stm32f7_i2c.c 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877
/*
 * (C) Copyright 2017 STMicroelectronics
 *
 * SPDX-License-Identifier:	GPL-2.0+
 */

#include <common.h>
#include <clk.h>
#include <dm.h>
#include <i2c.h>
#include <reset.h>

#include <dm/device.h>
#include <linux/io.h>

/* STM32 I2C registers */
struct stm32_i2c_regs {
	u32 cr1;	/* I2C control register 1 */
	u32 cr2;	/* I2C control register 2 */
	u32 oar1;	/* I2C own address 1 register */
	u32 oar2;	/* I2C own address 2 register */
	u32 timingr;	/* I2C timing register */
	u32 timeoutr;	/* I2C timeout register */
	u32 isr;	/* I2C interrupt and status register */
	u32 icr;	/* I2C interrupt clear register */
	u32 pecr;	/* I2C packet error checking register */
	u32 rxdr;	/* I2C receive data register */
	u32 txdr;	/* I2C transmit data register */
};

#define STM32_I2C_CR1				0x00
#define STM32_I2C_CR2				0x04
#define STM32_I2C_TIMINGR			0x10
#define STM32_I2C_ISR				0x18
#define STM32_I2C_ICR				0x1C
#define STM32_I2C_RXDR				0x24
#define STM32_I2C_TXDR				0x28

/* STM32 I2C control 1 */
#define STM32_I2C_CR1_ANFOFF			BIT(12)
#define STM32_I2C_CR1_ERRIE			BIT(7)
#define STM32_I2C_CR1_TCIE			BIT(6)
#define STM32_I2C_CR1_STOPIE			BIT(5)
#define STM32_I2C_CR1_NACKIE			BIT(4)
#define STM32_I2C_CR1_ADDRIE			BIT(3)
#define STM32_I2C_CR1_RXIE			BIT(2)
#define STM32_I2C_CR1_TXIE			BIT(1)
#define STM32_I2C_CR1_PE			BIT(0)

/* STM32 I2C control 2 */
#define STM32_I2C_CR2_AUTOEND			BIT(25)
#define STM32_I2C_CR2_RELOAD			BIT(24)
#define STM32_I2C_CR2_NBYTES_MASK		GENMASK(23, 16)
#define STM32_I2C_CR2_NBYTES(n)			((n & 0xff) << 16)
#define STM32_I2C_CR2_NACK			BIT(15)
#define STM32_I2C_CR2_STOP			BIT(14)
#define STM32_I2C_CR2_START			BIT(13)
#define STM32_I2C_CR2_HEAD10R			BIT(12)
#define STM32_I2C_CR2_ADD10			BIT(11)
#define STM32_I2C_CR2_RD_WRN			BIT(10)
#define STM32_I2C_CR2_SADD10_MASK		GENMASK(9, 0)
#define STM32_I2C_CR2_SADD10(n)			((n & STM32_I2C_CR2_SADD10_MASK))
#define STM32_I2C_CR2_SADD7_MASK		GENMASK(7, 1)
#define STM32_I2C_CR2_SADD7(n)			((n & 0x7f) << 1)
#define STM32_I2C_CR2_RESET_MASK		(STM32_I2C_CR2_HEAD10R \
						| STM32_I2C_CR2_NBYTES_MASK \
						| STM32_I2C_CR2_SADD7_MASK \
						| STM32_I2C_CR2_RELOAD \
						| STM32_I2C_CR2_RD_WRN)

/* STM32 I2C Interrupt Status */
#define STM32_I2C_ISR_BUSY			BIT(15)
#define STM32_I2C_ISR_ARLO			BIT(9)
#define STM32_I2C_ISR_BERR			BIT(8)
#define STM32_I2C_ISR_TCR			BIT(7)
#define STM32_I2C_ISR_TC			BIT(6)
#define STM32_I2C_ISR_STOPF			BIT(5)
#define STM32_I2C_ISR_NACKF			BIT(4)
#define STM32_I2C_ISR_ADDR			BIT(3)
#define STM32_I2C_ISR_RXNE			BIT(2)
#define STM32_I2C_ISR_TXIS			BIT(1)
#define STM32_I2C_ISR_TXE			BIT(0)
#define STM32_I2C_ISR_ERRORS			(STM32_I2C_ISR_BERR \
						| STM32_I2C_ISR_ARLO)

