Commit 139a6f95be94f75e4038e0eacddbd1f0a365f601

Authored by Peng Fan
1 parent 0b65071afa

MLK-12852 ocotp: mxc: mx6ull: fix GP3/GP4 prog

Bank 7 and Bank 8 only supports 4 words each. 'bank << 3 | word'
is not correct when program bank 8, since ocotp controller actully
use word index.

For example: fuse prog 8 3 1; The word index is (8 << 3 | 3) --> 67.
But actully it should be (7 << 3 | 7) ---> 63.
So fix it.

Signed-off-by: Peng Fan <peng.fan@nxp.com>

Showing 1 changed file with 7 additions and 1 deletions Inline Diff

drivers/misc/mxc_ocotp.c
1 /* 1 /*
2 * (C) Copyright 2013 ADVANSEE 2 * (C) Copyright 2013 ADVANSEE
3 * Benoît Thébaudeau <benoit.thebaudeau@advansee.com> 3 * Benoît Thébaudeau <benoit.thebaudeau@advansee.com>
4 * 4 *
5 * Based on Dirk Behme's 5 * Based on Dirk Behme's
6 * https://github.com/dirkbehme/u-boot-imx6/blob/28b17e9/drivers/misc/imx_otp.c, 6 * https://github.com/dirkbehme/u-boot-imx6/blob/28b17e9/drivers/misc/imx_otp.c,
7 * which is based on Freescale's 7 * which is based on Freescale's
8 * http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/tree/drivers/misc/imx_otp.c?h=imx_v2009.08_1.1.0&id=9aa74e6, 8 * http://git.freescale.com/git/cgit.cgi/imx/uboot-imx.git/tree/drivers/misc/imx_otp.c?h=imx_v2009.08_1.1.0&id=9aa74e6,
9 * which is: 9 * which is:
10 * Copyright (C) 2011-2016 Freescale Semiconductor, Inc. 10 * Copyright (C) 2011-2016 Freescale Semiconductor, Inc.
11 * 11 *
12 * SPDX-License-Identifier: GPL-2.0+ 12 * SPDX-License-Identifier: GPL-2.0+
13 */ 13 */
14 14
15 #include <common.h> 15 #include <common.h>
16 #include <fuse.h> 16 #include <fuse.h>
17 #include <asm/errno.h> 17 #include <asm/errno.h>
18 #include <asm/io.h> 18 #include <asm/io.h>
19 #include <asm/arch/clock.h> 19 #include <asm/arch/clock.h>
20 #include <asm/arch/imx-regs.h> 20 #include <asm/arch/imx-regs.h>
21 #include <asm/imx-common/sys_proto.h> 21 #include <asm/imx-common/sys_proto.h>
22 22
23 #define BO_CTRL_WR_UNLOCK 16 23 #define BO_CTRL_WR_UNLOCK 16
24 #define BM_CTRL_WR_UNLOCK 0xffff0000 24 #define BM_CTRL_WR_UNLOCK 0xffff0000
25 #define BV_CTRL_WR_UNLOCK_KEY 0x3e77 25 #define BV_CTRL_WR_UNLOCK_KEY 0x3e77
26 #define BM_CTRL_ERROR 0x00000200 26 #define BM_CTRL_ERROR 0x00000200
27 #define BM_CTRL_BUSY 0x00000100 27 #define BM_CTRL_BUSY 0x00000100
28 #define BO_CTRL_ADDR 0 28 #define BO_CTRL_ADDR 0
29 #ifdef CONFIG_MX7 29 #ifdef CONFIG_MX7
30 #define BM_CTRL_ADDR 0x0000000f 30 #define BM_CTRL_ADDR 0x0000000f
31 #define BM_CTRL_RELOAD 0x00000400 31 #define BM_CTRL_RELOAD 0x00000400
32 #else 32 #else
33 #define BM_CTRL_ADDR 0x0000007f 33 #define BM_CTRL_ADDR 0x0000007f
