONFIG_DIMM_SLOTS_PER_CTLR;
	info.board_need_mem_reset = NULL;
	remove_unused_controllers(&info);

	/* Compute it once normally. */
	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD, 1);

	return total_memory;
}