Commit 90321dce0da1ba0844a7066a1034cdf73b8613c6

Authored by Kishon Vijay Abraham I
Committed by Jaehoon Chung
1 parent 42182c9b9c

mmc: omap_hsmmc: allow mmc clock to be gated

mmc core has defined a new parameter *clk_disable* to gate the clock.
Disable the clock here if *clk_disable* is set.

Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
Signed-off-by: Jean-Jacques Hiblot <jjhiblot@ti.com>

Showing 1 changed file with 6 additions and 0 deletions Inline Diff

drivers/mmc/omap_hsmmc.c
1 /* 1 /*
2 * (C) Copyright 2008 2 * (C) Copyright 2008
3 * Texas Instruments, <www.ti.com> 3 * Texas Instruments, <www.ti.com>
4 * Sukumar Ghorai <s-ghorai@ti.com> 4 * Sukumar Ghorai <s-ghorai@ti.com>
5 * 5 *
6 * See file CREDITS for list of people who contributed to this 6 * See file CREDITS for list of people who contributed to this
7 * project. 7 * project.
8 * 8 *
9 * This program is free software; you can redistribute it and/or 9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License as 10 * modify it under the terms of the GNU General Public License as
11 * published by the Free Software Foundation's version 2 of 11 * published by the Free Software Foundation's version 2 of
12 * the License. 12 * the License.
13 * 13 *
14 * This program is distributed in the hope that it will be useful, 14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details. 17 * GNU General Public License for more details.
18 * 18 *
19 * You should have received a copy of the GNU General Public License 19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software 20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, 21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
22 * MA 02111-1307 USA 22 * MA 02111-1307 USA
23 */ 23 */
24 24
25 #include <config.h> 25 #include <config.h>
26 #include <common.h> 26 #include <common.h>
27 #include <malloc.h> 27 #include <malloc.h>
28 #include <memalign.h> 28 #include <memalign.h>
29 #include <mmc.h> 29 #include <mmc.h>
30 #include <part.h> 30 #include <part.h>
31 #include <i2c.h> 31 #include <i2c.h>
32 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX) 32 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
33 #include <palmas.h> 33 #include <palmas.h>
34 #endif 34 #endif
35 #include <asm/io.h> 35 #include <asm/io.h>
36 #include <asm/arch/mmc_host_def.h> 36 #include <asm/arch/mmc_host_def.h>
37 #ifdef CONFIG_OMAP54XX 37 #ifdef CONFIG_OMAP54XX
38 #include <asm/arch/mux_dra7xx.h> 38 #include <asm/arch/mux_dra7xx.h>
39 #include <asm/arch/dra7xx_iodelay.h> 39 #include <asm/arch/dra7xx_iodelay.h>
40 #endif 40 #endif
41 #if !defined(CONFIG_SOC_KEYSTONE) 41 #if !defined(CONFIG_SOC_KEYSTONE)
42 #include <asm/gpio.h> 42 #include <asm/gpio.h>
43 #include <asm/arch/sys_proto.h> 43 #include <asm/arch/sys_proto.h>
44 #endif 44 #endif
45 #ifdef CONFIG_MMC_OMAP36XX_PINS 45 #ifdef CONFIG_MMC_OMAP36XX_PINS
46 #include <asm/arch/mux.h> 46 #include <asm/arch/mux.h>
47 #endif 47 #endif
48 #include <dm.h> 48 #include <dm.h>
49 #include <power/regulator.h> 49 #include <power/regulator.h>
50 50
51 DECLARE_GLOBAL_DATA_PTR; 51 DECLARE_GLOBAL_DATA_PTR;
52 52
53 /* simplify defines to OMAP_HSMMC_USE_GPIO */ 53 /* simplify defines to OMAP_HSMMC_USE_GPIO */
54 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \ 54 #if (defined(CONFIG_OMAP_GPIO) && !defined(CONFIG_SPL_BUILD)) || \
55 (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT)) 55 (defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_GPIO_SUPPORT))
56 #define OMAP_HSMMC_USE_GPIO 56 #define OMAP_HSMMC_USE_GPIO
57 #else 57 #else
58 #undef OMAP_HSMMC_USE_GPIO 58 #undef OMAP_HSMMC_USE_GPIO
59 #endif 59 #endif
60 60
61 /* common definitions for all OMAPs */ 61 /* common definitions for all OMAPs */
62 #define SYSCTL_SRC (1 << 25) 62 #define SYSCTL_SRC (1 << 25)
63 #define SYSCTL_SRD (1 << 26) 63 #define SYSCTL_SRD (1 << 26)
64 64
65 #ifdef CONFIG_IODELAY_RECALIBRATION 65 #ifdef CONFIG_IODELAY_RECALIBRATION
66 struct omap_hsmmc_pinctrl_state { 66 struct omap_hsmmc_pinctrl_state {
67 struct pad_conf_entry *padconf; 67 struct pad_conf_entry *padconf;
68 int npads; 68 int npads;
69 struct iodelay_cfg_entry *iodelay; 69 struct iodelay_cfg_entry *iodelay;
70 int niodelays; 70 int niodelays;
71 }; 71 };
72 #endif 72 #endif
73 73
74 struct omap_hsmmc_data { 74 struct omap_hsmmc_data {
75 struct hsmmc *base_addr; 75 struct hsmmc *base_addr;
76 #if !CONFIG_IS_ENABLED(DM_MMC) 76 #if !CONFIG_IS_ENABLED(DM_MMC)
77 struct mmc_config cfg; 77 struct mmc_config cfg;
78 #endif 78 #endif
79 uint bus_width; 79 uint bus_width;
80 uint clock; 80 uint clock;
81 #ifdef OMAP_HSMMC_USE_GPIO 81 #ifdef OMAP_HSMMC_USE_GPIO
82 #if CONFIG_IS_ENABLED(DM_MMC) 82 #if CONFIG_IS_ENABLED(DM_MMC)
83 struct gpio_desc cd_gpio; /* Change Detect GPIO */ 83 struct gpio_desc cd_gpio; /* Change Detect GPIO */
84 struct gpio_desc wp_gpio; /* Write Protect GPIO */ 84 struct gpio_desc wp_gpio; /* Write Protect GPIO */
85 bool cd_inverted; 85 bool cd_inverted;
86 #else 86 #else
87 int cd_gpio; 87 int cd_gpio;
88 int wp_gpio; 88 int wp_gpio;
89 #endif 89 #endif
90 #endif 90 #endif
91 #if CONFIG_IS_ENABLED(DM_MMC) 91 #if CONFIG_IS_ENABLED(DM_MMC)
92 uint iov; 92 uint iov;
93 enum bus_mode mode; 93 enum bus_mode mode;
94 #endif 94 #endif
95 u8 controller_flags; 95 u8 controller_flags;
96 #ifndef CONFIG_OMAP34XX 96 #ifndef CONFIG_OMAP34XX
97 struct omap_hsmmc_adma_desc *adma_desc_table; 97 struct omap_hsmmc_adma_desc *adma_desc_table;
98 uint desc_slot; 98 uint desc_slot;
99 #endif 99 #endif
100 const char *hw_rev; 100 const char *hw_rev;
101 #ifdef CONFIG_IODELAY_RECALIBRATION 101 #ifdef CONFIG_IODELAY_RECALIBRATION
102 struct omap_hsmmc_pinctrl_state *default_pinctrl_state; 102 struct omap_hsmmc_pinctrl_state *default_pinctrl_state;
103 struct omap_hsmmc_pinctrl_state *hs_pinctrl_state; 103 struct omap_hsmmc_pinctrl_state *hs_pinctrl_state;
104 struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state; 104 struct omap_hsmmc_pinctrl_state *hs200_1_8v_pinctrl_state;
105 struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state; 105 struct omap_hsmmc_pinctrl_state *ddr_1_8v_pinctrl_state;
106 struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state; 106 struct omap_hsmmc_pinctrl_state *sdr12_pinctrl_state;
107 struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state; 107 struct omap_hsmmc_pinctrl_state *sdr25_pinctrl_state;
108 struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state; 108 struct omap_hsmmc_pinctrl_state *ddr50_pinctrl_state;
109 struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state; 109 struct omap_hsmmc_pinctrl_state *sdr50_pinctrl_state;
110 struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state; 110 struct omap_hsmmc_pinctrl_state *sdr104_pinctrl_state;
111 #endif 111 #endif
112 }; 112 };
113 113
114 struct omap_mmc_of_data { 114 struct omap_mmc_of_data {
115 u8 controller_flags; 115 u8 controller_flags;
116 }; 116 };
117 117
118 #ifndef CONFIG_OMAP34XX 118 #ifndef CONFIG_OMAP34XX
119 struct omap_hsmmc_adma_desc { 119 struct omap_hsmmc_adma_desc {
120 u8 attr; 120 u8 attr;
121 u8 reserved; 121 u8 reserved;
122 u16 len; 122 u16 len;
123 u32 addr; 123 u32 addr;
124 }; 124 };
125 125
126 #define ADMA_MAX_LEN 63488 126 #define ADMA_MAX_LEN 63488
127 127
128 /* Decriptor table defines */ 128 /* Decriptor table defines */
129 #define ADMA_DESC_ATTR_VALID BIT(0) 129 #define ADMA_DESC_ATTR_VALID BIT(0)
130 #define ADMA_DESC_ATTR_END BIT(1) 130 #define ADMA_DESC_ATTR_END BIT(1)
131 #define ADMA_DESC_ATTR_INT BIT(2) 131 #define ADMA_DESC_ATTR_INT BIT(2)
132 #define ADMA_DESC_ATTR_ACT1 BIT(4) 132 #define ADMA_DESC_ATTR_ACT1 BIT(4)
133 #define ADMA_DESC_ATTR_ACT2 BIT(5) 133 #define ADMA_DESC_ATTR_ACT2 BIT(5)
134 134
135 #define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2 135 #define ADMA_DESC_TRANSFER_DATA ADMA_DESC_ATTR_ACT2
136 #define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2) 136 #define ADMA_DESC_LINK_DESC (ADMA_DESC_ATTR_ACT1 | ADMA_DESC_ATTR_ACT2)
137 #endif 137 #endif
138 138
139 /* If we fail after 1 second wait, something is really bad */ 139 /* If we fail after 1 second wait, something is really bad */
140 #define MAX_RETRY_MS 1000 140 #define MAX_RETRY_MS 1000
141 #define MMC_TIMEOUT_MS 20 141 #define MMC_TIMEOUT_MS 20
142 142
143 /* DMA transfers can take a long time if a lot a data is transferred. 143 /* DMA transfers can take a long time if a lot a data is transferred.
144 * The timeout must take in account the amount of data. Let's assume 144 * The timeout must take in account the amount of data. Let's assume
145 * that the time will never exceed 333 ms per MB (in other word we assume 145 * that the time will never exceed 333 ms per MB (in other word we assume
146 * that the bandwidth is always above 3MB/s). 146 * that the bandwidth is always above 3MB/s).