/* STM32 I2C Interrupt Clear */
#define STM32_I2C_ICR_ARLOCF			BIT(9)
#define STM32_I2C_ICR_BERRCF			BIT(8)
#define STM32_I2C_ICR_STOPCF			BIT(5)
#define STM32_I2C_ICR_NACKCF			BIT(4)

/* STM32 I2C Timing */
#define STM32_I2C_TIMINGR_PRESC(n)		((n & 0xf) << 28)
#define STM32_I2C_TIMINGR_SCLDEL(n)		((n & 0xf) << 20)
#define STM32_I2C_TIMINGR_SDADEL(n)		((n & 0xf) << 16)
#define STM32_I2C_TIMINGR_SCLH(n)		((n & 0xff) << 8)
#define STM32_I2C_TIMINGR_SCLL(n)		(n & 0xff)

#define STM32_I2C_MAX_LEN			0xff

#define STM32_I2C_DNF_DEFAULT			0
#define STM32_I2C_DNF_MAX			16

#define STM32_I2C_ANALOG_FILTER_ENABLE	1
#define STM32_I2C_ANALOG_FILTER_DELAY_MIN	50	/* ns */
#define STM32_I2C_ANALOG_FILTER_DELAY_MAX	260	/* ns */

#define STM32_I2C_RISE_TIME_DEFAULT		25	/* ns */
#define STM32_I2C_FALL_TIME_DEFAULT		10	/* ns */

#define STM32_PRESC_MAX				BIT(4)
#define STM32_SCLDEL_MAX			BIT(4)
#define STM32_SDADEL_MAX			BIT(4)
#define STM32_SCLH_MAX				BIT(8)
#define STM32_SCLL_MAX				BIT(8)

#define STM32_NSEC_PER_SEC			1000000000L

#define STANDARD_RATE				100000
#define FAST_RATE				400000
#define FAST_PLUS_RATE				1000000

enum stm32_i2c_speed {
	STM32_I2C_SPEED_STANDARD, /* 100 kHz */
	STM32_I2C_SPEED_FAST, /* 400 kHz */
	STM32_I2C_SPEED_FAST_PLUS, /* 1 MHz */
	STM32_I2C_SPEED_END,
};

/**
 * struct stm32_i2c_spec - private i2c specification timing
 * @rate: I2C bus speed (Hz)
 * @rate_min: 80% of I2C bus speed (Hz)
 * @rate_max: 120% of I2C bus speed (Hz)
 * @fall_max: Max fall time of both SDA and SCL signals (ns)
 * @rise_max: Max rise time of both SDA and SCL signals (ns)
 * @hddat_min: Min data hold time (ns)
 * @vddat_max: Max data valid time (ns)
 * @sudat_min: Min data setup time (ns)
 * @l_min: Min low period of the SCL clock (ns)
 * @h_min: Min high period of the SCL clock (ns)
 */

struct stm32_i2c_spec {
	u32 rate;
	u32 rate_min;
	u32 rate_max;
	u32 fall_max;
	u32 rise_max;
	u32 hddat_min;
	u32 vddat_max;
	u32 sudat_min;
	u32 l_min;
	u32 h_min;
};

/**
 * struct stm32_i2c_setup - private I2C timing setup parameters
 * @speed: I2C speed mode (standard, Fast Plus)
 * @speed_freq: I2C speed frequency  (Hz)
 * @clock_src: I2C clock source frequency (Hz)
 * @rise_time: Rise time (ns)
 * @fall_time: Fall time (ns)
 * @dnf: Digital filter coefficient (0-16)
 * @analog_filter: Analog filter delay (On/Off)
 */
struct stm32_i2c_setup {
	enum stm32_i2c_speed speed;
	u32 speed_freq;
	u32 clock_src;
	u32 rise_time;
	u32 fall_time;
	u8 dnf;
	bool analog_filter;
};