34 #endif 34 #endif
35 35
36 #ifdef CONFIG_MX7 36 #ifdef CONFIG_MX7
37 #define BO_TIMING_FSOURCE 12 37 #define BO_TIMING_FSOURCE 12
38 #define BM_TIMING_FSOURCE 0x0007f000 38 #define BM_TIMING_FSOURCE 0x0007f000
39 #define BV_TIMING_FSOURCE_NS 1001 39 #define BV_TIMING_FSOURCE_NS 1001
40 #define BO_TIMING_PROG 0 40 #define BO_TIMING_PROG 0
41 #define BM_TIMING_PROG 0x00000fff 41 #define BM_TIMING_PROG 0x00000fff
42 #define BV_TIMING_PROG_US 10 42 #define BV_TIMING_PROG_US 10
43 #else 43 #else
44 #define BO_TIMING_STROBE_READ 16 44 #define BO_TIMING_STROBE_READ 16
45 #define BM_TIMING_STROBE_READ 0x003f0000 45 #define BM_TIMING_STROBE_READ 0x003f0000
46 #define BV_TIMING_STROBE_READ_NS 37 46 #define BV_TIMING_STROBE_READ_NS 37
47 #define BO_TIMING_RELAX 12 47 #define BO_TIMING_RELAX 12
48 #define BM_TIMING_RELAX 0x0000f000 48 #define BM_TIMING_RELAX 0x0000f000
49 #define BV_TIMING_RELAX_NS 17 49 #define BV_TIMING_RELAX_NS 17
50 #define BO_TIMING_STROBE_PROG 0 50 #define BO_TIMING_STROBE_PROG 0
51 #define BM_TIMING_STROBE_PROG 0x00000fff 51 #define BM_TIMING_STROBE_PROG 0x00000fff
52 #define BV_TIMING_STROBE_PROG_US 10 52 #define BV_TIMING_STROBE_PROG_US 10
53 #endif 53 #endif
54 54
55 #define BM_READ_CTRL_READ_FUSE 0x00000001 55 #define BM_READ_CTRL_READ_FUSE 0x00000001
56 56
57 #define BF(value, field) (((value) << BO_##field) & BM_##field) 57 #define BF(value, field) (((value) << BO_##field) & BM_##field)
58 58
59 #define WRITE_POSTAMBLE_US 2 59 #define WRITE_POSTAMBLE_US 2
60 60
61 #if defined(CONFIG_MX6) || defined(CONFIG_VF610) 61 #if defined(CONFIG_MX6) || defined(CONFIG_VF610)
62 #define FUSE_BANK_SIZE 0x80 62 #define FUSE_BANK_SIZE 0x80
63 #ifdef CONFIG_MX6SL 63 #ifdef CONFIG_MX6SL
64 #define FUSE_BANKS 8 64 #define FUSE_BANKS 8
65 #elif defined CONFIG_MX6ULL 65 #elif defined CONFIG_MX6ULL
66 #define FUSE_BANKS 9 66 #define FUSE_BANKS 9
67 #else 67 #else
68 #define FUSE_BANKS 16 68 #define FUSE_BANKS 16
69 #endif 69 #endif
70 #elif defined CONFIG_MX7 70 #elif defined CONFIG_MX7
71 #define FUSE_BANK_SIZE 0x40 71 #define FUSE_BANK_SIZE 0x40
72 #define FUSE_BANKS 16 72 #define FUSE_BANKS 16
73 #else 73 #else
74 #error "Unsupported architecture\n" 74 #error "Unsupported architecture\n"
75 #endif 75 #endif
76 76
77 #if defined(CONFIG_MX6) 77 #if defined(CONFIG_MX6)
78 78
79 /* 79 /*
80 * There is a hole in shadow registers address map of size 0x100 80 * There is a hole in shadow registers address map of size 0x100
81 * between bank 5 and bank 6 on iMX6QP, iMX6DQ, iMX6SDL, iMX6SX, iMX6UL and iMX6ULL. 81 * between bank 5 and bank 6 on iMX6QP, iMX6DQ, iMX6SDL, iMX6SX, iMX6UL and iMX6ULL.
