tegra210_qspi.c 11.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
/*
 * NVIDIA Tegra210 QSPI controller driver
 *
 * (C) Copyright 2015 NVIDIA Corporation <www.nvidia.com>
 *
 * SPDX-License-Identifier:     GPL-2.0+
 */

#include <common.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch-tegra/clk_rst.h>
#include <spi.h>
#include <fdtdec.h>
#include "tegra_spi.h"

DECLARE_GLOBAL_DATA_PTR;

/* COMMAND1 */
#define QSPI_CMD1_GO			BIT(31)
#define QSPI_CMD1_M_S			BIT(30)
#define QSPI_CMD1_MODE_MASK		GENMASK(1,0)
#define QSPI_CMD1_MODE_SHIFT		28
#define QSPI_CMD1_CS_SEL_MASK		GENMASK(1,0)
#define QSPI_CMD1_CS_SEL_SHIFT		26
#define QSPI_CMD1_CS_POL_INACTIVE0	BIT(22)
#define QSPI_CMD1_CS_SW_HW		BIT(21)
#define QSPI_CMD1_CS_SW_VAL		BIT(20)
#define QSPI_CMD1_IDLE_SDA_MASK		GENMASK(1,0)
#define QSPI_CMD1_IDLE_SDA_SHIFT	18
#define QSPI_CMD1_BIDIR			BIT(17)
#define QSPI_CMD1_LSBI_FE		BIT(16)
#define QSPI_CMD1_LSBY_FE		BIT(15)
#define QSPI_CMD1_BOTH_EN_BIT		BIT(14)
#define QSPI_CMD1_BOTH_EN_BYTE		BIT(13)
#define QSPI_CMD1_RX_EN			BIT(12)
#define QSPI_CMD1_TX_EN			BIT(11)
#define QSPI_CMD1_PACKED		BIT(5)
#define QSPI_CMD1_BITLEN_MASK		GENMASK(4,0)
#define QSPI_CMD1_BITLEN_SHIFT		0

/* COMMAND2 */
#define QSPI_CMD2_TX_CLK_TAP_DELAY	BIT(6)
#define QSPI_CMD2_TX_CLK_TAP_DELAY_MASK	GENMASK(11,6)
#define QSPI_CMD2_RX_CLK_TAP_DELAY	BIT(0)
#define QSPI_CMD2_RX_CLK_TAP_DELAY_MASK	GENMASK(5,0)

/* TRANSFER STATUS */
#define QSPI_XFER_STS_RDY		BIT(30)

/* FIFO STATUS */
#define QSPI_FIFO_STS_CS_INACTIVE	BIT(31)
#define QSPI_FIFO_STS_FRAME_END		BIT(30)
#define QSPI_FIFO_STS_RX_FIFO_FLUSH	BIT(15)
#define QSPI_FIFO_STS_TX_FIFO_FLUSH	BIT(14)
#define QSPI_FIFO_STS_ERR		BIT(8)
#define QSPI_FIFO_STS_TX_FIFO_OVF	BIT(7)
#define QSPI_FIFO_STS_TX_FIFO_UNR	BIT(6)
#define QSPI_FIFO_STS_RX_FIFO_OVF	BIT(5)
#define QSPI_FIFO_STS_RX_FIFO_UNR	BIT(4)
#define QSPI_FIFO_STS_TX_FIFO_FULL	BIT(3)
#define QSPI_FIFO_STS_TX_FIFO_EMPTY	BIT(2)
#define QSPI_FIFO_STS_RX_FIFO_FULL	BIT(1)
#define QSPI_FIFO_STS_RX_FIFO_EMPTY	BIT(0)