147 */ 147 */
148 #define DMA_TIMEOUT_PER_MB 333 148 #define DMA_TIMEOUT_PER_MB 333
149 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0) 149 #define OMAP_HSMMC_SUPPORTS_DUAL_VOLT BIT(0)
150 #define OMAP_HSMMC_NO_1_8_V BIT(1) 150 #define OMAP_HSMMC_NO_1_8_V BIT(1)
151 #define OMAP_HSMMC_USE_ADMA BIT(2) 151 #define OMAP_HSMMC_USE_ADMA BIT(2)
152 #define OMAP_HSMMC_REQUIRE_IODELAY BIT(3) 152 #define OMAP_HSMMC_REQUIRE_IODELAY BIT(3)
153 153
154 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size); 154 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size);
155 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf, 155 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
156 unsigned int siz); 156 unsigned int siz);
157 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base); 157 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base);
158 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base); 158 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base);
159 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit); 159 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit);
160 160
161 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc) 161 static inline struct omap_hsmmc_data *omap_hsmmc_get_data(struct mmc *mmc)
162 { 162 {
163 #if CONFIG_IS_ENABLED(DM_MMC) 163 #if CONFIG_IS_ENABLED(DM_MMC)
164 return dev_get_priv(mmc->dev); 164 return dev_get_priv(mmc->dev);
165 #else 165 #else
166 return (struct omap_hsmmc_data *)mmc->priv; 166 return (struct omap_hsmmc_data *)mmc->priv;
167 #endif 167 #endif
168 } 168 }
169 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc) 169 static inline struct mmc_config *omap_hsmmc_get_cfg(struct mmc *mmc)
170 { 170 {
171 #if CONFIG_IS_ENABLED(DM_MMC) 171 #if CONFIG_IS_ENABLED(DM_MMC)
172 struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev); 172 struct omap_hsmmc_plat *plat = dev_get_platdata(mmc->dev);
173 return &plat->cfg; 173 return &plat->cfg;
174 #else 174 #else
175 return &((struct omap_hsmmc_data *)mmc->priv)->cfg; 175 return &((struct omap_hsmmc_data *)mmc->priv)->cfg;
176 #endif 176 #endif
177 } 177 }
178 178
179 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC) 179 #if defined(OMAP_HSMMC_USE_GPIO) && !CONFIG_IS_ENABLED(DM_MMC)
180 static int omap_mmc_setup_gpio_in(int gpio, const char *label) 180 static int omap_mmc_setup_gpio_in(int gpio, const char *label)
181 { 181 {
182 int ret; 182 int ret;
183 183
184 #ifndef CONFIG_DM_GPIO 184 #ifndef CONFIG_DM_GPIO
185 if (!gpio_is_valid(gpio)) 185 if (!gpio_is_valid(gpio))
186 return -1; 186 return -1;
187 #endif 187 #endif
188 ret = gpio_request(gpio, label); 188 ret = gpio_request(gpio, label);
189 if (ret) 189 if (ret)
190 return ret; 190 return ret;
191 191
192 ret = gpio_direction_input(gpio); 192 ret = gpio_direction_input(gpio);
193 if (ret) 193 if (ret)
194 return ret; 194 return ret;
195 195
196 return gpio; 196 return gpio;
197 } 197 }
198 #endif 198 #endif
199 199
200 static unsigned char mmc_board_init(struct mmc *mmc) 200 static unsigned char mmc_board_init(struct mmc *mmc)
201 { 201 {
202 #if defined(CONFIG_OMAP34XX) 202 #if defined(CONFIG_OMAP34XX)
203 struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc); 203 struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
204 t2_t *t2_base = (t2_t *)T2_BASE; 204 t2_t *t2_base = (t2_t *)T2_BASE;
205 struct prcm *prcm_base = (struct prcm *)PRCM_BASE; 205 struct prcm *prcm_base = (struct prcm *)PRCM_BASE;
206 u32 pbias_lite; 206 u32 pbias_lite;
207 #ifdef CONFIG_MMC_OMAP36XX_PINS 207 #ifdef CONFIG_MMC_OMAP36XX_PINS
208 u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL); 208 u32 wkup_ctrl = readl(OMAP34XX_CTRL_WKUP_CTRL);
209 #endif 209 #endif
210 210
211 pbias_lite = readl(&t2_base->pbias_lite); 211 pbias_lite = readl(&t2_base->pbias_lite);
212 pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0); 212 pbias_lite &= ~(PBIASLITEPWRDNZ1 | PBIASLITEPWRDNZ0);
213 #ifdef CONFIG_TARGET_OMAP3_CAIRO 213 #ifdef CONFIG_TARGET_OMAP3_CAIRO
214 /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */ 214 /* for cairo board, we need to set up 1.8 Volt bias level on MMC1 */
215 pbias_lite &= ~PBIASLITEVMODE0; 215 pbias_lite &= ~PBIASLITEVMODE0;
216 #endif 216 #endif
217 #ifdef CONFIG_MMC_OMAP36XX_PINS 217 #ifdef CONFIG_MMC_OMAP36XX_PINS
218 if (get_cpu_family() == CPU_OMAP36XX) { 218 if (get_cpu_family() == CPU_OMAP36XX) {
219 /* Disable extended drain IO before changing PBIAS */ 219 /* Disable extended drain IO before changing PBIAS */
220 wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ; 220 wkup_ctrl &= ~OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ;
221 writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL); 221 writel(wkup_ctrl, OMAP34XX_CTRL_WKUP_CTRL);
222 } 222 }
223 #endif 223 #endif
224 writel(pbias_lite, &t2_base->pbias_lite); 224 writel(pbias_lite, &t2_base->pbias_lite);
225 225
226 writel(pbias_lite | PBIASLITEPWRDNZ1 | 226 writel(pbias_lite | PBIASLITEPWRDNZ1 |
227 PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0, 227 PBIASSPEEDCTRL0 | PBIASLITEPWRDNZ0,
228 &t2_base->pbias_lite); 228 &t2_base->pbias_lite);
229 229
230 #ifdef CONFIG_MMC_OMAP36XX_PINS 230 #ifdef CONFIG_MMC_OMAP36XX_PINS
231 if (get_cpu_family() == CPU_OMAP36XX) 231 if (get_cpu_family() == CPU_OMAP36XX)
232 /* Enable extended drain IO after changing PBIAS */ 232 /* Enable extended drain IO after changing PBIAS */
233 writel(wkup_ctrl | 233 writel(wkup_ctrl |
234 OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ, 234 OMAP34XX_CTRL_WKUP_CTRL_GPIO_IO_PWRDNZ,
235 OMAP34XX_CTRL_WKUP_CTRL); 235 OMAP34XX_CTRL_WKUP_CTRL);
236 #endif 236 #endif
237 writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL, 237 writel(readl(&t2_base->devconf0) | MMCSDIO1ADPCLKISEL,
238 &t2_base->devconf0); 238 &t2_base->devconf0);
239 239
240 writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL, 240 writel(readl(&t2_base->devconf1) | MMCSDIO2ADPCLKISEL,
241 &t2_base->devconf1); 241 &t2_base->devconf1);
242 242
243 /* Change from default of 52MHz to 26MHz if necessary */ 243 /* Change from default of 52MHz to 26MHz if necessary */
244 if (!(cfg->host_caps & MMC_MODE_HS_52MHz)) 244 if (!(cfg->host_caps & MMC_MODE_HS_52MHz))
245 writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL, 245 writel(readl(&t2_base->ctl_prog_io1) & ~CTLPROGIO1SPEEDCTRL,
246 &t2_base->ctl_prog_io1); 246 &t2_base->ctl_prog_io1);
247 247
248 writel(readl(&prcm_base->fclken1_core) | 248 writel(readl(&prcm_base->fclken1_core) |
249 EN_MMC1 | EN_MMC2 | EN_MMC3, 249 EN_MMC1 | EN_MMC2 | EN_MMC3,
250 &prcm_base->fclken1_core); 250 &prcm_base->fclken1_core);
251 251
252 writel(readl(&prcm_base->iclken1_core) | 252 writel(readl(&prcm_base->iclken1_core) |
253 EN_MMC1 | EN_MMC2 | EN_MMC3, 253 EN_MMC1 | EN_MMC2 | EN_MMC3,
254 &prcm_base->iclken1_core); 254 &prcm_base->iclken1_core);
255 #endif 255 #endif
256 256
257 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX) 257 #if defined(CONFIG_OMAP54XX) || defined(CONFIG_OMAP44XX)
258 /* PBIAS config needed for MMC1 only */ 258 /* PBIAS config needed for MMC1 only */
259 if (mmc_get_blk_desc(mmc)->devnum == 0) 259 if (mmc_get_blk_desc(mmc)->devnum == 0)
260 vmmc_pbias_config(LDO_VOLT_3V0); 260 vmmc_pbias_config(LDO_VOLT_3V0);
261 #endif 261 #endif
262 262
263 return 0; 263 return 0;
264 } 264 }
265 265
266 void mmc_init_stream(struct hsmmc *mmc_base) 266 void mmc_init_stream(struct hsmmc *mmc_base)
267 { 267 {
268 ulong start; 268 ulong start;
269 269
270 writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con); 270 writel(readl(&mmc_base->con) | INIT_INITSTREAM, &mmc_base->con);
271 271
272 writel(MMC_CMD0, &mmc_base->cmd); 272 writel(MMC_CMD0, &mmc_base->cmd);
273 start = get_timer(0); 273 start = get_timer(0);
274 while (!(readl(&mmc_base->stat) & CC_MASK)) { 274 while (!(readl(&mmc_base->stat) & CC_MASK)) {
275 if (get_timer(0) - start > MAX_RETRY_MS) { 275 if (get_timer(0) - start > MAX_RETRY_MS) {
276 printf("%s: timedout waiting for cc!\n", __func__); 276 printf("%s: timedout waiting for cc!\n", __func__);
277 return; 277 return;
278 } 278 }
279 } 279 }
280 writel(CC_MASK, &mmc_base->stat) 280 writel(CC_MASK, &mmc_base->stat)
281 ; 281 ;
282 writel(MMC_CMD0, &mmc_base->cmd) 282 writel(MMC_CMD0, &mmc_base->cmd)
283 ; 283 ;
284 start = get_timer(0); 284 start = get_timer(0);
285 while (!(readl(&mmc_base->stat) & CC_MASK)) { 285 while (!(readl(&mmc_base->stat) & CC_MASK)) {
286 if (get_timer(0) - start > MAX_RETRY_MS) { 286 if (get_timer(0) - start > MAX_RETRY_MS) {
287 printf("%s: timedout waiting for cc2!\n", __func__); 287 printf("%s: timedout waiting for cc2!\n", __func__);
288 return; 288 return;
289 } 289 }
290 } 290 }
291 writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con); 291 writel(readl(&mmc_base->con) & ~INIT_INITSTREAM, &mmc_base->con);
292 } 292 }
293 293
294 #if CONFIG_IS_ENABLED(DM_MMC) 294 #if CONFIG_IS_ENABLED(DM_MMC)
295 #ifdef CONFIG_IODELAY_RECALIBRATION 295 #ifdef CONFIG_IODELAY_RECALIBRATION
296 static void omap_hsmmc_io_recalibrate(struct mmc *mmc) 296 static void omap_hsmmc_io_recalibrate(struct mmc *mmc)
297 { 297 {
298 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 298 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
299 struct omap_hsmmc_pinctrl_state *pinctrl_state; 299 struct omap_hsmmc_pinctrl_state *pinctrl_state;
300 300
301 switch (priv->mode) { 301 switch (priv->mode) {
302 case MMC_HS_200: 302 case MMC_HS_200:
303 pinctrl_state = priv->hs200_1_8v_pinctrl_state; 303 pinctrl_state = priv->hs200_1_8v_pinctrl_state;
304 break; 304 break;
305 case UHS_SDR104: 305 case UHS_SDR104:
306 pinctrl_state = priv->sdr104_pinctrl_state; 306 pinctrl_state = priv->sdr104_pinctrl_state;
307 break; 307 break;
308 case UHS_SDR50: 308 case UHS_SDR50:
309 pinctrl_state = priv->sdr50_pinctrl_state; 309 pinctrl_state = priv->sdr50_pinctrl_state;
310 break; 310 break;
311 case UHS_DDR50: 311 case UHS_DDR50:
312 pinctrl_state = priv->ddr50_pinctrl_state; 312 pinctrl_state = priv->ddr50_pinctrl_state;
313 break; 313 break;
314 case UHS_SDR25: 314 case UHS_SDR25:
315 pinctrl_state = priv->sdr25_pinctrl_state; 315 pinctrl_state = priv->sdr25_pinctrl_state;
316 break; 316 break;
317 case UHS_SDR12: 317 case UHS_SDR12:
318 pinctrl_state = priv->sdr12_pinctrl_state; 318 pinctrl_state = priv->sdr12_pinctrl_state;