82 * Bank 5 ends at 0x6F0 and Bank 6 starts at 0x800. When reading the fuses, 82 * Bank 5 ends at 0x6F0 and Bank 6 starts at 0x800. When reading the fuses,
83 * we should account for this hole in address space. 83 * we should account for this hole in address space.
84 * 84 *
85 * Similar hole exists between bank 14 and bank 15 of size 85 * Similar hole exists between bank 14 and bank 15 of size
86 * 0x80 on iMX6QP, iMX6DQ, iMX6SDL and iMX6SX. 86 * 0x80 on iMX6QP, iMX6DQ, iMX6SDL and iMX6SX.
87 * Note: iMX6SL has only 0-7 banks and there is no hole. 87 * Note: iMX6SL has only 0-7 banks and there is no hole.
88 * Note: iMX6UL doesn't have this one. 88 * Note: iMX6UL doesn't have this one.
89 * 89 *
90 * This function is to covert user input to physical bank index. 90 * This function is to covert user input to physical bank index.
91 * Only needed when read fuse, because we use register offset, so 91 * Only needed when read fuse, because we use register offset, so
92 * need to calculate real register offset. 92 * need to calculate real register offset.
93 * When write, no need to consider hole, always use the bank/word 93 * When write, no need to consider hole, always use the bank/word
94 * index from fuse map. 94 * index from fuse map.
95 */ 95 */
96 u32 fuse_bank_physical(int index) 96 u32 fuse_bank_physical(int index)
97 { 97 {
98 u32 phy_index; 98 u32 phy_index;
99 99
100 if (is_cpu_type(MXC_CPU_MX6SL)) { 100 if (is_cpu_type(MXC_CPU_MX6SL)) {
101 phy_index = index; 101 phy_index = index;
102 } else if (is_cpu_type(MXC_CPU_MX6UL) || is_cpu_type(MXC_CPU_MX6ULL)) { 102 } else if (is_cpu_type(MXC_CPU_MX6UL) || is_cpu_type(MXC_CPU_MX6ULL)) {
103 if (is_cpu_type(MXC_CPU_MX6ULL) && index == 8) 103 if (is_cpu_type(MXC_CPU_MX6ULL) && index == 8)
104 index = 7; 104 index = 7;
105 105
106 if (index >= 6) 106 if (index >= 6)
107 phy_index = fuse_bank_physical(5) + (index - 6) + 3; 107 phy_index = fuse_bank_physical(5) + (index - 6) + 3;
108 else 108 else
109 phy_index = index; 109 phy_index = index;
110 } else { 110 } else {
111 if (index >= 15) 111 if (index >= 15)
112 phy_index = fuse_bank_physical(14) + (index - 15) + 2; 112 phy_index = fuse_bank_physical(14) + (index - 15) + 2;
113 else if (index >= 6) 113 else if (index >= 6)
114 phy_index = fuse_bank_physical(5) + (index - 6) + 3; 114 phy_index = fuse_bank_physical(5) + (index - 6) + 3;
115 else 115 else
116 phy_index = index; 116 phy_index = index;
117 } 117 }
118 return phy_index; 118 return phy_index;
119 } 119 }
120 120
121 u32 fuse_word_physical(u32 bank, u32 word_index) 121 u32 fuse_word_physical(u32 bank, u32 word_index)
122 { 122 {
123 if (is_cpu_type(MXC_CPU_MX6ULL)) { 123 if (is_cpu_type(MXC_CPU_MX6ULL)) {
124 if (bank == 8) 124 if (bank == 8)
125 word_index = word_index + 4; 125 word_index = word_index + 4;
126 } 126 }
127 127
128 return word_index; 128 return word_index;
129 } 129 }
130 #else 130 #else
131 u32 fuse_bank_physical(int index) 131 u32 fuse_bank_physical(int index)
132 { 132 {