/**
 * struct stm32_i2c_timings - private I2C output parameters
 * @prec: Prescaler value
 * @scldel: Data setup time
 * @sdadel: Data hold time
 * @sclh: SCL high period (master mode)
 * @sclh: SCL low period (master mode)
 */
struct stm32_i2c_timings {
	struct list_head node;
	u8 presc;
	u8 scldel;
	u8 sdadel;
	u8 sclh;
	u8 scll;
};

struct stm32_i2c_priv {
	struct stm32_i2c_regs *regs;
	struct clk clk;
	struct stm32_i2c_setup *setup;
	int speed;
};

static struct stm32_i2c_spec i2c_specs[] = {
	[STM32_I2C_SPEED_STANDARD] = {
		.rate = STANDARD_RATE,
		.rate_min = 8000,
		.rate_max = 120000,
		.fall_max = 300,
		.rise_max = 1000,
		.hddat_min = 0,
		.vddat_max = 3450,
		.sudat_min = 250,
		.l_min = 4700,
		.h_min = 4000,
	},
	[STM32_I2C_SPEED_FAST] = {
		.rate = FAST_RATE,
		.rate_min = 320000,
		.rate_max = 480000,
		.fall_max = 300,
		.rise_max = 300,
		.hddat_min = 0,
		.vddat_max = 900,
		.sudat_min = 100,
		.l_min = 1300,
		.h_min = 600,
	},
	[STM32_I2C_SPEED_FAST_PLUS] = {
		.rate = FAST_PLUS_RATE,
		.rate_min = 800000,
		.rate_max = 1200000,
		.fall_max = 100,
		.rise_max = 120,
		.hddat_min = 0,
		.vddat_max = 450,
		.sudat_min = 50,
		.l_min = 500,
		.h_min = 260,
	},
};

static struct stm32_i2c_setup stm32f7_setup = {
	.rise_time = STM32_I2C_RISE_TIME_DEFAULT,
	.fall_time = STM32_I2C_FALL_TIME_DEFAULT,
	.dnf = STM32_I2C_DNF_DEFAULT,
	.analog_filter = STM32_I2C_ANALOG_FILTER_ENABLE,
};

DECLARE_GLOBAL_DATA_PTR;

static int stm32_i2c_check_device_busy(struct stm32_i2c_priv *i2c_priv)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 status = readl(&regs->isr);

	if (status & STM32_I2C_ISR_BUSY)
		return -EBUSY;

	return 0;
}

static void stm32_i2c_message_start(struct stm32_i2c_priv *i2c_priv,
				      struct i2c_msg *msg, bool stop)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 cr2 = readl(&regs->cr2);

	/* Set transfer direction */
	cr2 &= ~STM32_I2C_CR2_RD_WRN;
	if (msg->flags & I2C_M_RD)
		cr2 |= STM32_I2C_CR2_RD_WRN;

	/* Set slave address */
	cr2 &= ~(STM32_I2C_CR2_HEAD10R | STM32_I2C_CR2_ADD10);
	if (msg->flags & I2C_M_TEN) {
		cr2 &= ~STM32_I2C_CR2_SADD10_MASK;
		cr2 |= STM32_I2C_CR2_SADD10(msg->addr);
		cr2 |= STM32_I2C_CR2_ADD10;
	} else {
		cr2 &= ~STM32_I2C_CR2_SADD7_MASK;
		cr2 |= STM32_I2C_CR2_SADD7(msg->addr);
	}

	/* Set nb bytes to transfer and reload or autoend bits */
	cr2 &= ~(STM32_I2C_CR2_NBYTES_MASK | STM32_I2C_CR2_RELOAD |
		 STM32_I2C_CR2_AUTOEND);
	if (msg->len > STM32_I2C_MAX_LEN) {
		cr2 |= STM32_I2C_CR2_NBYTES(STM32_I2C_MAX_LEN);
		cr2 |= STM32_I2C_CR2_RELOAD;
	} else {
		cr2 |= STM32_I2C_CR2_NBYTES(msg->len);
	}