319 break; 319 break;
320 case SD_HS: 320 case SD_HS:
321 case MMC_HS: 321 case MMC_HS:
322 case MMC_HS_52: 322 case MMC_HS_52:
323 pinctrl_state = priv->hs_pinctrl_state; 323 pinctrl_state = priv->hs_pinctrl_state;
324 break; 324 break;
325 case MMC_DDR_52: 325 case MMC_DDR_52:
326 pinctrl_state = priv->ddr_1_8v_pinctrl_state; 326 pinctrl_state = priv->ddr_1_8v_pinctrl_state;
327 default: 327 default:
328 pinctrl_state = priv->default_pinctrl_state; 328 pinctrl_state = priv->default_pinctrl_state;
329 break; 329 break;
330 } 330 }
331 331
332 if (!pinctrl_state) 332 if (!pinctrl_state)
333 pinctrl_state = priv->default_pinctrl_state; 333 pinctrl_state = priv->default_pinctrl_state;
334 334
335 if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) { 335 if (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY) {
336 if (pinctrl_state->iodelay) 336 if (pinctrl_state->iodelay)
337 late_recalibrate_iodelay(pinctrl_state->padconf, 337 late_recalibrate_iodelay(pinctrl_state->padconf,
338 pinctrl_state->npads, 338 pinctrl_state->npads,
339 pinctrl_state->iodelay, 339 pinctrl_state->iodelay,
340 pinctrl_state->niodelays); 340 pinctrl_state->niodelays);
341 else 341 else
342 do_set_mux32((*ctrl)->control_padconf_core_base, 342 do_set_mux32((*ctrl)->control_padconf_core_base,
343 pinctrl_state->padconf, 343 pinctrl_state->padconf,
344 pinctrl_state->npads); 344 pinctrl_state->npads);
345 } 345 }
346 } 346 }
347 #endif 347 #endif
348 static void omap_hsmmc_set_timing(struct mmc *mmc) 348 static void omap_hsmmc_set_timing(struct mmc *mmc)
349 { 349 {
350 u32 val; 350 u32 val;
351 struct hsmmc *mmc_base; 351 struct hsmmc *mmc_base;
352 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 352 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
353 353
354 mmc_base = priv->base_addr; 354 mmc_base = priv->base_addr;
355 355
356 omap_hsmmc_stop_clock(mmc_base); 356 omap_hsmmc_stop_clock(mmc_base);
357 val = readl(&mmc_base->ac12); 357 val = readl(&mmc_base->ac12);
358 val &= ~AC12_UHSMC_MASK; 358 val &= ~AC12_UHSMC_MASK;
359 priv->mode = mmc->selected_mode; 359 priv->mode = mmc->selected_mode;
360 360
361 if (mmc_is_mode_ddr(priv->mode)) 361 if (mmc_is_mode_ddr(priv->mode))
362 writel(readl(&mmc_base->con) | DDR, &mmc_base->con); 362 writel(readl(&mmc_base->con) | DDR, &mmc_base->con);
363 else 363 else
364 writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con); 364 writel(readl(&mmc_base->con) & ~DDR, &mmc_base->con);
365 365
366 switch (priv->mode) { 366 switch (priv->mode) {
367 case MMC_HS_200: 367 case MMC_HS_200:
368 case UHS_SDR104: 368 case UHS_SDR104:
369 val |= AC12_UHSMC_SDR104; 369 val |= AC12_UHSMC_SDR104;
370 break; 370 break;
371 case UHS_SDR50: 371 case UHS_SDR50:
372 val |= AC12_UHSMC_SDR50; 372 val |= AC12_UHSMC_SDR50;
373 break; 373 break;
374 case MMC_DDR_52: 374 case MMC_DDR_52:
375 case UHS_DDR50: 375 case UHS_DDR50:
376 val |= AC12_UHSMC_DDR50; 376 val |= AC12_UHSMC_DDR50;
377 break; 377 break;
378 case SD_HS: 378 case SD_HS:
379 case MMC_HS_52: 379 case MMC_HS_52:
380 case UHS_SDR25: 380 case UHS_SDR25:
381 val |= AC12_UHSMC_SDR25; 381 val |= AC12_UHSMC_SDR25;
382 break; 382 break;
383 case MMC_LEGACY: 383 case MMC_LEGACY:
384 case MMC_HS: 384 case MMC_HS:
385 case SD_LEGACY: 385 case SD_LEGACY:
386 case UHS_SDR12: 386 case UHS_SDR12:
387 val |= AC12_UHSMC_SDR12; 387 val |= AC12_UHSMC_SDR12;
388 break; 388 break;
389 default: 389 default:
390 val |= AC12_UHSMC_RES; 390 val |= AC12_UHSMC_RES;
391 break; 391 break;
392 } 392 }
393 writel(val, &mmc_base->ac12); 393 writel(val, &mmc_base->ac12);
394 394
395 #ifdef CONFIG_IODELAY_RECALIBRATION 395 #ifdef CONFIG_IODELAY_RECALIBRATION
396 omap_hsmmc_io_recalibrate(mmc); 396 omap_hsmmc_io_recalibrate(mmc);
397 #endif 397 #endif
398 omap_hsmmc_start_clock(mmc_base); 398 omap_hsmmc_start_clock(mmc_base);
399 } 399 }
400 400
401 static void omap_hsmmc_conf_bus_power(struct mmc *mmc) 401 static void omap_hsmmc_conf_bus_power(struct mmc *mmc)
402 { 402 {
403 struct hsmmc *mmc_base; 403 struct hsmmc *mmc_base;
404 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 404 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
405 u32 val; 405 u32 val;
406 406
407 mmc_base = priv->base_addr; 407 mmc_base = priv->base_addr;
408 408
409 val = readl(&mmc_base->hctl) & ~SDVS_MASK; 409 val = readl(&mmc_base->hctl) & ~SDVS_MASK;
410 410
411 switch (priv->iov) { 411 switch (priv->iov) {
412 case IOV_3V3: 412 case IOV_3V3:
413 val |= SDVS_3V3; 413 val |= SDVS_3V3;
414 break; 414 break;
415 case IOV_3V0: 415 case IOV_3V0:
416 val |= SDVS_3V0; 416 val |= SDVS_3V0;
417 break; 417 break;
418 case IOV_1V8: 418 case IOV_1V8:
419 val |= SDVS_1V8; 419 val |= SDVS_1V8;
420 break; 420 break;
421 } 421 }
422 422
423 writel(val, &mmc_base->hctl); 423 writel(val, &mmc_base->hctl);
424 } 424 }
425 425
426 static void omap_hsmmc_set_capabilities(struct mmc *mmc) 426 static void omap_hsmmc_set_capabilities(struct mmc *mmc)
427 { 427 {
428 struct hsmmc *mmc_base; 428 struct hsmmc *mmc_base;
429 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 429 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
430 u32 val; 430 u32 val;
431 431
432 mmc_base = priv->base_addr; 432 mmc_base = priv->base_addr;
433 val = readl(&mmc_base->capa); 433 val = readl(&mmc_base->capa);
434 434
435 if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) { 435 if (priv->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
436 val |= (VS30_3V0SUP | VS18_1V8SUP); 436 val |= (VS30_3V0SUP | VS18_1V8SUP);
437 priv->iov = IOV_3V0; 437 priv->iov = IOV_3V0;
438 } else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) { 438 } else if (priv->controller_flags & OMAP_HSMMC_NO_1_8_V) {
439 val |= VS30_3V0SUP; 439 val |= VS30_3V0SUP;
440 val &= ~VS18_1V8SUP; 440 val &= ~VS18_1V8SUP;
441 priv->iov = IOV_3V0; 441 priv->iov = IOV_3V0;
442 } else { 442 } else {
443 val |= VS18_1V8SUP; 443 val |= VS18_1V8SUP;
444 val &= ~VS30_3V0SUP; 444 val &= ~VS30_3V0SUP;
445 priv->iov = IOV_1V8; 445 priv->iov = IOV_1V8;
446 } 446 }
447 447
448 writel(val, &mmc_base->capa); 448 writel(val, &mmc_base->capa);
449 } 449 }
450 450
451 #ifdef MMC_SUPPORTS_TUNING 451 #ifdef MMC_SUPPORTS_TUNING
452 static void omap_hsmmc_disable_tuning(struct mmc *mmc) 452 static void omap_hsmmc_disable_tuning(struct mmc *mmc)
453 { 453 {
454 struct hsmmc *mmc_base; 454 struct hsmmc *mmc_base;
455 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 455 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
456 u32 val; 456 u32 val;
457 457
458 mmc_base = priv->base_addr; 458 mmc_base = priv->base_addr;
459 val = readl(&mmc_base->ac12); 459 val = readl(&mmc_base->ac12);
460 val &= ~(AC12_SCLK_SEL); 460 val &= ~(AC12_SCLK_SEL);
461 writel(val, &mmc_base->ac12); 461 writel(val, &mmc_base->ac12);
462 462
463 val = readl(&mmc_base->dll); 463 val = readl(&mmc_base->dll);
464 val &= ~(DLL_FORCE_VALUE | DLL_SWT); 464 val &= ~(DLL_FORCE_VALUE | DLL_SWT);
465 writel(val, &mmc_base->dll); 465 writel(val, &mmc_base->dll);
466 } 466 }
467 467
468 static void omap_hsmmc_set_dll(struct mmc *mmc, int count) 468 static void omap_hsmmc_set_dll(struct mmc *mmc, int count)
469 { 469 {
470 int i; 470 int i;
471 struct hsmmc *mmc_base; 471 struct hsmmc *mmc_base;
472 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 472 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
473 u32 val; 473 u32 val;
474 474
475 mmc_base = priv->base_addr; 475 mmc_base = priv->base_addr;
476 val = readl(&mmc_base->dll); 476 val = readl(&mmc_base->dll);
477 val |= DLL_FORCE_VALUE; 477 val |= DLL_FORCE_VALUE;
478 val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT); 478 val &= ~(DLL_FORCE_SR_C_MASK << DLL_FORCE_SR_C_SHIFT);
479 val |= (count << DLL_FORCE_SR_C_SHIFT); 479 val |= (count << DLL_FORCE_SR_C_SHIFT);
480 writel(val, &mmc_base->dll); 480 writel(val, &mmc_base->dll);
481 481
482 val |= DLL_CALIB; 482 val |= DLL_CALIB;
483 writel(val, &mmc_base->dll); 483 writel(val, &mmc_base->dll);
484 for (i = 0; i < 1000; i++) { 484 for (i = 0; i < 1000; i++) {
485 if (readl(&mmc_base->dll) & DLL_CALIB) 485 if (readl(&mmc_base->dll) & DLL_CALIB)
486 break; 486 break;
487 } 487 }
488 val &= ~DLL_CALIB; 488 val &= ~DLL_CALIB;
489 writel(val, &mmc_base->dll); 489 writel(val, &mmc_base->dll);
490 } 490 }
491 491
492 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode) 492 static int omap_hsmmc_execute_tuning(struct udevice *dev, uint opcode)
493 { 493 {
494 struct omap_hsmmc_data *priv = dev_get_priv(dev); 494 struct omap_hsmmc_data *priv = dev_get_priv(dev);
495 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); 495 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
496 struct mmc *mmc = upriv->mmc; 496 struct mmc *mmc = upriv->mmc;
497 struct hsmmc *mmc_base; 497 struct hsmmc *mmc_base;
498 u32 val; 498 u32 val;
499 u8 cur_match, prev_match = 0; 499 u8 cur_match, prev_match = 0;
500 int ret; 500 int ret;
501 u32 phase_delay = 0; 501 u32 phase_delay = 0;
502 u32 start_window = 0, max_window = 0; 502 u32 start_window = 0, max_window = 0;
503 u32 length = 0, max_len = 0; 503 u32 length = 0, max_len = 0;
504 504
505 mmc_base = priv->base_addr; 505 mmc_base = priv->base_addr;
506 val = readl(&mmc_base->capa2); 506 val = readl(&mmc_base->capa2);
507 507
508 /* clock tuning is not needed for upto 52MHz */ 508 /* clock tuning is not needed for upto 52MHz */
509 if (!((mmc->selected_mode == MMC_HS_200) || 509 if (!((mmc->selected_mode == MMC_HS_200) ||
510 (mmc->selected_mode == UHS_SDR104) || 510 (mmc->selected_mode == UHS_SDR104) ||
511 ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50)))) 511 ((mmc->selected_mode == UHS_SDR50) && (val & CAPA2_TSDR50))))
512 return 0; 512 return 0;
513 513
514 val = readl(&mmc_base->dll); 514 val = readl(&mmc_base->dll);
515 val |= DLL_SWT; 515 val |= DLL_SWT;
516 writel(val, &mmc_base->dll); 516 writel(val, &mmc_base->dll);
517 while (phase_delay <= MAX_PHASE_DELAY) { 517 while (phase_delay <= MAX_PHASE_DELAY) {
518 omap_hsmmc_set_dll(mmc, phase_delay); 518 omap_hsmmc_set_dll(mmc, phase_delay);
519 519
520 cur_match = !mmc_send_tuning(mmc, opcode, NULL); 520 cur_match = !mmc_send_tuning(mmc, opcode, NULL);
521 521
522 if (cur_match) { 522 if (cur_match) {
523 if (prev_match) { 523 if (prev_match) {