133 return index; 133 return index;
134 } 134 }
135 135
136 u32 fuse_word_physical(u32 bank, u32 word_index) 136 u32 fuse_word_physical(u32 bank, u32 word_index)
137 { 137 {
138 return word_index; 138 return word_index;
139 } 139 }
140 140
141 #endif 141 #endif
142 142
143 static void wait_busy(struct ocotp_regs *regs, unsigned int delay_us) 143 static void wait_busy(struct ocotp_regs *regs, unsigned int delay_us)
144 { 144 {
145 while (readl(&regs->ctrl) & BM_CTRL_BUSY) 145 while (readl(&regs->ctrl) & BM_CTRL_BUSY)
146 udelay(delay_us); 146 udelay(delay_us);
147 } 147 }
148 148
149 static void clear_error(struct ocotp_regs *regs) 149 static void clear_error(struct ocotp_regs *regs)
150 { 150 {
151 writel(BM_CTRL_ERROR, &regs->ctrl_clr); 151 writel(BM_CTRL_ERROR, &regs->ctrl_clr);
152 } 152 }
153 153
154 static int prepare_access(struct ocotp_regs **regs, u32 bank, u32 word, 154 static int prepare_access(struct ocotp_regs **regs, u32 bank, u32 word,
155 int assert, const char *caller) 155 int assert, const char *caller)
156 { 156 {
157 *regs = (struct ocotp_regs *)OCOTP_BASE_ADDR; 157 *regs = (struct ocotp_regs *)OCOTP_BASE_ADDR;
158 158
159 if (bank >= FUSE_BANKS || 159 if (bank >= FUSE_BANKS ||
160 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 2 || 160 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 2 ||
161 !assert) { 161 !assert) {
162 printf("mxc_ocotp %s(): Invalid argument\n", caller); 162 printf("mxc_ocotp %s(): Invalid argument\n", caller);
163 return -EINVAL; 163 return -EINVAL;
164 } 164 }
165 165
166 if (is_cpu_type(MXC_CPU_MX6ULL)) { 166 if (is_cpu_type(MXC_CPU_MX6ULL)) {
167 if ((bank == 7 || bank == 8) && 167 if ((bank == 7 || bank == 8) &&
168 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 3) { 168 word >= ARRAY_SIZE((*regs)->bank[0].fuse_regs) >> 3) {
169 printf("mxc_ocotp %s(): Invalid argument on 6ULL\n", caller); 169 printf("mxc_ocotp %s(): Invalid argument on 6ULL\n", caller);
170 return -EINVAL; 170 return -EINVAL;
171 } 171 }
172 } 172 }
173 173
174 enable_ocotp_clk(1); 174 enable_ocotp_clk(1);
175 175
176 wait_busy(*regs, 1); 176 wait_busy(*regs, 1);
177 clear_error(*regs); 177 clear_error(*regs);
178 178
179 return 0; 179 return 0;
180 } 180 }
181 181
182 static int finish_access(struct ocotp_regs *regs, const char *caller) 182 static int finish_access(struct ocotp_regs *regs, const char *caller)
183 { 183 {
184 u32 err; 184 u32 err;
185 185
186 err = !!(readl(&regs->ctrl) & BM_CTRL_ERROR); 186 err = !!(readl(&regs->ctrl) & BM_CTRL_ERROR);
187 clear_error(regs); 187 clear_error(regs);
188 188
189 if (err) { 189 if (err) {
190 printf("mxc_ocotp %s(): Access protect error\n", caller); 190 printf("mxc_ocotp %s(): Access protect error\n", caller);
191 return -EIO; 191 return -EIO;
192 } 192 }
193 193
194 return 0; 194 return 0;
195 } 195 }
196 196
197 static int prepare_read(struct ocotp_regs **regs, u32 bank, u32 word, u32 *val, 197 static int prepare_read(struct ocotp_regs **regs, u32 bank, u32 word, u32 *val,