	/* Write configurations register */
	writel(cr2, &regs->cr2);

	/* START/ReSTART generation */
	setbits_le32(&regs->cr2, STM32_I2C_CR2_START);
}

/*
 * RELOAD mode must be selected if total number of data bytes to be
 * sent is greater than MAX_LEN
 */

static void stm32_i2c_handle_reload(struct stm32_i2c_priv *i2c_priv,
				      struct i2c_msg *msg, bool stop)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 cr2 = readl(&regs->cr2);

	cr2 &= ~STM32_I2C_CR2_NBYTES_MASK;

	if (msg->len > STM32_I2C_MAX_LEN) {
		cr2 |= STM32_I2C_CR2_NBYTES(STM32_I2C_MAX_LEN);
	} else {
		cr2 &= ~STM32_I2C_CR2_RELOAD;
		cr2 |= STM32_I2C_CR2_NBYTES(msg->len);
	}

	writel(cr2, &regs->cr2);
}

static int stm32_i2c_wait_flags(struct stm32_i2c_priv *i2c_priv,
				  u32 flags, u32 *status)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 time_start = get_timer(0);

	*status = readl(&regs->isr);
	while (!(*status & flags)) {
		if (get_timer(time_start) > CONFIG_SYS_HZ) {
			debug("%s: i2c timeout\n", __func__);
			return -ETIMEDOUT;
		}

		*status = readl(&regs->isr);
	}

	return 0;
}

static int stm32_i2c_check_end_of_message(struct stm32_i2c_priv *i2c_priv)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 mask = STM32_I2C_ISR_ERRORS | STM32_I2C_ISR_NACKF |
		   STM32_I2C_ISR_STOPF;
	u32 status;
	int ret;

	ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
	if (ret)
		return ret;

	if (status & STM32_I2C_ISR_BERR) {
		debug("%s: Bus error\n", __func__);

		/* Clear BERR flag */
		setbits_le32(&regs->icr, STM32_I2C_ICR_BERRCF);

		return -EIO;
	}

	if (status & STM32_I2C_ISR_ARLO) {
		debug("%s: Arbitration lost\n", __func__);

		/* Clear ARLO flag */
		setbits_le32(&regs->icr, STM32_I2C_ICR_ARLOCF);

		return -EAGAIN;
	}

	if (status & STM32_I2C_ISR_NACKF) {
		debug("%s: Receive NACK\n", __func__);

		/* Clear NACK flag */
		setbits_le32(&regs->icr, STM32_I2C_ICR_NACKCF);

		/* Wait until STOPF flag is set */
		mask = STM32_I2C_ISR_STOPF;
		ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
		if (ret)
			return ret;

		ret = -EIO;
	}

	if (status & STM32_I2C_ISR_STOPF) {
		/* Clear STOP flag */
		setbits_le32(&regs->icr, STM32_I2C_ICR_STOPCF);

		/* Clear control register 2 */
		setbits_le32(&regs->cr2, STM32_I2C_CR2_RESET_MASK);
	}

	return ret;
}

static int stm32_i2c_message_xfer(struct stm32_i2c_priv *i2c_priv,
				    struct i2c_msg *msg, bool stop)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	u32 status;
	u32 mask = msg->flags & I2C_M_RD ? STM32_I2C_ISR_RXNE :
		   STM32_I2C_ISR_TXIS | STM32_I2C_ISR_NACKF;
	int bytes_to_rw = msg->len > STM32_I2C_MAX_LEN ?
			  STM32_I2C_MAX_LEN : msg->len;
	int ret = 0;