524 length++; 524 length++;
525 } else { 525 } else {
526 start_window = phase_delay; 526 start_window = phase_delay;
527 length = 1; 527 length = 1;
528 } 528 }
529 } 529 }
530 530
531 if (length > max_len) { 531 if (length > max_len) {
532 max_window = start_window; 532 max_window = start_window;
533 max_len = length; 533 max_len = length;
534 } 534 }
535 535
536 prev_match = cur_match; 536 prev_match = cur_match;
537 phase_delay += 4; 537 phase_delay += 4;
538 } 538 }
539 539
540 if (!max_len) { 540 if (!max_len) {
541 ret = -EIO; 541 ret = -EIO;
542 goto tuning_error; 542 goto tuning_error;
543 } 543 }
544 544
545 val = readl(&mmc_base->ac12); 545 val = readl(&mmc_base->ac12);
546 if (!(val & AC12_SCLK_SEL)) { 546 if (!(val & AC12_SCLK_SEL)) {
547 ret = -EIO; 547 ret = -EIO;
548 goto tuning_error; 548 goto tuning_error;
549 } 549 }
550 550
551 phase_delay = max_window + 4 * ((3 * max_len) >> 2); 551 phase_delay = max_window + 4 * ((3 * max_len) >> 2);
552 omap_hsmmc_set_dll(mmc, phase_delay); 552 omap_hsmmc_set_dll(mmc, phase_delay);
553 553
554 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); 554 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
555 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC); 555 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
556 556
557 return 0; 557 return 0;
558 558
559 tuning_error: 559 tuning_error:
560 560
561 omap_hsmmc_disable_tuning(mmc); 561 omap_hsmmc_disable_tuning(mmc);
562 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); 562 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
563 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC); 563 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
564 564
565 return ret; 565 return ret;
566 } 566 }
567 #endif 567 #endif
568 568
569 static void omap_hsmmc_send_init_stream(struct udevice *dev) 569 static void omap_hsmmc_send_init_stream(struct udevice *dev)
570 { 570 {
571 struct omap_hsmmc_data *priv = dev_get_priv(dev); 571 struct omap_hsmmc_data *priv = dev_get_priv(dev);
572 struct hsmmc *mmc_base = priv->base_addr; 572 struct hsmmc *mmc_base = priv->base_addr;
573 573
574 mmc_init_stream(mmc_base); 574 mmc_init_stream(mmc_base);
575 } 575 }
576 #endif 576 #endif
577 577
578 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd) 578 static void mmc_enable_irq(struct mmc *mmc, struct mmc_cmd *cmd)
579 { 579 {
580 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 580 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
581 struct hsmmc *mmc_base = priv->base_addr; 581 struct hsmmc *mmc_base = priv->base_addr;
582 u32 irq_mask = INT_EN_MASK; 582 u32 irq_mask = INT_EN_MASK;
583 583
584 /* 584 /*
585 * TODO: Errata i802 indicates only DCRC interrupts can occur during 585 * TODO: Errata i802 indicates only DCRC interrupts can occur during
586 * tuning procedure and DCRC should be disabled. But see occurences 586 * tuning procedure and DCRC should be disabled. But see occurences
587 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These 587 * of DEB, CIE, CEB, CCRC interupts during tuning procedure. These
588 * interrupts occur along with BRR, so the data is actually in the 588 * interrupts occur along with BRR, so the data is actually in the
589 * buffer. It has to be debugged why these interrutps occur 589 * buffer. It has to be debugged why these interrutps occur
590 */ 590 */
591 if (cmd && mmc_is_tuning_cmd(cmd->cmdidx)) 591 if (cmd && mmc_is_tuning_cmd(cmd->cmdidx))
592 irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC); 592 irq_mask &= ~(IE_DEB | IE_DCRC | IE_CIE | IE_CEB | IE_CCRC);
593 593
594 writel(irq_mask, &mmc_base->ie); 594 writel(irq_mask, &mmc_base->ie);
595 } 595 }
596 596
597 static int omap_hsmmc_init_setup(struct mmc *mmc) 597 static int omap_hsmmc_init_setup(struct mmc *mmc)
598 { 598 {
599 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 599 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
600 struct hsmmc *mmc_base; 600 struct hsmmc *mmc_base;
601 unsigned int reg_val; 601 unsigned int reg_val;
602 unsigned int dsor; 602 unsigned int dsor;
603 ulong start; 603 ulong start;
604 604
605 mmc_base = priv->base_addr; 605 mmc_base = priv->base_addr;
606 mmc_board_init(mmc); 606 mmc_board_init(mmc);
607 607
608 writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET, 608 writel(readl(&mmc_base->sysconfig) | MMC_SOFTRESET,
609 &mmc_base->sysconfig); 609 &mmc_base->sysconfig);
610 start = get_timer(0); 610 start = get_timer(0);
611 while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) { 611 while ((readl(&mmc_base->sysstatus) & RESETDONE) == 0) {
612 if (get_timer(0) - start > MAX_RETRY_MS) { 612 if (get_timer(0) - start > MAX_RETRY_MS) {
613 printf("%s: timedout waiting for cc2!\n", __func__); 613 printf("%s: timedout waiting for cc2!\n", __func__);
614 return -ETIMEDOUT; 614 return -ETIMEDOUT;
615 } 615 }
616 } 616 }
617 writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl); 617 writel(readl(&mmc_base->sysctl) | SOFTRESETALL, &mmc_base->sysctl);
618 start = get_timer(0); 618 start = get_timer(0);
619 while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) { 619 while ((readl(&mmc_base->sysctl) & SOFTRESETALL) != 0x0) {
620 if (get_timer(0) - start > MAX_RETRY_MS) { 620 if (get_timer(0) - start > MAX_RETRY_MS) {
621 printf("%s: timedout waiting for softresetall!\n", 621 printf("%s: timedout waiting for softresetall!\n",
622 __func__); 622 __func__);
623 return -ETIMEDOUT; 623 return -ETIMEDOUT;
624 } 624 }
625 } 625 }
626 #ifndef CONFIG_OMAP34XX 626 #ifndef CONFIG_OMAP34XX
627 reg_val = readl(&mmc_base->hl_hwinfo); 627 reg_val = readl(&mmc_base->hl_hwinfo);
628 if (reg_val & MADMA_EN) 628 if (reg_val & MADMA_EN)
629 priv->controller_flags |= OMAP_HSMMC_USE_ADMA; 629 priv->controller_flags |= OMAP_HSMMC_USE_ADMA;
630 #endif 630 #endif
631 631
632 #if CONFIG_IS_ENABLED(DM_MMC) 632 #if CONFIG_IS_ENABLED(DM_MMC)
633 omap_hsmmc_set_capabilities(mmc); 633 omap_hsmmc_set_capabilities(mmc);
634 omap_hsmmc_conf_bus_power(mmc); 634 omap_hsmmc_conf_bus_power(mmc);
635 #else 635 #else
636 writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl); 636 writel(DTW_1_BITMODE | SDBP_PWROFF | SDVS_3V0, &mmc_base->hctl);
637 writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP, 637 writel(readl(&mmc_base->capa) | VS30_3V0SUP | VS18_1V8SUP,
638 &mmc_base->capa); 638 &mmc_base->capa);
639 #endif 639 #endif
640 640
641 reg_val = readl(&mmc_base->con) & RESERVED_MASK; 641 reg_val = readl(&mmc_base->con) & RESERVED_MASK;
642 642
643 writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH | 643 writel(CTPL_MMC_SD | reg_val | WPP_ACTIVEHIGH | CDP_ACTIVEHIGH |
644 MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK | 644 MIT_CTO | DW8_1_4BITMODE | MODE_FUNC | STR_BLOCK |
645 HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con); 645 HR_NOHOSTRESP | INIT_NOINIT | NOOPENDRAIN, &mmc_base->con);
646 646
647 dsor = 240; 647 dsor = 240;
648 mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK), 648 mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK | CEN_MASK),
649 (ICE_STOP | DTO_15THDTO)); 649 (ICE_STOP | DTO_15THDTO));
650 mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK, 650 mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
651 (dsor << CLKD_OFFSET) | ICE_OSCILLATE); 651 (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
652 start = get_timer(0); 652 start = get_timer(0);
653 while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) { 653 while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
654 if (get_timer(0) - start > MAX_RETRY_MS) { 654 if (get_timer(0) - start > MAX_RETRY_MS) {
655 printf("%s: timedout waiting for ics!\n", __func__); 655 printf("%s: timedout waiting for ics!\n", __func__);
656 return -ETIMEDOUT; 656 return -ETIMEDOUT;
657 } 657 }
658 } 658 }
659 writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl); 659 writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
660 660
661 writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl); 661 writel(readl(&mmc_base->hctl) | SDBP_PWRON, &mmc_base->hctl);
662 662
663 mmc_enable_irq(mmc, NULL); 663 mmc_enable_irq(mmc, NULL);
664 664
665 #if !CONFIG_IS_ENABLED(DM_MMC) 665 #if !CONFIG_IS_ENABLED(DM_MMC)
666 mmc_init_stream(mmc_base); 666 mmc_init_stream(mmc_base);
667 #endif 667 #endif
668 668
669 return 0; 669 return 0;
670 } 670 }
671 671
672 /* 672 /*
673 * MMC controller internal finite state machine reset 673 * MMC controller internal finite state machine reset
674 * 674 *
675 * Used to reset command or data internal state machines, using respectively 675 * Used to reset command or data internal state machines, using respectively
676 * SRC or SRD bit of SYSCTL register 676 * SRC or SRD bit of SYSCTL register
677 */ 677 */
678 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit) 678 static void mmc_reset_controller_fsm(struct hsmmc *mmc_base, u32 bit)
679 { 679 {
680 ulong start; 680 ulong start;
681 681
682 mmc_reg_out(&mmc_base->sysctl, bit, bit); 682 mmc_reg_out(&mmc_base->sysctl, bit, bit);
683 683
684 /* 684 /*
685 * CMD(DAT) lines reset procedures are slightly different 685 * CMD(DAT) lines reset procedures are slightly different
686 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx). 686 * for OMAP3 and OMAP4(AM335x,OMAP5,DRA7xx).
687 * According to OMAP3 TRM: 687 * According to OMAP3 TRM:
688 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it 688 * Set SRC(SRD) bit in MMCHS_SYSCTL register to 0x1 and wait until it
689 * returns to 0x0. 689 * returns to 0x0.
690 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset 690 * According to OMAP4(AM335x,OMAP5,DRA7xx) TRMs, CMD(DATA) lines reset
691 * procedure steps must be as follows: 691 * procedure steps must be as follows:
692 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in 692 * 1. Initiate CMD(DAT) line reset by writing 0x1 to SRC(SRD) bit in
693 * MMCHS_SYSCTL register (SD_SYSCTL for AM335x). 693 * MMCHS_SYSCTL register (SD_SYSCTL for AM335x).
694 * 2. Poll the SRC(SRD) bit until it is set to 0x1. 694 * 2. Poll the SRC(SRD) bit until it is set to 0x1.
695 * 3. Wait until the SRC (SRD) bit returns to 0x0 695 * 3. Wait until the SRC (SRD) bit returns to 0x0
696 * (reset procedure is completed). 696 * (reset procedure is completed).