#define QSPI_TIMEOUT		1000

struct qspi_regs {
	u32 command1;	/* 000:QSPI_COMMAND1 register */
	u32 command2;	/* 004:QSPI_COMMAND2 register */
	u32 timing1;	/* 008:QSPI_CS_TIM1 register */
	u32 timing2;	/* 00c:QSPI_CS_TIM2 register */
	u32 xfer_status;/* 010:QSPI_TRANS_STATUS register */
	u32 fifo_status;/* 014:QSPI_FIFO_STATUS register */
	u32 tx_data;	/* 018:QSPI_TX_DATA register */
	u32 rx_data;	/* 01c:QSPI_RX_DATA register */
	u32 dma_ctl;	/* 020:QSPI_DMA_CTL register */
	u32 dma_blk;	/* 024:QSPI_DMA_BLK register */
	u32 rsvd[56];	/* 028-107 reserved */
	u32 tx_fifo;	/* 108:QSPI_FIFO1 register */
	u32 rsvd2[31];	/* 10c-187 reserved */
	u32 rx_fifo;	/* 188:QSPI_FIFO2 register */
	u32 spare_ctl;	/* 18c:QSPI_SPARE_CTRL register */
};

struct tegra210_qspi_priv {
	struct qspi_regs *regs;
	unsigned int freq;
	unsigned int mode;
	int periph_id;
	int valid;
	int last_transaction_us;
};

static int tegra210_qspi_ofdata_to_platdata(struct udevice *bus)
{
	struct tegra_spi_platdata *plat = bus->platdata;
	const void *blob = gd->fdt_blob;
	int node = dev_of_offset(bus);

	plat->base = devfdt_get_addr(bus);
	plat->periph_id = clock_decode_periph_id(bus);

	if (plat->periph_id == PERIPH_ID_NONE) {
		debug("%s: could not decode periph id %d\n", __func__,
		      plat->periph_id);
		return -FDT_ERR_NOTFOUND;
	}

	/* Use 500KHz as a suitable default */
	plat->frequency = fdtdec_get_int(blob, node, "spi-max-frequency",
					500000);
	plat->deactivate_delay_us = fdtdec_get_int(blob, node,
					"spi-deactivate-delay", 0);
	debug("%s: base=%#08lx, periph_id=%d, max-frequency=%d, deactivate_delay=%d\n",
	      __func__, plat->base, plat->periph_id, plat->frequency,
	      plat->deactivate_delay_us);

	return 0;
}

static int tegra210_qspi_probe(struct udevice *bus)
{
	struct tegra_spi_platdata *plat = dev_get_platdata(bus);
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);

	priv->regs = (struct qspi_regs *)plat->base;

	priv->last_transaction_us = timer_get_us();
	priv->freq = plat->frequency;
	priv->periph_id = plat->periph_id;

	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq);

	return 0;
}

static int tegra210_qspi_claim_bus(struct udevice *bus)
{
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
	struct qspi_regs *regs = priv->regs;

	/* Change SPI clock to correct frequency, PLLP_OUT0 source */
	clock_start_periph_pll(priv->periph_id, CLOCK_ID_PERIPH, priv->freq);

	debug("%s: FIFO STATUS = %08x\n", __func__, readl(&regs->fifo_status));

	/* Set master mode and sw controlled CS */
	setbits_le32(&regs->command1, QSPI_CMD1_M_S | QSPI_CMD1_CS_SW_HW |
		     (priv->mode << QSPI_CMD1_MODE_SHIFT));
	debug("%s: COMMAND1 = %08x\n", __func__, readl(&regs->command1));

	return 0;
}

/**
 * Activate the CS by driving it LOW
 *
 * @param slave	Pointer to spi_slave to which controller has to
 *		communicate with
 */
static void spi_cs_activate(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);

	/* If it's too soon to do another transaction, wait */
	if (pdata->deactivate_delay_us &&
	    priv->last_transaction_us) {
		ulong delay_us;		/* The delay completed so far */
		delay_us = timer_get_us() - priv->last_transaction_us;
		if (delay_us < pdata->deactivate_delay_us)
			udelay(pdata->deactivate_delay_us - delay_us);
	}

	clrbits_le32(&priv->regs->command1, QSPI_CMD1_CS_SW_VAL);
}

/**
 * Deactivate the CS by driving it HIGH
 *
 * @param slave	Pointer to spi_slave to which controller has to
 *		communicate with
 */
static void spi_cs_deactivate(struct udevice *dev)
{
	struct udevice *bus = dev->parent;
	struct tegra_spi_platdata *pdata = dev_get_platdata(bus);
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);

	setbits_le32(&priv->regs->command1, QSPI_CMD1_CS_SW_VAL);