	/* Add errors */
	mask |= STM32_I2C_ISR_ERRORS;

	stm32_i2c_message_start(i2c_priv, msg, stop);

	while (msg->len) {
		/*
		 * Wait until TXIS/NACKF/BERR/ARLO flags or
		 * RXNE/BERR/ARLO flags are set
		 */
		ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
		if (ret)
			break;

		if (status & (STM32_I2C_ISR_NACKF | STM32_I2C_ISR_ERRORS))
			break;

		if (status & STM32_I2C_ISR_RXNE) {
			*msg->buf++ = readb(&regs->rxdr);
			msg->len--;
			bytes_to_rw--;
		}

		if (status & STM32_I2C_ISR_TXIS) {
			writeb(*msg->buf++, &regs->txdr);
			msg->len--;
			bytes_to_rw--;
		}

		if (!bytes_to_rw && msg->len) {
			/* Wait until TCR flag is set */
			mask = STM32_I2C_ISR_TCR;
			ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
			if (ret)
				break;

			bytes_to_rw = msg->len > STM32_I2C_MAX_LEN ?
				      STM32_I2C_MAX_LEN : msg->len;
			mask = msg->flags & I2C_M_RD ? STM32_I2C_ISR_RXNE :
			       STM32_I2C_ISR_TXIS | STM32_I2C_ISR_NACKF;

			stm32_i2c_handle_reload(i2c_priv, msg, stop);
		} else if (!bytes_to_rw) {
			/* Wait until TC flag is set */
			mask = STM32_I2C_ISR_TC;
			ret = stm32_i2c_wait_flags(i2c_priv, mask, &status);
			if (ret)
				break;

			if (!stop)
				/* Message sent, new message has to be sent */
				return 0;
		}
	}

	/* End of transfer, send stop condition */
	mask = STM32_I2C_CR2_STOP;
	setbits_le32(&regs->cr2, mask);

	return stm32_i2c_check_end_of_message(i2c_priv);
}

static int stm32_i2c_xfer(struct udevice *bus, struct i2c_msg *msg,
			    int nmsgs)
{
	struct stm32_i2c_priv *i2c_priv = dev_get_priv(bus);
	int ret;

	ret = stm32_i2c_check_device_busy(i2c_priv);
	if (ret)
		return ret;

	for (; nmsgs > 0; nmsgs--, msg++) {
		ret = stm32_i2c_message_xfer(i2c_priv, msg, nmsgs == 1);
		if (ret)
			return ret;
	}

	return 0;
}

static int stm32_i2c_compute_solutions(struct stm32_i2c_setup *setup,
				       struct list_head *solutions)
{
	struct stm32_i2c_timings *v;
	u32 p_prev = STM32_PRESC_MAX;
	u32 i2cclk = DIV_ROUND_CLOSEST(STM32_NSEC_PER_SEC,
				       setup->clock_src);
	u32 af_delay_min, af_delay_max;
	u16 p, l, a;
	int sdadel_min, sdadel_max, scldel_min;
	int ret = 0;

	af_delay_min = setup->analog_filter ?
		       STM32_I2C_ANALOG_FILTER_DELAY_MIN : 0;
	af_delay_max = setup->analog_filter ?
		       STM32_I2C_ANALOG_FILTER_DELAY_MAX : 0;

	sdadel_min = setup->fall_time - i2c_specs[setup->speed].hddat_min -
		     af_delay_min - (setup->dnf + 3) * i2cclk;

	sdadel_max = i2c_specs[setup->speed].vddat_max - setup->rise_time -
		     af_delay_max - (setup->dnf + 4) * i2cclk;

	scldel_min = setup->rise_time + i2c_specs[setup->speed].sudat_min;

	if (sdadel_min < 0)
		sdadel_min = 0;
	if (sdadel_max < 0)
		sdadel_max = 0;

	debug("%s: SDADEL(min/max): %i/%i, SCLDEL(Min): %i\n", __func__,
	      sdadel_min, sdadel_max, scldel_min);