697 */ 697 */
698 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \ 698 #if defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
699 defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX) 699 defined(CONFIG_AM33XX) || defined(CONFIG_AM43XX)
700 if (!(readl(&mmc_base->sysctl) & bit)) { 700 if (!(readl(&mmc_base->sysctl) & bit)) {
701 start = get_timer(0); 701 start = get_timer(0);
702 while (!(readl(&mmc_base->sysctl) & bit)) { 702 while (!(readl(&mmc_base->sysctl) & bit)) {
703 if (get_timer(0) - start > MMC_TIMEOUT_MS) 703 if (get_timer(0) - start > MMC_TIMEOUT_MS)
704 return; 704 return;
705 } 705 }
706 } 706 }
707 #endif 707 #endif
708 start = get_timer(0); 708 start = get_timer(0);
709 while ((readl(&mmc_base->sysctl) & bit) != 0) { 709 while ((readl(&mmc_base->sysctl) & bit) != 0) {
710 if (get_timer(0) - start > MAX_RETRY_MS) { 710 if (get_timer(0) - start > MAX_RETRY_MS) {
711 printf("%s: timedout waiting for sysctl %x to clear\n", 711 printf("%s: timedout waiting for sysctl %x to clear\n",
712 __func__, bit); 712 __func__, bit);
713 return; 713 return;
714 } 714 }
715 } 715 }
716 } 716 }
717 717
718 #ifndef CONFIG_OMAP34XX 718 #ifndef CONFIG_OMAP34XX
719 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end) 719 static void omap_hsmmc_adma_desc(struct mmc *mmc, char *buf, u16 len, bool end)
720 { 720 {
721 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 721 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
722 struct omap_hsmmc_adma_desc *desc; 722 struct omap_hsmmc_adma_desc *desc;
723 u8 attr; 723 u8 attr;
724 724
725 desc = &priv->adma_desc_table[priv->desc_slot]; 725 desc = &priv->adma_desc_table[priv->desc_slot];
726 726
727 attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA; 727 attr = ADMA_DESC_ATTR_VALID | ADMA_DESC_TRANSFER_DATA;
728 if (!end) 728 if (!end)
729 priv->desc_slot++; 729 priv->desc_slot++;
730 else 730 else
731 attr |= ADMA_DESC_ATTR_END; 731 attr |= ADMA_DESC_ATTR_END;
732 732
733 desc->len = len; 733 desc->len = len;
734 desc->addr = (u32)buf; 734 desc->addr = (u32)buf;
735 desc->reserved = 0; 735 desc->reserved = 0;
736 desc->attr = attr; 736 desc->attr = attr;
737 } 737 }
738 738
739 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc, 739 static void omap_hsmmc_prepare_adma_table(struct mmc *mmc,
740 struct mmc_data *data) 740 struct mmc_data *data)
741 { 741 {
742 uint total_len = data->blocksize * data->blocks; 742 uint total_len = data->blocksize * data->blocks;
743 uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN); 743 uint desc_count = DIV_ROUND_UP(total_len, ADMA_MAX_LEN);
744 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 744 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
745 int i = desc_count; 745 int i = desc_count;
746 char *buf; 746 char *buf;
747 747
748 priv->desc_slot = 0; 748 priv->desc_slot = 0;
749 priv->adma_desc_table = (struct omap_hsmmc_adma_desc *) 749 priv->adma_desc_table = (struct omap_hsmmc_adma_desc *)
750 memalign(ARCH_DMA_MINALIGN, desc_count * 750 memalign(ARCH_DMA_MINALIGN, desc_count *
751 sizeof(struct omap_hsmmc_adma_desc)); 751 sizeof(struct omap_hsmmc_adma_desc));
752 752
753 if (data->flags & MMC_DATA_READ) 753 if (data->flags & MMC_DATA_READ)
754 buf = data->dest; 754 buf = data->dest;
755 else 755 else
756 buf = (char *)data->src; 756 buf = (char *)data->src;
757 757
758 while (--i) { 758 while (--i) {
759 omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false); 759 omap_hsmmc_adma_desc(mmc, buf, ADMA_MAX_LEN, false);
760 buf += ADMA_MAX_LEN; 760 buf += ADMA_MAX_LEN;
761 total_len -= ADMA_MAX_LEN; 761 total_len -= ADMA_MAX_LEN;
762 } 762 }
763 763
764 omap_hsmmc_adma_desc(mmc, buf, total_len, true); 764 omap_hsmmc_adma_desc(mmc, buf, total_len, true);
765 765
766 flush_dcache_range((long)priv->adma_desc_table, 766 flush_dcache_range((long)priv->adma_desc_table,
767 (long)priv->adma_desc_table + 767 (long)priv->adma_desc_table +
768 ROUND(desc_count * 768 ROUND(desc_count *
769 sizeof(struct omap_hsmmc_adma_desc), 769 sizeof(struct omap_hsmmc_adma_desc),
770 ARCH_DMA_MINALIGN)); 770 ARCH_DMA_MINALIGN));
771 } 771 }
772 772
773 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data) 773 static void omap_hsmmc_prepare_data(struct mmc *mmc, struct mmc_data *data)
774 { 774 {
775 struct hsmmc *mmc_base; 775 struct hsmmc *mmc_base;
776 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 776 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
777 u32 val; 777 u32 val;
778 char *buf; 778 char *buf;
779 779
780 mmc_base = priv->base_addr; 780 mmc_base = priv->base_addr;
781 omap_hsmmc_prepare_adma_table(mmc, data); 781 omap_hsmmc_prepare_adma_table(mmc, data);
782 782
783 if (data->flags & MMC_DATA_READ) 783 if (data->flags & MMC_DATA_READ)
784 buf = data->dest; 784 buf = data->dest;
785 else 785 else
786 buf = (char *)data->src; 786 buf = (char *)data->src;
787 787
788 val = readl(&mmc_base->hctl); 788 val = readl(&mmc_base->hctl);
789 val |= DMA_SELECT; 789 val |= DMA_SELECT;
790 writel(val, &mmc_base->hctl); 790 writel(val, &mmc_base->hctl);
791 791
792 val = readl(&mmc_base->con); 792 val = readl(&mmc_base->con);
793 val |= DMA_MASTER; 793 val |= DMA_MASTER;
794 writel(val, &mmc_base->con); 794 writel(val, &mmc_base->con);
795 795
796 writel((u32)priv->adma_desc_table, &mmc_base->admasal); 796 writel((u32)priv->adma_desc_table, &mmc_base->admasal);
797 797
798 flush_dcache_range((u32)buf, 798 flush_dcache_range((u32)buf,
799 (u32)buf + 799 (u32)buf +
800 ROUND(data->blocksize * data->blocks, 800 ROUND(data->blocksize * data->blocks,
801 ARCH_DMA_MINALIGN)); 801 ARCH_DMA_MINALIGN));
802 } 802 }
803 803
804 static void omap_hsmmc_dma_cleanup(struct mmc *mmc) 804 static void omap_hsmmc_dma_cleanup(struct mmc *mmc)
805 { 805 {
806 struct hsmmc *mmc_base; 806 struct hsmmc *mmc_base;
807 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 807 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
808 u32 val; 808 u32 val;
809 809
810 mmc_base = priv->base_addr; 810 mmc_base = priv->base_addr;
811 811
812 val = readl(&mmc_base->con); 812 val = readl(&mmc_base->con);
813 val &= ~DMA_MASTER; 813 val &= ~DMA_MASTER;
814 writel(val, &mmc_base->con); 814 writel(val, &mmc_base->con);
815 815
816 val = readl(&mmc_base->hctl); 816 val = readl(&mmc_base->hctl);
817 val &= ~DMA_SELECT; 817 val &= ~DMA_SELECT;
818 writel(val, &mmc_base->hctl); 818 writel(val, &mmc_base->hctl);
819 819
820 kfree(priv->adma_desc_table); 820 kfree(priv->adma_desc_table);
821 } 821 }
822 #else 822 #else
823 #define omap_hsmmc_adma_desc 823 #define omap_hsmmc_adma_desc
824 #define omap_hsmmc_prepare_adma_table 824 #define omap_hsmmc_prepare_adma_table
825 #define omap_hsmmc_prepare_data 825 #define omap_hsmmc_prepare_data
826 #define omap_hsmmc_dma_cleanup 826 #define omap_hsmmc_dma_cleanup
827 #endif 827 #endif
828 828
829 #if !CONFIG_IS_ENABLED(DM_MMC) 829 #if !CONFIG_IS_ENABLED(DM_MMC)
830 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd, 830 static int omap_hsmmc_send_cmd(struct mmc *mmc, struct mmc_cmd *cmd,
831 struct mmc_data *data) 831 struct mmc_data *data)
832 { 832 {
833 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 833 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
834 #else 834 #else
835 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd, 835 static int omap_hsmmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
836 struct mmc_data *data) 836 struct mmc_data *data)
837 { 837 {
838 struct omap_hsmmc_data *priv = dev_get_priv(dev); 838 struct omap_hsmmc_data *priv = dev_get_priv(dev);
839 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); 839 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
840 struct mmc *mmc = upriv->mmc; 840 struct mmc *mmc = upriv->mmc;
841 #endif 841 #endif
842 struct hsmmc *mmc_base; 842 struct hsmmc *mmc_base;
843 unsigned int flags, mmc_stat; 843 unsigned int flags, mmc_stat;
844 ulong start; 844 ulong start;
845 845
846 mmc_base = priv->base_addr; 846 mmc_base = priv->base_addr;
847 847
848 if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION) 848 if (cmd->cmdidx == MMC_CMD_STOP_TRANSMISSION)
849 return 0; 849 return 0;
850 850
851 start = get_timer(0); 851 start = get_timer(0);
852 while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) { 852 while ((readl(&mmc_base->pstate) & (DATI_MASK | CMDI_MASK)) != 0) {
853 if (get_timer(0) - start > MAX_RETRY_MS) { 853 if (get_timer(0) - start > MAX_RETRY_MS) {
854 printf("%s: timedout waiting on cmd inhibit to clear\n", 854 printf("%s: timedout waiting on cmd inhibit to clear\n",
855 __func__); 855 __func__);
856 return -ETIMEDOUT; 856 return -ETIMEDOUT;
857 } 857 }
858 } 858 }
859 writel(0xFFFFFFFF, &mmc_base->stat); 859 writel(0xFFFFFFFF, &mmc_base->stat);
860 start = get_timer(0); 860 start = get_timer(0);
861 while (readl(&mmc_base->stat)) { 861 while (readl(&mmc_base->stat)) {
862 if (get_timer(0) - start > MAX_RETRY_MS) { 862 if (get_timer(0) - start > MAX_RETRY_MS) {
863 printf("%s: timedout waiting for STAT (%x) to clear\n", 863 printf("%s: timedout waiting for STAT (%x) to clear\n",
864 __func__, readl(&mmc_base->stat)); 864 __func__, readl(&mmc_base->stat));
865 return -ETIMEDOUT; 865 return -ETIMEDOUT;
866 } 866 }
867 } 867 }
868 /* 868 /*
869 * CMDREG 869 * CMDREG
870 * CMDIDX[13:8] : Command index 870 * CMDIDX[13:8] : Command index
871 * DATAPRNT[5] : Data Present Select 871 * DATAPRNT[5] : Data Present Select
872 * ENCMDIDX[4] : Command Index Check Enable 872 * ENCMDIDX[4] : Command Index Check Enable
873 * ENCMDCRC[3] : Command CRC Check Enable 873 * ENCMDCRC[3] : Command CRC Check Enable
874 * RSPTYP[1:0] 874 * RSPTYP[1:0]
875 * 00 = No Response 875 * 00 = No Response
876 * 01 = Length 136 876 * 01 = Length 136
877 * 10 = Length 48 877 * 10 = Length 48
878 * 11 = Length 48 Check busy after response 878 * 11 = Length 48 Check busy after response
879 */ 879 */
880 /* Delay added before checking the status of frq change 880 /* Delay added before checking the status of frq change
881 * retry not supported by mmc.c(core file) 881 * retry not supported by mmc.c(core file)
882 */ 882 */
883 if (cmd->cmdidx == SD_CMD_APP_SEND_SCR) 883 if (cmd->cmdidx == SD_CMD_APP_SEND_SCR)
884 udelay(50000); /* wait 50 ms */ 884 udelay(50000); /* wait 50 ms */
885 885
886 if (!(cmd->resp_type & MMC_RSP_PRESENT)) 886 if (!(cmd->resp_type & MMC_RSP_PRESENT))
887 flags = 0; 887 flags = 0;
888 else if (cmd->resp_type & MMC_RSP_136) 888 else if (cmd->resp_type & MMC_RSP_136)
889 flags = RSP_TYPE_LGHT136 | CICE_NOCHECK; 889 flags = RSP_TYPE_LGHT136 | CICE_NOCHECK;
890 else if (cmd->resp_type & MMC_RSP_BUSY) 890 else if (cmd->resp_type & MMC_RSP_BUSY)