	/* Remember time of this transaction so we can honour the bus delay */
	if (pdata->deactivate_delay_us)
		priv->last_transaction_us = timer_get_us();

	debug("Deactivate CS, bus '%s'\n", bus->name);
}

static int tegra210_qspi_xfer(struct udevice *dev, unsigned int bitlen,
			     const void *data_out, void *data_in,
			     unsigned long flags)
{
	struct udevice *bus = dev->parent;
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);
	struct qspi_regs *regs = priv->regs;
	u32 reg, tmpdout, tmpdin = 0;
	const u8 *dout = data_out;
	u8 *din = data_in;
	int num_bytes, tm, ret;

	debug("%s: slave %u:%u dout %p din %p bitlen %u\n",
	      __func__, bus->seq, spi_chip_select(dev), dout, din, bitlen);
	if (bitlen % 8)
		return -1;
	num_bytes = bitlen / 8;

	ret = 0;

	/* clear all error status bits */
	reg = readl(&regs->fifo_status);
	writel(reg, &regs->fifo_status);

	/* flush RX/TX FIFOs */
	setbits_le32(&regs->fifo_status,
		     (QSPI_FIFO_STS_RX_FIFO_FLUSH |
		      QSPI_FIFO_STS_TX_FIFO_FLUSH));

	tm = QSPI_TIMEOUT;
	while ((tm && readl(&regs->fifo_status) &
		      (QSPI_FIFO_STS_RX_FIFO_FLUSH |
		       QSPI_FIFO_STS_TX_FIFO_FLUSH))) {
		tm--;
		udelay(1);
	}

	if (!tm) {
		printf("%s: timeout during QSPI FIFO flush!\n",
		       __func__);
		return -1;
	}

	/*
	 * Notes:
	 *   1. don't set LSBY_FE, so no need to swap bytes from/to TX/RX FIFOs;
	 *   2. don't set RX_EN and TX_EN yet.
	 *      (SW needs to make sure that while programming the blk_size,
	 *       tx_en and rx_en bits must be zero)
	 *      [TODO] I (Yen Lin) have problems when both RX/TX EN bits are set
	 *	       i.e., both dout and din are not NULL.
	 */
	clrsetbits_le32(&regs->command1,
			(QSPI_CMD1_LSBI_FE | QSPI_CMD1_LSBY_FE |
			 QSPI_CMD1_RX_EN | QSPI_CMD1_TX_EN),
			(spi_chip_select(dev) << QSPI_CMD1_CS_SEL_SHIFT));

	/* set xfer size to 1 block (32 bits) */
	writel(0, &regs->dma_blk);

	if (flags & SPI_XFER_BEGIN)
		spi_cs_activate(dev);

	/* handle data in 32-bit chunks */
	while (num_bytes > 0) {
		int bytes;

		tmpdout = 0;
		bytes = (num_bytes > 4) ?  4 : num_bytes;

		if (dout != NULL) {
			memcpy((void *)&tmpdout, (void *)dout, bytes);
			dout += bytes;
			num_bytes -= bytes;
			writel(tmpdout, &regs->tx_fifo);
			setbits_le32(&regs->command1, QSPI_CMD1_TX_EN);
		}

		if (din != NULL)
			setbits_le32(&regs->command1, QSPI_CMD1_RX_EN);

		/* clear ready bit */
		setbits_le32(&regs->xfer_status, QSPI_XFER_STS_RDY);

		clrsetbits_le32(&regs->command1,
				QSPI_CMD1_BITLEN_MASK << QSPI_CMD1_BITLEN_SHIFT,
				(bytes * 8 - 1) << QSPI_CMD1_BITLEN_SHIFT);

		/* Need to stabilize other reg bits before GO bit set.
		 * As per the TRM:
		 * "For successful operation at various freq combinations,
		 * a minimum of 4-5 spi_clk cycle delay might be required
		 * before enabling the PIO or DMA bits. The worst case delay
		 * calculation can be done considering slowest qspi_clk as
		 * 1MHz. Based on that 1us delay should be enough before
		 * enabling PIO or DMA." Padded another 1us for safety.
		 */
		udelay(2);
		setbits_le32(&regs->command1, QSPI_CMD1_GO);
		udelay(1);