	/* Compute possible values for PRESC, SCLDEL and SDADEL */
	for (p = 0; p < STM32_PRESC_MAX; p++) {
		for (l = 0; l < STM32_SCLDEL_MAX; l++) {
			u32 scldel = (l + 1) * (p + 1) * i2cclk;

			if (scldel < scldel_min)
				continue;

			for (a = 0; a < STM32_SDADEL_MAX; a++) {
				u32 sdadel = (a * (p + 1) + 1) * i2cclk;

				if (((sdadel >= sdadel_min) &&
				     (sdadel <= sdadel_max)) &&
				    (p != p_prev)) {
					v = kmalloc(sizeof(*v), GFP_KERNEL);
					if (!v)
						return -ENOMEM;

					v->presc = p;
					v->scldel = l;
					v->sdadel = a;
					p_prev = p;

					list_add_tail(&v->node, solutions);
				}
			}
		}
	}

	if (list_empty(solutions)) {
		pr_err("%s: no Prescaler solution\n", __func__);
		ret = -EPERM;
	}

	return ret;
}

static int stm32_i2c_choose_solution(struct stm32_i2c_setup *setup,
				     struct list_head *solutions,
				     struct stm32_i2c_timings *s)
{
	struct stm32_i2c_timings *v;
	u32 i2cbus = DIV_ROUND_CLOSEST(STM32_NSEC_PER_SEC,
				       setup->speed_freq);
	u32 clk_error_prev = i2cbus;
	u32 i2cclk = DIV_ROUND_CLOSEST(STM32_NSEC_PER_SEC,
				       setup->clock_src);
	u32 clk_min, clk_max;
	u32 af_delay_min;
	u32 dnf_delay;
	u32 tsync;
	u16 l, h;
	bool sol_found = false;
	int ret = 0;

	af_delay_min = setup->analog_filter ?
		       STM32_I2C_ANALOG_FILTER_DELAY_MIN : 0;
	dnf_delay = setup->dnf * i2cclk;

	tsync = af_delay_min + dnf_delay + (2 * i2cclk);
	clk_max = STM32_NSEC_PER_SEC / i2c_specs[setup->speed].rate_min;
	clk_min = STM32_NSEC_PER_SEC / i2c_specs[setup->speed].rate_max;

	/*
	 * Among Prescaler possibilities discovered above figures out SCL Low
	 * and High Period. Provided:
	 * - SCL Low Period has to be higher than Low Period of the SCL Clock
	 *   defined by I2C Specification. I2C Clock has to be lower than
	 *   (SCL Low Period - Analog/Digital filters) / 4.
	 * - SCL High Period has to be lower than High Period of the SCL Clock
	 *   defined by I2C Specification
	 * - I2C Clock has to be lower than SCL High Period
	 */
	list_for_each_entry(v, solutions, node) {
		u32 prescaler = (v->presc + 1) * i2cclk;

		for (l = 0; l < STM32_SCLL_MAX; l++) {
			u32 tscl_l = (l + 1) * prescaler + tsync;
			if ((tscl_l < i2c_specs[setup->speed].l_min) ||
			    (i2cclk >=
			     ((tscl_l - af_delay_min - dnf_delay) / 4))) {
				continue;
			}

			for (h = 0; h < STM32_SCLH_MAX; h++) {
				u32 tscl_h = (h + 1) * prescaler + tsync;
				u32 tscl = tscl_l + tscl_h +
					   setup->rise_time + setup->fall_time;

				if ((tscl >= clk_min) && (tscl <= clk_max) &&
				    (tscl_h >= i2c_specs[setup->speed].h_min) &&
				    (i2cclk < tscl_h)) {
					int clk_error = tscl - i2cbus;

					if (clk_error < 0)
						clk_error = -clk_error;

					if (clk_error < clk_error_prev) {
						clk_error_prev = clk_error;
						v->scll = l;
						v->sclh = h;
						sol_found = true;
						memcpy(s, v, sizeof(*s));
					}
				}
			}
		}
	}

	if (!sol_found) {
		pr_err("%s: no solution at all\n", __func__);
		ret = -EPERM;
	}

	return ret;
}

static int stm32_i2c_compute_timing(struct stm32_i2c_priv *i2c_priv,
				      struct stm32_i2c_setup *setup,
				      struct stm32_i2c_timings *output)
{
	struct stm32_i2c_timings *v, *_v;
	struct list_head solutions;
	int ret;