198 const char *caller) 198 const char *caller)
199 { 199 {
200 return prepare_access(regs, bank, word, val != NULL, caller); 200 return prepare_access(regs, bank, word, val != NULL, caller);
201 } 201 }
202 202
203 int fuse_read(u32 bank, u32 word, u32 *val) 203 int fuse_read(u32 bank, u32 word, u32 *val)
204 { 204 {
205 struct ocotp_regs *regs; 205 struct ocotp_regs *regs;
206 int ret; 206 int ret;
207 u32 phy_bank; 207 u32 phy_bank;
208 u32 phy_word; 208 u32 phy_word;
209 209
210 ret = prepare_read(&regs, bank, word, val, __func__); 210 ret = prepare_read(&regs, bank, word, val, __func__);
211 if (ret) 211 if (ret)
212 return ret; 212 return ret;
213 213
214 phy_bank = fuse_bank_physical(bank); 214 phy_bank = fuse_bank_physical(bank);
215 phy_word = fuse_word_physical(bank, word); 215 phy_word = fuse_word_physical(bank, word);
216 216
217 *val = readl(&regs->bank[phy_bank].fuse_regs[phy_word << 2]); 217 *val = readl(&regs->bank[phy_bank].fuse_regs[phy_word << 2]);
218 218
219 return finish_access(regs, __func__); 219 return finish_access(regs, __func__);
220 } 220 }
221 221
222 #ifdef CONFIG_MX7 222 #ifdef CONFIG_MX7
223 static void set_timing(struct ocotp_regs *regs) 223 static void set_timing(struct ocotp_regs *regs)
224 { 224 {
225 u32 ipg_clk; 225 u32 ipg_clk;
226 u32 fsource, prog; 226 u32 fsource, prog;
227 u32 timing; 227 u32 timing;
228 228
229 ipg_clk = mxc_get_clock(MXC_IPG_CLK); 229 ipg_clk = mxc_get_clock(MXC_IPG_CLK);
230 230
231 fsource = DIV_ROUND_UP((ipg_clk / 1000) * BV_TIMING_FSOURCE_NS, 231 fsource = DIV_ROUND_UP((ipg_clk / 1000) * BV_TIMING_FSOURCE_NS,
232 + 1000000) + 1; 232 + 1000000) + 1;
233 prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_PROG_US, 1000000) + 1; 233 prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_PROG_US, 1000000) + 1;
234 234
235 timing = BF(fsource, TIMING_FSOURCE) | BF(prog, TIMING_PROG); 235 timing = BF(fsource, TIMING_FSOURCE) | BF(prog, TIMING_PROG);
236 236
237 clrsetbits_le32(&regs->timing, BM_TIMING_FSOURCE | BM_TIMING_PROG, 237 clrsetbits_le32(&regs->timing, BM_TIMING_FSOURCE | BM_TIMING_PROG,
238 timing); 238 timing);
239 } 239 }
240 #else 240 #else
241 static void set_timing(struct ocotp_regs *regs) 241 static void set_timing(struct ocotp_regs *regs)
242 { 242 {
243 u32 ipg_clk; 243 u32 ipg_clk;
244 u32 relax, strobe_read, strobe_prog; 244 u32 relax, strobe_read, strobe_prog;
245 u32 timing; 245 u32 timing;
246 246
247 ipg_clk = mxc_get_clock(MXC_IPG_CLK); 247 ipg_clk = mxc_get_clock(MXC_IPG_CLK);
248 248
249 relax = DIV_ROUND_UP(ipg_clk * BV_TIMING_RELAX_NS, 1000000000) - 1; 249 relax = DIV_ROUND_UP(ipg_clk * BV_TIMING_RELAX_NS, 1000000000) - 1;
250 strobe_read = DIV_ROUND_UP(ipg_clk * BV_TIMING_STROBE_READ_NS, 250 strobe_read = DIV_ROUND_UP(ipg_clk * BV_TIMING_STROBE_READ_NS,
251 1000000000) + 2 * (relax + 1) - 1; 251 1000000000) + 2 * (relax + 1) - 1;
252 strobe_prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_STROBE_PROG_US, 252 strobe_prog = DIV_ROUND_CLOSEST(ipg_clk * BV_TIMING_STROBE_PROG_US,