891 flags = RSP_TYPE_LGHT48B; 891 flags = RSP_TYPE_LGHT48B;
892 else 892 else
893 flags = RSP_TYPE_LGHT48; 893 flags = RSP_TYPE_LGHT48;
894 894
895 /* enable default flags */ 895 /* enable default flags */
896 flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK | 896 flags = flags | (CMD_TYPE_NORMAL | CICE_NOCHECK | CCCE_NOCHECK |
897 MSBS_SGLEBLK); 897 MSBS_SGLEBLK);
898 flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE); 898 flags &= ~(ACEN_ENABLE | BCE_ENABLE | DE_ENABLE);
899 899
900 if (cmd->resp_type & MMC_RSP_CRC) 900 if (cmd->resp_type & MMC_RSP_CRC)
901 flags |= CCCE_CHECK; 901 flags |= CCCE_CHECK;
902 if (cmd->resp_type & MMC_RSP_OPCODE) 902 if (cmd->resp_type & MMC_RSP_OPCODE)
903 flags |= CICE_CHECK; 903 flags |= CICE_CHECK;
904 904
905 if (data) { 905 if (data) {
906 if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) || 906 if ((cmd->cmdidx == MMC_CMD_READ_MULTIPLE_BLOCK) ||
907 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) { 907 (cmd->cmdidx == MMC_CMD_WRITE_MULTIPLE_BLOCK)) {
908 flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE); 908 flags |= (MSBS_MULTIBLK | BCE_ENABLE | ACEN_ENABLE);
909 data->blocksize = 512; 909 data->blocksize = 512;
910 writel(data->blocksize | (data->blocks << 16), 910 writel(data->blocksize | (data->blocks << 16),
911 &mmc_base->blk); 911 &mmc_base->blk);
912 } else 912 } else
913 writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk); 913 writel(data->blocksize | NBLK_STPCNT, &mmc_base->blk);
914 914
915 if (data->flags & MMC_DATA_READ) 915 if (data->flags & MMC_DATA_READ)
916 flags |= (DP_DATA | DDIR_READ); 916 flags |= (DP_DATA | DDIR_READ);
917 else 917 else
918 flags |= (DP_DATA | DDIR_WRITE); 918 flags |= (DP_DATA | DDIR_WRITE);
919 919
920 #ifndef CONFIG_OMAP34XX 920 #ifndef CONFIG_OMAP34XX
921 if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && 921 if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) &&
922 !mmc_is_tuning_cmd(cmd->cmdidx)) { 922 !mmc_is_tuning_cmd(cmd->cmdidx)) {
923 omap_hsmmc_prepare_data(mmc, data); 923 omap_hsmmc_prepare_data(mmc, data);
924 flags |= DE_ENABLE; 924 flags |= DE_ENABLE;
925 } 925 }
926 #endif 926 #endif
927 } 927 }
928 928
929 mmc_enable_irq(mmc, cmd); 929 mmc_enable_irq(mmc, cmd);
930 930
931 writel(cmd->cmdarg, &mmc_base->arg); 931 writel(cmd->cmdarg, &mmc_base->arg);
932 udelay(20); /* To fix "No status update" error on eMMC */ 932 udelay(20); /* To fix "No status update" error on eMMC */
933 writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd); 933 writel((cmd->cmdidx << 24) | flags, &mmc_base->cmd);
934 934
935 start = get_timer(0); 935 start = get_timer(0);
936 do { 936 do {
937 mmc_stat = readl(&mmc_base->stat); 937 mmc_stat = readl(&mmc_base->stat);
938 if (get_timer(start) > MAX_RETRY_MS) { 938 if (get_timer(start) > MAX_RETRY_MS) {
939 printf("%s : timeout: No status update\n", __func__); 939 printf("%s : timeout: No status update\n", __func__);
940 return -ETIMEDOUT; 940 return -ETIMEDOUT;
941 } 941 }
942 } while (!mmc_stat); 942 } while (!mmc_stat);
943 943
944 if ((mmc_stat & IE_CTO) != 0) { 944 if ((mmc_stat & IE_CTO) != 0) {
945 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC); 945 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRC);
946 return -ETIMEDOUT; 946 return -ETIMEDOUT;
947 } else if ((mmc_stat & ERRI_MASK) != 0) 947 } else if ((mmc_stat & ERRI_MASK) != 0)
948 return -1; 948 return -1;
949 949
950 if (mmc_stat & CC_MASK) { 950 if (mmc_stat & CC_MASK) {
951 writel(CC_MASK, &mmc_base->stat); 951 writel(CC_MASK, &mmc_base->stat);
952 if (cmd->resp_type & MMC_RSP_PRESENT) { 952 if (cmd->resp_type & MMC_RSP_PRESENT) {
953 if (cmd->resp_type & MMC_RSP_136) { 953 if (cmd->resp_type & MMC_RSP_136) {
954 /* response type 2 */ 954 /* response type 2 */
955 cmd->response[3] = readl(&mmc_base->rsp10); 955 cmd->response[3] = readl(&mmc_base->rsp10);
956 cmd->response[2] = readl(&mmc_base->rsp32); 956 cmd->response[2] = readl(&mmc_base->rsp32);
957 cmd->response[1] = readl(&mmc_base->rsp54); 957 cmd->response[1] = readl(&mmc_base->rsp54);
958 cmd->response[0] = readl(&mmc_base->rsp76); 958 cmd->response[0] = readl(&mmc_base->rsp76);
959 } else 959 } else
960 /* response types 1, 1b, 3, 4, 5, 6 */ 960 /* response types 1, 1b, 3, 4, 5, 6 */
961 cmd->response[0] = readl(&mmc_base->rsp10); 961 cmd->response[0] = readl(&mmc_base->rsp10);
962 } 962 }
963 } 963 }
964 964
965 #ifndef CONFIG_OMAP34XX 965 #ifndef CONFIG_OMAP34XX
966 if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data && 966 if ((priv->controller_flags & OMAP_HSMMC_USE_ADMA) && data &&
967 !mmc_is_tuning_cmd(cmd->cmdidx)) { 967 !mmc_is_tuning_cmd(cmd->cmdidx)) {
968 u32 sz_mb, timeout; 968 u32 sz_mb, timeout;
969 969
970 if (mmc_stat & IE_ADMAE) { 970 if (mmc_stat & IE_ADMAE) {
971 omap_hsmmc_dma_cleanup(mmc); 971 omap_hsmmc_dma_cleanup(mmc);
972 return -EIO; 972 return -EIO;
973 } 973 }
974 974
975 sz_mb = DIV_ROUND_UP(data->blocksize * data->blocks, 1 << 20); 975 sz_mb = DIV_ROUND_UP(data->blocksize * data->blocks, 1 << 20);
976 timeout = sz_mb * DMA_TIMEOUT_PER_MB; 976 timeout = sz_mb * DMA_TIMEOUT_PER_MB;
977 if (timeout < MAX_RETRY_MS) 977 if (timeout < MAX_RETRY_MS)
978 timeout = MAX_RETRY_MS; 978 timeout = MAX_RETRY_MS;
979 979
980 start = get_timer(0); 980 start = get_timer(0);
981 do { 981 do {
982 mmc_stat = readl(&mmc_base->stat); 982 mmc_stat = readl(&mmc_base->stat);
983 if (mmc_stat & TC_MASK) { 983 if (mmc_stat & TC_MASK) {
984 writel(readl(&mmc_base->stat) | TC_MASK, 984 writel(readl(&mmc_base->stat) | TC_MASK,
985 &mmc_base->stat); 985 &mmc_base->stat);
986 break; 986 break;
987 } 987 }
988 if (get_timer(start) > timeout) { 988 if (get_timer(start) > timeout) {
989 printf("%s : DMA timeout: No status update\n", 989 printf("%s : DMA timeout: No status update\n",
990 __func__); 990 __func__);
991 return -ETIMEDOUT; 991 return -ETIMEDOUT;
992 } 992 }
993 } while (1); 993 } while (1);
994 994
995 omap_hsmmc_dma_cleanup(mmc); 995 omap_hsmmc_dma_cleanup(mmc);
996 return 0; 996 return 0;
997 } 997 }
998 #endif 998 #endif
999 999
1000 if (data && (data->flags & MMC_DATA_READ)) { 1000 if (data && (data->flags & MMC_DATA_READ)) {
1001 mmc_read_data(mmc_base, data->dest, 1001 mmc_read_data(mmc_base, data->dest,
1002 data->blocksize * data->blocks); 1002 data->blocksize * data->blocks);
1003 } else if (data && (data->flags & MMC_DATA_WRITE)) { 1003 } else if (data && (data->flags & MMC_DATA_WRITE)) {
1004 mmc_write_data(mmc_base, data->src, 1004 mmc_write_data(mmc_base, data->src,
1005 data->blocksize * data->blocks); 1005 data->blocksize * data->blocks);
1006 } 1006 }
1007 return 0; 1007 return 0;
1008 } 1008 }
1009 1009
1010 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size) 1010 static int mmc_read_data(struct hsmmc *mmc_base, char *buf, unsigned int size)
1011 { 1011 {
1012 unsigned int *output_buf = (unsigned int *)buf; 1012 unsigned int *output_buf = (unsigned int *)buf;
1013 unsigned int mmc_stat; 1013 unsigned int mmc_stat;
1014 unsigned int count; 1014 unsigned int count;
1015 1015
1016 /* 1016 /*
1017 * Start Polled Read 1017 * Start Polled Read
1018 */ 1018 */
1019 count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size; 1019 count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1020 count /= 4; 1020 count /= 4;
1021 1021
1022 while (size) { 1022 while (size) {
1023 ulong start = get_timer(0); 1023 ulong start = get_timer(0);
1024 do { 1024 do {
1025 mmc_stat = readl(&mmc_base->stat); 1025 mmc_stat = readl(&mmc_base->stat);
1026 if (get_timer(0) - start > MAX_RETRY_MS) { 1026 if (get_timer(0) - start > MAX_RETRY_MS) {
1027 printf("%s: timedout waiting for status!\n", 1027 printf("%s: timedout waiting for status!\n",
1028 __func__); 1028 __func__);
1029 return -ETIMEDOUT; 1029 return -ETIMEDOUT;
1030 } 1030 }
1031 } while (mmc_stat == 0); 1031 } while (mmc_stat == 0);
1032 1032
1033 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0) 1033 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1034 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); 1034 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1035 1035
1036 if ((mmc_stat & ERRI_MASK) != 0) 1036 if ((mmc_stat & ERRI_MASK) != 0)
1037 return 1; 1037 return 1;
1038 1038
1039 if (mmc_stat & BRR_MASK) { 1039 if (mmc_stat & BRR_MASK) {
1040 unsigned int k; 1040 unsigned int k;
1041 1041
1042 writel(readl(&mmc_base->stat) | BRR_MASK, 1042 writel(readl(&mmc_base->stat) | BRR_MASK,
1043 &mmc_base->stat); 1043 &mmc_base->stat);
1044 for (k = 0; k < count; k++) { 1044 for (k = 0; k < count; k++) {
1045 *output_buf = readl(&mmc_base->data); 1045 *output_buf = readl(&mmc_base->data);
1046 output_buf++; 1046 output_buf++;
1047 } 1047 }
1048 size -= (count*4); 1048 size -= (count*4);
1049 } 1049 }
1050 1050
1051 if (mmc_stat & BWR_MASK) 1051 if (mmc_stat & BWR_MASK)
1052 writel(readl(&mmc_base->stat) | BWR_MASK, 1052 writel(readl(&mmc_base->stat) | BWR_MASK,
1053 &mmc_base->stat); 1053 &mmc_base->stat);
1054 1054
1055 if (mmc_stat & TC_MASK) { 1055 if (mmc_stat & TC_MASK) {
1056 writel(readl(&mmc_base->stat) | TC_MASK, 1056 writel(readl(&mmc_base->stat) | TC_MASK,
1057 &mmc_base->stat); 1057 &mmc_base->stat);
1058 break; 1058 break;
1059 } 1059 }
1060 } 1060 }
1061 return 0; 1061 return 0;
1062 } 1062 }
1063 1063
1064 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf, 1064 static int mmc_write_data(struct hsmmc *mmc_base, const char *buf,
1065 unsigned int size) 1065 unsigned int size)
1066 { 1066 {
1067 unsigned int *input_buf = (unsigned int *)buf; 1067 unsigned int *input_buf = (unsigned int *)buf;
1068 unsigned int mmc_stat; 1068 unsigned int mmc_stat;
1069 unsigned int count; 1069 unsigned int count;
1070 1070
1071 /* 1071 /*
1072 * Start Polled Write 1072 * Start Polled Write
1073 */ 1073 */
1074 count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size; 1074 count = (size > MMCSD_SECTOR_SIZE) ? MMCSD_SECTOR_SIZE : size;
1075 count /= 4; 1075 count /= 4;
1076 1076
1077 while (size) { 1077 while (size) {
1078 ulong start = get_timer(0); 1078 ulong start = get_timer(0);
1079 do { 1079 do {
1080 mmc_stat = readl(&mmc_base->stat); 1080 mmc_stat = readl(&mmc_base->stat);
1081 if (get_timer(0) - start > MAX_RETRY_MS) { 1081 if (get_timer(0) - start > MAX_RETRY_MS) {
1082 printf("%s: timedout waiting for status!\n", 1082 printf("%s: timedout waiting for status!\n",
1083 __func__); 1083 __func__);
1084 return -ETIMEDOUT; 1084 return -ETIMEDOUT;
1085 } 1085 }
1086 } while (mmc_stat == 0); 1086 } while (mmc_stat == 0);
1087 1087
1088 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0) 1088 if ((mmc_stat & (IE_DTO | IE_DCRC | IE_DEB)) != 0)