	if (setup->speed >= STM32_I2C_SPEED_END) {
		pr_err("%s: speed out of bound {%d/%d}\n", __func__,
		      setup->speed, STM32_I2C_SPEED_END - 1);
		return -EINVAL;
	}

	if ((setup->rise_time > i2c_specs[setup->speed].rise_max) ||
	    (setup->fall_time > i2c_specs[setup->speed].fall_max)) {
		pr_err("%s :timings out of bound Rise{%d>%d}/Fall{%d>%d}\n",
		      __func__,
		      setup->rise_time, i2c_specs[setup->speed].rise_max,
		      setup->fall_time, i2c_specs[setup->speed].fall_max);
		return -EINVAL;
	}

	if (setup->dnf > STM32_I2C_DNF_MAX) {
		pr_err("%s: DNF out of bound %d/%d\n", __func__,
		      setup->dnf, STM32_I2C_DNF_MAX);
		return -EINVAL;
	}

	if (setup->speed_freq > i2c_specs[setup->speed].rate) {
		pr_err("%s: Freq {%d/%d}\n", __func__,
		      setup->speed_freq, i2c_specs[setup->speed].rate);
		return -EINVAL;
	}

	INIT_LIST_HEAD(&solutions);
	ret = stm32_i2c_compute_solutions(setup, &solutions);
	if (ret)
		goto exit;

	ret = stm32_i2c_choose_solution(setup, &solutions, output);
	if (ret)
		goto exit;

	debug("%s: Presc: %i, scldel: %i, sdadel: %i, scll: %i, sclh: %i\n",
	      __func__, output->presc,
	      output->scldel, output->sdadel,
	      output->scll, output->sclh);

exit:
	/* Release list and memory */
	list_for_each_entry_safe(v, _v, &solutions, node) {
		list_del(&v->node);
		kfree(v);
	}

	return ret;
}

static int stm32_i2c_setup_timing(struct stm32_i2c_priv *i2c_priv,
				    struct stm32_i2c_timings *timing)
{
	struct stm32_i2c_setup *setup = i2c_priv->setup;
	int ret = 0;

	setup->speed = i2c_priv->speed;
	setup->speed_freq = i2c_specs[setup->speed].rate;
	setup->clock_src = clk_get_rate(&i2c_priv->clk);

	if (!setup->clock_src) {
		pr_err("%s: clock rate is 0\n", __func__);
		return -EINVAL;
	}

	do {
		ret = stm32_i2c_compute_timing(i2c_priv, setup, timing);
		if (ret) {
			debug("%s: failed to compute I2C timings.\n",
			      __func__);
			if (i2c_priv->speed > STM32_I2C_SPEED_STANDARD) {
				i2c_priv->speed--;
				setup->speed = i2c_priv->speed;
				setup->speed_freq =
					i2c_specs[setup->speed].rate;
				debug("%s: downgrade I2C Speed Freq to (%i)\n",
				      __func__, i2c_specs[setup->speed].rate);
			} else {
				break;
			}
		}
	} while (ret);

	if (ret) {
		pr_err("%s: impossible to compute I2C timings.\n", __func__);
		return ret;
	}

	debug("%s: I2C Speed(%i), Freq(%i), Clk Source(%i)\n", __func__,
	      setup->speed, setup->speed_freq, setup->clock_src);
	debug("%s: I2C Rise(%i) and Fall(%i) Time\n", __func__,
	      setup->rise_time, setup->fall_time);
	debug("%s: I2C Analog Filter(%s), DNF(%i)\n", __func__,
	      setup->analog_filter ? "On" : "Off", setup->dnf);

	return 0;
}

static int stm32_i2c_hw_config(struct stm32_i2c_priv *i2c_priv)
{
	struct stm32_i2c_regs *regs = i2c_priv->regs;
	struct stm32_i2c_timings t;
	int ret;
	u32 timing = 0;

	ret = stm32_i2c_setup_timing(i2c_priv, &t);
	if (ret)
		return ret;

	/* Disable I2C */
	clrbits_le32(&regs->cr1, STM32_I2C_CR1_PE);