253 1000000) + 2 * (relax + 1) - 1; 253 1000000) + 2 * (relax + 1) - 1;
254 254
255 timing = BF(strobe_read, TIMING_STROBE_READ) | 255 timing = BF(strobe_read, TIMING_STROBE_READ) |
256 BF(relax, TIMING_RELAX) | 256 BF(relax, TIMING_RELAX) |
257 BF(strobe_prog, TIMING_STROBE_PROG); 257 BF(strobe_prog, TIMING_STROBE_PROG);
258 258
259 clrsetbits_le32(&regs->timing, BM_TIMING_STROBE_READ | BM_TIMING_RELAX | 259 clrsetbits_le32(&regs->timing, BM_TIMING_STROBE_READ | BM_TIMING_RELAX |
260 BM_TIMING_STROBE_PROG, timing); 260 BM_TIMING_STROBE_PROG, timing);
261 } 261 }
262 #endif 262 #endif
263 263
264 static void setup_direct_access(struct ocotp_regs *regs, u32 bank, u32 word, 264 static void setup_direct_access(struct ocotp_regs *regs, u32 bank, u32 word,
265 int write) 265 int write)
266 { 266 {
267 u32 wr_unlock = write ? BV_CTRL_WR_UNLOCK_KEY : 0; 267 u32 wr_unlock = write ? BV_CTRL_WR_UNLOCK_KEY : 0;
268 #ifdef CONFIG_MX7 268 #ifdef CONFIG_MX7
269 u32 addr = bank; 269 u32 addr = bank;
270 #else 270 #else
271 u32 addr = bank << 3 | word; 271 u32 addr;
272 /* Bank 7 and Bank 8 only supports 4 words each */
273 if ((is_cpu_type(MXC_CPU_MX6ULL)) && (bank > 7)) {
274 bank = bank - 1;
275 word += 4;
276 }
277 addr = bank << 3 | word;
272 #endif 278 #endif
273 279
274 set_timing(regs); 280 set_timing(regs);
275 clrsetbits_le32(&regs->ctrl, BM_CTRL_WR_UNLOCK | BM_CTRL_ADDR, 281 clrsetbits_le32(&regs->ctrl, BM_CTRL_WR_UNLOCK | BM_CTRL_ADDR,
276 BF(wr_unlock, CTRL_WR_UNLOCK) | 282 BF(wr_unlock, CTRL_WR_UNLOCK) |
277 BF(addr, CTRL_ADDR)); 283 BF(addr, CTRL_ADDR));
278 } 284 }
279 285
280 int fuse_sense(u32 bank, u32 word, u32 *val) 286 int fuse_sense(u32 bank, u32 word, u32 *val)
281 { 287 {
282 struct ocotp_regs *regs; 288 struct ocotp_regs *regs;
283 int ret; 289 int ret;
284 290
285 ret = prepare_read(&regs, bank, word, val, __func__); 291 ret = prepare_read(&regs, bank, word, val, __func__);
286 if (ret) 292 if (ret)
287 return ret; 293 return ret;
288 294
289 setup_direct_access(regs, bank, word, false); 295 setup_direct_access(regs, bank, word, false);
290 writel(BM_READ_CTRL_READ_FUSE, &regs->read_ctrl); 296 writel(BM_READ_CTRL_READ_FUSE, &regs->read_ctrl);
291 wait_busy(regs, 1); 297 wait_busy(regs, 1);
292 #ifdef CONFIG_MX7 298 #ifdef CONFIG_MX7
293 *val = readl((&regs->read_fuse_data0) + (word << 2)); 299 *val = readl((&regs->read_fuse_data0) + (word << 2));
294 #else 300 #else
295 *val = readl(&regs->read_fuse_data); 301 *val = readl(&regs->read_fuse_data);
296 #endif 302 #endif
297 303
298 return finish_access(regs, __func__); 304 return finish_access(regs, __func__);
299 } 305 }
300 306
301 static int prepare_write(struct ocotp_regs **regs, u32 bank, u32 word, 307 static int prepare_write(struct ocotp_regs **regs, u32 bank, u32 word,
302 const char *caller) 308 const char *caller)
303 { 309 {
304 return prepare_access(regs, bank, word, true, caller); 310 return prepare_access(regs, bank, word, true, caller);
305 } 311 }
306 312