1089 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD); 1089 mmc_reset_controller_fsm(mmc_base, SYSCTL_SRD);
1090 1090
1091 if ((mmc_stat & ERRI_MASK) != 0) 1091 if ((mmc_stat & ERRI_MASK) != 0)
1092 return 1; 1092 return 1;
1093 1093
1094 if (mmc_stat & BWR_MASK) { 1094 if (mmc_stat & BWR_MASK) {
1095 unsigned int k; 1095 unsigned int k;
1096 1096
1097 writel(readl(&mmc_base->stat) | BWR_MASK, 1097 writel(readl(&mmc_base->stat) | BWR_MASK,
1098 &mmc_base->stat); 1098 &mmc_base->stat);
1099 for (k = 0; k < count; k++) { 1099 for (k = 0; k < count; k++) {
1100 writel(*input_buf, &mmc_base->data); 1100 writel(*input_buf, &mmc_base->data);
1101 input_buf++; 1101 input_buf++;
1102 } 1102 }
1103 size -= (count*4); 1103 size -= (count*4);
1104 } 1104 }
1105 1105
1106 if (mmc_stat & BRR_MASK) 1106 if (mmc_stat & BRR_MASK)
1107 writel(readl(&mmc_base->stat) | BRR_MASK, 1107 writel(readl(&mmc_base->stat) | BRR_MASK,
1108 &mmc_base->stat); 1108 &mmc_base->stat);
1109 1109
1110 if (mmc_stat & TC_MASK) { 1110 if (mmc_stat & TC_MASK) {
1111 writel(readl(&mmc_base->stat) | TC_MASK, 1111 writel(readl(&mmc_base->stat) | TC_MASK,
1112 &mmc_base->stat); 1112 &mmc_base->stat);
1113 break; 1113 break;
1114 } 1114 }
1115 } 1115 }
1116 return 0; 1116 return 0;
1117 } 1117 }
1118 1118
1119 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base) 1119 static void omap_hsmmc_stop_clock(struct hsmmc *mmc_base)
1120 { 1120 {
1121 writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl); 1121 writel(readl(&mmc_base->sysctl) & ~CEN_ENABLE, &mmc_base->sysctl);
1122 } 1122 }
1123 1123
1124 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base) 1124 static void omap_hsmmc_start_clock(struct hsmmc *mmc_base)
1125 { 1125 {
1126 writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl); 1126 writel(readl(&mmc_base->sysctl) | CEN_ENABLE, &mmc_base->sysctl);
1127 } 1127 }
1128 1128
1129 static void omap_hsmmc_set_clock(struct mmc *mmc) 1129 static void omap_hsmmc_set_clock(struct mmc *mmc)
1130 { 1130 {
1131 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1131 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1132 struct hsmmc *mmc_base; 1132 struct hsmmc *mmc_base;
1133 unsigned int dsor = 0; 1133 unsigned int dsor = 0;
1134 ulong start; 1134 ulong start;
1135 1135
1136 mmc_base = priv->base_addr; 1136 mmc_base = priv->base_addr;
1137 omap_hsmmc_stop_clock(mmc_base); 1137 omap_hsmmc_stop_clock(mmc_base);
1138 1138
1139 /* TODO: Is setting DTO required here? */ 1139 /* TODO: Is setting DTO required here? */
1140 mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK), 1140 mmc_reg_out(&mmc_base->sysctl, (ICE_MASK | DTO_MASK),
1141 (ICE_STOP | DTO_15THDTO)); 1141 (ICE_STOP | DTO_15THDTO));
1142 1142
1143 if (mmc->clock != 0) { 1143 if (mmc->clock != 0) {
1144 dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock); 1144 dsor = DIV_ROUND_UP(MMC_CLOCK_REFERENCE * 1000000, mmc->clock);
1145 if (dsor > CLKD_MAX) 1145 if (dsor > CLKD_MAX)
1146 dsor = CLKD_MAX; 1146 dsor = CLKD_MAX;
1147 } else { 1147 } else {
1148 dsor = CLKD_MAX; 1148 dsor = CLKD_MAX;
1149 } 1149 }
1150 1150
1151 mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK, 1151 mmc_reg_out(&mmc_base->sysctl, ICE_MASK | CLKD_MASK,
1152 (dsor << CLKD_OFFSET) | ICE_OSCILLATE); 1152 (dsor << CLKD_OFFSET) | ICE_OSCILLATE);
1153 1153
1154 start = get_timer(0); 1154 start = get_timer(0);
1155 while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) { 1155 while ((readl(&mmc_base->sysctl) & ICS_MASK) == ICS_NOTREADY) {
1156 if (get_timer(0) - start > MAX_RETRY_MS) { 1156 if (get_timer(0) - start > MAX_RETRY_MS) {
1157 printf("%s: timedout waiting for ics!\n", __func__); 1157 printf("%s: timedout waiting for ics!\n", __func__);
1158 return; 1158 return;
1159 } 1159 }
1160 } 1160 }
1161 1161
1162 priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor; 1162 priv->clock = MMC_CLOCK_REFERENCE * 1000000 / dsor;
1163 mmc->clock = priv->clock; 1163 mmc->clock = priv->clock;
1164 omap_hsmmc_start_clock(mmc_base); 1164 omap_hsmmc_start_clock(mmc_base);
1165 } 1165 }
1166 1166
1167 static void omap_hsmmc_set_bus_width(struct mmc *mmc) 1167 static void omap_hsmmc_set_bus_width(struct mmc *mmc)
1168 { 1168 {
1169 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1169 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1170 struct hsmmc *mmc_base; 1170 struct hsmmc *mmc_base;
1171 1171
1172 mmc_base = priv->base_addr; 1172 mmc_base = priv->base_addr;
1173 /* configue bus width */ 1173 /* configue bus width */
1174 switch (mmc->bus_width) { 1174 switch (mmc->bus_width) {
1175 case 8: 1175 case 8:
1176 writel(readl(&mmc_base->con) | DTW_8_BITMODE, 1176 writel(readl(&mmc_base->con) | DTW_8_BITMODE,
1177 &mmc_base->con); 1177 &mmc_base->con);
1178 break; 1178 break;
1179 1179
1180 case 4: 1180 case 4:
1181 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE, 1181 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1182 &mmc_base->con); 1182 &mmc_base->con);
1183 writel(readl(&mmc_base->hctl) | DTW_4_BITMODE, 1183 writel(readl(&mmc_base->hctl) | DTW_4_BITMODE,
1184 &mmc_base->hctl); 1184 &mmc_base->hctl);
1185 break; 1185 break;
1186 1186
1187 case 1: 1187 case 1:
1188 default: 1188 default:
1189 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE, 1189 writel(readl(&mmc_base->con) & ~DTW_8_BITMODE,
1190 &mmc_base->con); 1190 &mmc_base->con);
1191 writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE, 1191 writel(readl(&mmc_base->hctl) & ~DTW_4_BITMODE,
1192 &mmc_base->hctl); 1192 &mmc_base->hctl);
1193 break; 1193 break;
1194 } 1194 }
1195 1195
1196 priv->bus_width = mmc->bus_width; 1196 priv->bus_width = mmc->bus_width;
1197 } 1197 }
1198 1198
1199 #if !CONFIG_IS_ENABLED(DM_MMC) 1199 #if !CONFIG_IS_ENABLED(DM_MMC)
1200 static int omap_hsmmc_set_ios(struct mmc *mmc) 1200 static int omap_hsmmc_set_ios(struct mmc *mmc)
1201 { 1201 {
1202 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1202 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1203 #else 1203 #else
1204 static int omap_hsmmc_set_ios(struct udevice *dev) 1204 static int omap_hsmmc_set_ios(struct udevice *dev)
1205 { 1205 {
1206 struct omap_hsmmc_data *priv = dev_get_priv(dev); 1206 struct omap_hsmmc_data *priv = dev_get_priv(dev);
1207 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); 1207 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1208 struct mmc *mmc = upriv->mmc; 1208 struct mmc *mmc = upriv->mmc;
1209 #endif 1209 #endif
1210 struct hsmmc *mmc_base = priv->base_addr;
1210 1211
1211 if (priv->bus_width != mmc->bus_width) 1212 if (priv->bus_width != mmc->bus_width)
1212 omap_hsmmc_set_bus_width(mmc); 1213 omap_hsmmc_set_bus_width(mmc);
1213 1214
1214 if (priv->clock != mmc->clock) 1215 if (priv->clock != mmc->clock)
1215 omap_hsmmc_set_clock(mmc); 1216 omap_hsmmc_set_clock(mmc);
1217
1218 if (mmc->clk_disable)
1219 omap_hsmmc_stop_clock(mmc_base);
1220 else
1221 omap_hsmmc_start_clock(mmc_base);
1216 1222
1217 #if CONFIG_IS_ENABLED(DM_MMC) 1223 #if CONFIG_IS_ENABLED(DM_MMC)
1218 if (priv->mode != mmc->selected_mode) 1224 if (priv->mode != mmc->selected_mode)
1219 omap_hsmmc_set_timing(mmc); 1225 omap_hsmmc_set_timing(mmc);
1220 #endif 1226 #endif
1221 return 0; 1227 return 0;
1222 } 1228 }
1223 1229
1224 #ifdef OMAP_HSMMC_USE_GPIO 1230 #ifdef OMAP_HSMMC_USE_GPIO
1225 #if CONFIG_IS_ENABLED(DM_MMC) 1231 #if CONFIG_IS_ENABLED(DM_MMC)
1226 static int omap_hsmmc_getcd(struct udevice *dev) 1232 static int omap_hsmmc_getcd(struct udevice *dev)
1227 { 1233 {
1228 struct omap_hsmmc_data *priv = dev_get_priv(dev); 1234 struct omap_hsmmc_data *priv = dev_get_priv(dev);
1229 int value; 1235 int value;
1230 1236
1231 value = dm_gpio_get_value(&priv->cd_gpio); 1237 value = dm_gpio_get_value(&priv->cd_gpio);
1232 /* if no CD return as 1 */ 1238 /* if no CD return as 1 */
1233 if (value < 0) 1239 if (value < 0)
1234 return 1; 1240 return 1;
1235 1241
1236 if (priv->cd_inverted) 1242 if (priv->cd_inverted)
1237 return !value; 1243 return !value;
1238 return value; 1244 return value;
1239 } 1245 }
1240 1246
1241 static int omap_hsmmc_getwp(struct udevice *dev) 1247 static int omap_hsmmc_getwp(struct udevice *dev)
1242 { 1248 {
1243 struct omap_hsmmc_data *priv = dev_get_priv(dev); 1249 struct omap_hsmmc_data *priv = dev_get_priv(dev);
1244 int value; 1250 int value;
1245 1251
1246 value = dm_gpio_get_value(&priv->wp_gpio); 1252 value = dm_gpio_get_value(&priv->wp_gpio);
1247 /* if no WP return as 0 */ 1253 /* if no WP return as 0 */
1248 if (value < 0) 1254 if (value < 0)
1249 return 0; 1255 return 0;
1250 return value; 1256 return value;
1251 } 1257 }
1252 #else 1258 #else
1253 static int omap_hsmmc_getcd(struct mmc *mmc) 1259 static int omap_hsmmc_getcd(struct mmc *mmc)
1254 { 1260 {
1255 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1261 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1256 int cd_gpio; 1262 int cd_gpio;
1257 1263
1258 /* if no CD return as 1 */ 1264 /* if no CD return as 1 */
1259 cd_gpio = priv->cd_gpio; 1265 cd_gpio = priv->cd_gpio;
1260 if (cd_gpio < 0) 1266 if (cd_gpio < 0)
1261 return 1; 1267 return 1;
1262 1268
1263 /* NOTE: assumes card detect signal is active-low */ 1269 /* NOTE: assumes card detect signal is active-low */
1264 return !gpio_get_value(cd_gpio); 1270 return !gpio_get_value(cd_gpio);
1265 } 1271 }
1266 1272
1267 static int omap_hsmmc_getwp(struct mmc *mmc) 1273 static int omap_hsmmc_getwp(struct mmc *mmc)
1268 { 1274 {
1269 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1275 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1270 int wp_gpio; 1276 int wp_gpio;
1271 1277
1272 /* if no WP return as 0 */ 1278 /* if no WP return as 0 */
1273 wp_gpio = priv->wp_gpio; 1279 wp_gpio = priv->wp_gpio;
1274 if (wp_gpio < 0) 1280 if (wp_gpio < 0)
1275 return 0; 1281 return 0;
1276 1282
1277 /* NOTE: assumes write protect signal is active-high */ 1283 /* NOTE: assumes write protect signal is active-high */
1278 return gpio_get_value(wp_gpio); 1284 return gpio_get_value(wp_gpio);
1279 } 1285 }
1280 #endif 1286 #endif
1281 #endif 1287 #endif
1282 1288
1283 #if CONFIG_IS_ENABLED(DM_MMC) 1289 #if CONFIG_IS_ENABLED(DM_MMC)
1284 static const struct dm_mmc_ops omap_hsmmc_ops = { 1290 static const struct dm_mmc_ops omap_hsmmc_ops = {
1285 .send_cmd = omap_hsmmc_send_cmd, 1291 .send_cmd = omap_hsmmc_send_cmd,
1286 .set_ios = omap_hsmmc_set_ios, 1292 .set_ios = omap_hsmmc_set_ios,
1287 #ifdef OMAP_HSMMC_USE_GPIO 1293 #ifdef OMAP_HSMMC_USE_GPIO
1288 .get_cd = omap_hsmmc_getcd, 1294 .get_cd = omap_hsmmc_getcd,
1289 .get_wp = omap_hsmmc_getwp, 1295 .get_wp = omap_hsmmc_getwp,
1290 #endif 1296 #endif
1291 #ifdef MMC_SUPPORTS_TUNING 1297 #ifdef MMC_SUPPORTS_TUNING