	/* Timing settings */
	timing |= STM32_I2C_TIMINGR_PRESC(t.presc);
	timing |= STM32_I2C_TIMINGR_SCLDEL(t.scldel);
	timing |= STM32_I2C_TIMINGR_SDADEL(t.sdadel);
	timing |= STM32_I2C_TIMINGR_SCLH(t.sclh);
	timing |= STM32_I2C_TIMINGR_SCLL(t.scll);
	writel(timing, &regs->timingr);

	/* Enable I2C */
	if (i2c_priv->setup->analog_filter)
		clrbits_le32(&regs->cr1, STM32_I2C_CR1_ANFOFF);
	else
		setbits_le32(&regs->cr1, STM32_I2C_CR1_ANFOFF);
	setbits_le32(&regs->cr1, STM32_I2C_CR1_PE);

	return 0;
}

static int stm32_i2c_set_bus_speed(struct udevice *bus, unsigned int speed)
{
	struct stm32_i2c_priv *i2c_priv = dev_get_priv(bus);

	switch (speed) {
	case STANDARD_RATE:
		i2c_priv->speed = STM32_I2C_SPEED_STANDARD;
		break;
	case FAST_RATE:
		i2c_priv->speed = STM32_I2C_SPEED_FAST;
		break;
	case FAST_PLUS_RATE:
		i2c_priv->speed = STM32_I2C_SPEED_FAST_PLUS;
		break;
	default:
		debug("%s: Speed %d not supported\n", __func__, speed);
		return -EINVAL;
	}

	return stm32_i2c_hw_config(i2c_priv);
}

static int stm32_i2c_probe(struct udevice *dev)
{
	struct stm32_i2c_priv *i2c_priv = dev_get_priv(dev);
	struct reset_ctl reset_ctl;
	fdt_addr_t addr;
	int ret;

	addr = dev_read_addr(dev);
	if (addr == FDT_ADDR_T_NONE)
		return -EINVAL;

	i2c_priv->regs = (struct stm32_i2c_regs *)addr;

	ret = clk_get_by_index(dev, 0, &i2c_priv->clk);
	if (ret)
		return ret;

	ret = clk_enable(&i2c_priv->clk);
	if (ret)
		goto clk_free;

	ret = reset_get_by_index(dev, 0, &reset_ctl);
	if (ret)
		goto clk_disable;

	reset_assert(&reset_ctl);
	udelay(2);
	reset_deassert(&reset_ctl);

	return 0;

clk_disable:
	clk_disable(&i2c_priv->clk);
clk_free:
	clk_free(&i2c_priv->clk);

	return ret;
}

static int stm32_ofdata_to_platdata(struct udevice *dev)
{
	struct stm32_i2c_priv *i2c_priv = dev_get_priv(dev);
	u32 rise_time, fall_time;

	i2c_priv->setup = (struct stm32_i2c_setup *)dev_get_driver_data(dev);
	if (!i2c_priv->setup)
		return -EINVAL;

	rise_time = dev_read_u32_default(dev, "i2c-scl-rising-time-ns", 0);
	if (rise_time)
		i2c_priv->setup->rise_time = rise_time;

	fall_time = dev_read_u32_default(dev, "i2c-scl-falling-time-ns", 0);
	if (fall_time)
		i2c_priv->setup->fall_time = fall_time;

	return 0;
}

static const struct dm_i2c_ops stm32_i2c_ops = {
	.xfer = stm32_i2c_xfer,
	.set_bus_speed = stm32_i2c_set_bus_speed,
};

static const struct udevice_id stm32_i2c_of_match[] = {
	{ .compatible = "st,stm32f7-i2c", .data = (ulong)&stm32f7_setup },
	{}
};

U_BOOT_DRIVER(stm32f7_i2c) = {
	.name = "stm32f7-i2c",
	.id = UCLASS_I2C,
	.of_match = stm32_i2c_of_match,
	.ofdata_to_platdata = stm32_ofdata_to_platdata,
	.probe = stm32_i2c_probe,
	.priv_auto_alloc_size = sizeof(struct stm32_i2c_priv),
	.ops = &stm32_i2c_ops,
};