307 int fuse_prog(u32 bank, u32 word, u32 val) 313 int fuse_prog(u32 bank, u32 word, u32 val)
308 { 314 {
309 struct ocotp_regs *regs; 315 struct ocotp_regs *regs;
310 int ret; 316 int ret;
311 317
312 ret = prepare_write(&regs, bank, word, __func__); 318 ret = prepare_write(&regs, bank, word, __func__);
313 if (ret) 319 if (ret)
314 return ret; 320 return ret;
315 321
316 setup_direct_access(regs, bank, word, true); 322 setup_direct_access(regs, bank, word, true);
317 #ifdef CONFIG_MX7 323 #ifdef CONFIG_MX7
318 switch (word) { 324 switch (word) {
319 case 0: 325 case 0:
320 writel(0, &regs->data1); 326 writel(0, &regs->data1);
321 writel(0, &regs->data2); 327 writel(0, &regs->data2);
322 writel(0, &regs->data3); 328 writel(0, &regs->data3);
323 writel(val, &regs->data0); 329 writel(val, &regs->data0);
324 break; 330 break;
325 case 1: 331 case 1:
326 writel(val, &regs->data1); 332 writel(val, &regs->data1);
327 writel(0, &regs->data2); 333 writel(0, &regs->data2);
328 writel(0, &regs->data3); 334 writel(0, &regs->data3);
329 writel(0, &regs->data0); 335 writel(0, &regs->data0);
330 break; 336 break;
331 case 2: 337 case 2:
332 writel(0, &regs->data1); 338 writel(0, &regs->data1);
333 writel(val, &regs->data2); 339 writel(val, &regs->data2);
334 writel(0, &regs->data3); 340 writel(0, &regs->data3);
335 writel(0, &regs->data0); 341 writel(0, &regs->data0);
336 break; 342 break;
337 case 3: 343 case 3:
338 writel(0, &regs->data1); 344 writel(0, &regs->data1);
339 writel(0, &regs->data2); 345 writel(0, &regs->data2);
340 writel(val, &regs->data3); 346 writel(val, &regs->data3);
341 writel(0, &regs->data0); 347 writel(0, &regs->data0);
342 break; 348 break;
343 } 349 }
344 wait_busy(regs, BV_TIMING_PROG_US); 350 wait_busy(regs, BV_TIMING_PROG_US);
345 #else 351 #else
346 writel(val, &regs->data); 352 writel(val, &regs->data);
347 wait_busy(regs, BV_TIMING_STROBE_PROG_US); 353 wait_busy(regs, BV_TIMING_STROBE_PROG_US);
348 #endif 354 #endif
349 udelay(WRITE_POSTAMBLE_US); 355 udelay(WRITE_POSTAMBLE_US);
350 356
351 return finish_access(regs, __func__); 357 return finish_access(regs, __func__);
352 } 358 }
353 359
354 int fuse_override(u32 bank, u32 word, u32 val) 360 int fuse_override(u32 bank, u32 word, u32 val)
355 { 361 {
356 struct ocotp_regs *regs; 362 struct ocotp_regs *regs;
357 int ret; 363 int ret;
358 u32 phy_bank; 364 u32 phy_bank;
359 u32 phy_word; 365 u32 phy_word;
360 366
361 ret = prepare_write(&regs, bank, word, __func__); 367 ret = prepare_write(&regs, bank, word, __func__);
362 if (ret) 368 if (ret)
363 return ret; 369 return ret;
364 370
365 phy_bank = fuse_bank_physical(bank); 371 phy_bank = fuse_bank_physical(bank);
366 phy_word = fuse_word_physical(bank, word); 372 phy_word = fuse_word_physical(bank, word);
367 373
368 writel(val, &regs->bank[phy_bank].fuse_regs[phy_word << 2]); 374 writel(val, &regs->bank[phy_bank].fuse_regs[phy_word << 2]);
369 375
370 return finish_access(regs, __func__); 376 return finish_access(regs, __func__);
371 } 377 }
372 378