		/*
		 * Wait for SPI transmit FIFO to empty, or to time out.
		 * The RX FIFO status will be read and cleared last
		 */
		for (tm = 0; tm < QSPI_TIMEOUT; ++tm) {
			u32 fifo_status, xfer_status;

			xfer_status = readl(&regs->xfer_status);
			if (!(xfer_status & QSPI_XFER_STS_RDY))
				continue;

			fifo_status = readl(&regs->fifo_status);
			if (fifo_status & QSPI_FIFO_STS_ERR) {
				debug("%s: got a fifo error: ", __func__);
				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_OVF)
					debug("tx FIFO overflow ");
				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_UNR)
					debug("tx FIFO underrun ");
				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_OVF)
					debug("rx FIFO overflow ");
				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_UNR)
					debug("rx FIFO underrun ");
				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_FULL)
					debug("tx FIFO full ");
				if (fifo_status & QSPI_FIFO_STS_TX_FIFO_EMPTY)
					debug("tx FIFO empty ");
				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_FULL)
					debug("rx FIFO full ");
				if (fifo_status & QSPI_FIFO_STS_RX_FIFO_EMPTY)
					debug("rx FIFO empty ");
				debug("\n");
				break;
			}

			if (!(fifo_status & QSPI_FIFO_STS_RX_FIFO_EMPTY)) {
				tmpdin = readl(&regs->rx_fifo);
				if (din != NULL) {
					memcpy(din, &tmpdin, bytes);
					din += bytes;
					num_bytes -= bytes;
				}
			}
			break;
		}

		if (tm >= QSPI_TIMEOUT)
			ret = tm;

		/* clear ACK RDY, etc. bits */
		writel(readl(&regs->fifo_status), &regs->fifo_status);
	}

	if (flags & SPI_XFER_END)
		spi_cs_deactivate(dev);

	debug("%s: transfer ended. Value=%08x, fifo_status = %08x\n",
	      __func__, tmpdin, readl(&regs->fifo_status));

	if (ret) {
		printf("%s: timeout during SPI transfer, tm %d\n",
		       __func__, ret);
		return -1;
	}

	return ret;
}

static int tegra210_qspi_set_speed(struct udevice *bus, uint speed)
{
	struct tegra_spi_platdata *plat = bus->platdata;
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);

	if (speed > plat->frequency)
		speed = plat->frequency;
	priv->freq = speed;
	debug("%s: regs=%p, speed=%d\n", __func__, priv->regs, priv->freq);

	return 0;
}

static int tegra210_qspi_set_mode(struct udevice *bus, uint mode)
{
	struct tegra210_qspi_priv *priv = dev_get_priv(bus);

	priv->mode = mode;
	debug("%s: regs=%p, mode=%d\n", __func__, priv->regs, priv->mode);

	return 0;
}

static const struct dm_spi_ops tegra210_qspi_ops = {
	.claim_bus	= tegra210_qspi_claim_bus,
	.xfer		= tegra210_qspi_xfer,
	.set_speed	= tegra210_qspi_set_speed,
	.set_mode	= tegra210_qspi_set_mode,
	/*
	 * cs_info is not needed, since we require all chip selects to be
	 * in the device tree explicitly
	 */
};

static const struct udevice_id tegra210_qspi_ids[] = {
	{ .compatible = "nvidia,tegra210-qspi" },
	{ }
};

U_BOOT_DRIVER(tegra210_qspi) = {
	.name = "tegra210-qspi",
	.id = UCLASS_SPI,
	.of_match = tegra210_qspi_ids,
	.ops = &tegra210_qspi_ops,
	.ofdata_to_platdata = tegra210_qspi_ofdata_to_platdata,
	.platdata_auto_alloc_size = sizeof(struct tegra_spi_platdata),
	.priv_auto_alloc_size = sizeof(struct tegra210_qspi_priv),
	.per_child_auto_alloc_size = sizeof(struct spi_slave),
	.probe = tegra210_qspi_probe,
};