1292 .execute_tuning = omap_hsmmc_execute_tuning, 1298 .execute_tuning = omap_hsmmc_execute_tuning,
1293 #endif 1299 #endif
1294 .send_init_stream = omap_hsmmc_send_init_stream, 1300 .send_init_stream = omap_hsmmc_send_init_stream,
1295 }; 1301 };
1296 #else 1302 #else
1297 static const struct mmc_ops omap_hsmmc_ops = { 1303 static const struct mmc_ops omap_hsmmc_ops = {
1298 .send_cmd = omap_hsmmc_send_cmd, 1304 .send_cmd = omap_hsmmc_send_cmd,
1299 .set_ios = omap_hsmmc_set_ios, 1305 .set_ios = omap_hsmmc_set_ios,
1300 .init = omap_hsmmc_init_setup, 1306 .init = omap_hsmmc_init_setup,
1301 #ifdef OMAP_HSMMC_USE_GPIO 1307 #ifdef OMAP_HSMMC_USE_GPIO
1302 .getcd = omap_hsmmc_getcd, 1308 .getcd = omap_hsmmc_getcd,
1303 .getwp = omap_hsmmc_getwp, 1309 .getwp = omap_hsmmc_getwp,
1304 #endif 1310 #endif
1305 }; 1311 };
1306 #endif 1312 #endif
1307 1313
1308 #if !CONFIG_IS_ENABLED(DM_MMC) 1314 #if !CONFIG_IS_ENABLED(DM_MMC)
1309 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio, 1315 int omap_mmc_init(int dev_index, uint host_caps_mask, uint f_max, int cd_gpio,
1310 int wp_gpio) 1316 int wp_gpio)
1311 { 1317 {
1312 struct mmc *mmc; 1318 struct mmc *mmc;
1313 struct omap_hsmmc_data *priv; 1319 struct omap_hsmmc_data *priv;
1314 struct mmc_config *cfg; 1320 struct mmc_config *cfg;
1315 uint host_caps_val; 1321 uint host_caps_val;
1316 1322
1317 priv = malloc(sizeof(*priv)); 1323 priv = malloc(sizeof(*priv));
1318 if (priv == NULL) 1324 if (priv == NULL)
1319 return -1; 1325 return -1;
1320 1326
1321 host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS; 1327 host_caps_val = MMC_MODE_4BIT | MMC_MODE_HS_52MHz | MMC_MODE_HS;
1322 1328
1323 switch (dev_index) { 1329 switch (dev_index) {
1324 case 0: 1330 case 0:
1325 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE; 1331 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1326 break; 1332 break;
1327 #ifdef OMAP_HSMMC2_BASE 1333 #ifdef OMAP_HSMMC2_BASE
1328 case 1: 1334 case 1:
1329 priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE; 1335 priv->base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE;
1330 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \ 1336 #if (defined(CONFIG_OMAP44XX) || defined(CONFIG_OMAP54XX) || \
1331 defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \ 1337 defined(CONFIG_DRA7XX) || defined(CONFIG_AM33XX) || \
1332 defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \ 1338 defined(CONFIG_AM43XX) || defined(CONFIG_SOC_KEYSTONE)) && \
1333 defined(CONFIG_HSMMC2_8BIT) 1339 defined(CONFIG_HSMMC2_8BIT)
1334 /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */ 1340 /* Enable 8-bit interface for eMMC on OMAP4/5 or DRA7XX */
1335 host_caps_val |= MMC_MODE_8BIT; 1341 host_caps_val |= MMC_MODE_8BIT;
1336 #endif 1342 #endif
1337 break; 1343 break;
1338 #endif 1344 #endif
1339 #ifdef OMAP_HSMMC3_BASE 1345 #ifdef OMAP_HSMMC3_BASE
1340 case 2: 1346 case 2:
1341 priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE; 1347 priv->base_addr = (struct hsmmc *)OMAP_HSMMC3_BASE;
1342 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT) 1348 #if defined(CONFIG_DRA7XX) && defined(CONFIG_HSMMC3_8BIT)
1343 /* Enable 8-bit interface for eMMC on DRA7XX */ 1349 /* Enable 8-bit interface for eMMC on DRA7XX */
1344 host_caps_val |= MMC_MODE_8BIT; 1350 host_caps_val |= MMC_MODE_8BIT;
1345 #endif 1351 #endif
1346 break; 1352 break;
1347 #endif 1353 #endif
1348 default: 1354 default:
1349 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE; 1355 priv->base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE;
1350 return 1; 1356 return 1;
1351 } 1357 }
1352 #ifdef OMAP_HSMMC_USE_GPIO 1358 #ifdef OMAP_HSMMC_USE_GPIO
1353 /* on error gpio values are set to -1, which is what we want */ 1359 /* on error gpio values are set to -1, which is what we want */
1354 priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd"); 1360 priv->cd_gpio = omap_mmc_setup_gpio_in(cd_gpio, "mmc_cd");
1355 priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp"); 1361 priv->wp_gpio = omap_mmc_setup_gpio_in(wp_gpio, "mmc_wp");
1356 #endif 1362 #endif
1357 1363
1358 cfg = &priv->cfg; 1364 cfg = &priv->cfg;
1359 1365
1360 cfg->name = "OMAP SD/MMC"; 1366 cfg->name = "OMAP SD/MMC";
1361 cfg->ops = &omap_hsmmc_ops; 1367 cfg->ops = &omap_hsmmc_ops;
1362 1368
1363 cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; 1369 cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1364 cfg->host_caps = host_caps_val & ~host_caps_mask; 1370 cfg->host_caps = host_caps_val & ~host_caps_mask;
1365 1371
1366 cfg->f_min = 400000; 1372 cfg->f_min = 400000;
1367 1373
1368 if (f_max != 0) 1374 if (f_max != 0)
1369 cfg->f_max = f_max; 1375 cfg->f_max = f_max;
1370 else { 1376 else {
1371 if (cfg->host_caps & MMC_MODE_HS) { 1377 if (cfg->host_caps & MMC_MODE_HS) {
1372 if (cfg->host_caps & MMC_MODE_HS_52MHz) 1378 if (cfg->host_caps & MMC_MODE_HS_52MHz)
1373 cfg->f_max = 52000000; 1379 cfg->f_max = 52000000;
1374 else 1380 else
1375 cfg->f_max = 26000000; 1381 cfg->f_max = 26000000;
1376 } else 1382 } else
1377 cfg->f_max = 20000000; 1383 cfg->f_max = 20000000;
1378 } 1384 }
1379 1385
1380 cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; 1386 cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1381 1387
1382 #if defined(CONFIG_OMAP34XX) 1388 #if defined(CONFIG_OMAP34XX)
1383 /* 1389 /*
1384 * Silicon revs 2.1 and older do not support multiblock transfers. 1390 * Silicon revs 2.1 and older do not support multiblock transfers.
1385 */ 1391 */
1386 if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21)) 1392 if ((get_cpu_family() == CPU_OMAP34XX) && (get_cpu_rev() <= CPU_3XX_ES21))
1387 cfg->b_max = 1; 1393 cfg->b_max = 1;
1388 #endif 1394 #endif
1389 1395
1390 mmc = mmc_create(cfg, priv); 1396 mmc = mmc_create(cfg, priv);
1391 if (mmc == NULL) 1397 if (mmc == NULL)
1392 return -1; 1398 return -1;
1393 1399
1394 return 0; 1400 return 0;
1395 } 1401 }
1396 #else 1402 #else
1397 1403
1398 #ifdef CONFIG_IODELAY_RECALIBRATION 1404 #ifdef CONFIG_IODELAY_RECALIBRATION
1399 static struct pad_conf_entry * 1405 static struct pad_conf_entry *
1400 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count) 1406 omap_hsmmc_get_pad_conf_entry(const fdt32_t *pinctrl, int count)
1401 { 1407 {
1402 int index = 0; 1408 int index = 0;
1403 struct pad_conf_entry *padconf; 1409 struct pad_conf_entry *padconf;
1404 1410
1405 padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count); 1411 padconf = (struct pad_conf_entry *)malloc(sizeof(*padconf) * count);
1406 if (!padconf) { 1412 if (!padconf) {
1407 debug("failed to allocate memory\n"); 1413 debug("failed to allocate memory\n");
1408 return 0; 1414 return 0;
1409 } 1415 }
1410 1416
1411 while (index < count) { 1417 while (index < count) {
1412 padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]); 1418 padconf[index].offset = fdt32_to_cpu(pinctrl[2 * index]);
1413 padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]); 1419 padconf[index].val = fdt32_to_cpu(pinctrl[2 * index + 1]);
1414 index++; 1420 index++;
1415 } 1421 }
1416 1422
1417 return padconf; 1423 return padconf;
1418 } 1424 }
1419 1425
1420 static struct iodelay_cfg_entry * 1426 static struct iodelay_cfg_entry *
1421 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count) 1427 omap_hsmmc_get_iodelay_cfg_entry(const fdt32_t *pinctrl, int count)
1422 { 1428 {
1423 int index = 0; 1429 int index = 0;
1424 struct iodelay_cfg_entry *iodelay; 1430 struct iodelay_cfg_entry *iodelay;
1425 1431
1426 iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count); 1432 iodelay = (struct iodelay_cfg_entry *)malloc(sizeof(*iodelay) * count);
1427 if (!iodelay) { 1433 if (!iodelay) {
1428 debug("failed to allocate memory\n"); 1434 debug("failed to allocate memory\n");
1429 return 0; 1435 return 0;
1430 } 1436 }
1431 1437
1432 while (index < count) { 1438 while (index < count) {
1433 iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]); 1439 iodelay[index].offset = fdt32_to_cpu(pinctrl[3 * index]);
1434 iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]); 1440 iodelay[index].a_delay = fdt32_to_cpu(pinctrl[3 * index + 1]);
1435 iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]); 1441 iodelay[index].g_delay = fdt32_to_cpu(pinctrl[3 * index + 2]);
1436 index++; 1442 index++;
1437 } 1443 }
1438 1444
1439 return iodelay; 1445 return iodelay;
1440 } 1446 }
1441 1447
1442 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32 phandle, 1448 static const fdt32_t *omap_hsmmc_get_pinctrl_entry(u32 phandle,
1443 const char *name, int *len) 1449 const char *name, int *len)
1444 { 1450 {
1445 const void *fdt = gd->fdt_blob; 1451 const void *fdt = gd->fdt_blob;
1446 int offset; 1452 int offset;
1447 const fdt32_t *pinctrl; 1453 const fdt32_t *pinctrl;
1448 1454
1449 offset = fdt_node_offset_by_phandle(fdt, phandle); 1455 offset = fdt_node_offset_by_phandle(fdt, phandle);
1450 if (offset < 0) { 1456 if (offset < 0) {
1451 debug("failed to get pinctrl node %s.\n", 1457 debug("failed to get pinctrl node %s.\n",
1452 fdt_strerror(offset)); 1458 fdt_strerror(offset));
1453 return 0; 1459 return 0;
1454 } 1460 }
1455 1461
1456 pinctrl = fdt_getprop(fdt, offset, name, len); 1462 pinctrl = fdt_getprop(fdt, offset, name, len);
1457 if (!pinctrl) { 1463 if (!pinctrl) {
1458 debug("failed to get property %s\n", name); 1464 debug("failed to get property %s\n", name);
1459 return 0; 1465 return 0;
1460 } 1466 }
1461 1467
1462 return pinctrl; 1468 return pinctrl;
1463 } 1469 }
1464 1470
1465 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc, 1471 static uint32_t omap_hsmmc_get_pad_conf_phandle(struct mmc *mmc,
1466 char *prop_name) 1472 char *prop_name)
1467 { 1473 {
1468 const void *fdt = gd->fdt_blob; 1474 const void *fdt = gd->fdt_blob;
1469 const __be32 *phandle; 1475 const __be32 *phandle;
1470 int node = dev_of_offset(mmc->dev); 1476 int node = dev_of_offset(mmc->dev);
1471 1477
1472 phandle = fdt_getprop(fdt, node, prop_name, NULL); 1478 phandle = fdt_getprop(fdt, node, prop_name, NULL);
1473 if (!phandle) { 1479 if (!phandle) {
1474 debug("failed to get property %s\n", prop_name); 1480 debug("failed to get property %s\n", prop_name);
1475 return 0; 1481 return 0;
1476 } 1482 }
1477 1483
1478 return fdt32_to_cpu(*phandle); 1484 return fdt32_to_cpu(*phandle);
1479 } 1485 }
1480 1486
1481 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc, 1487 static uint32_t omap_hsmmc_get_iodelay_phandle(struct mmc *mmc,
1482 char *prop_name) 1488 char *prop_name)
1483 { 1489 {
1484 const void *fdt = gd->fdt_blob; 1490 const void *fdt = gd->fdt_blob;
1485 const __be32 *phandle; 1491 const __be32 *phandle;
1486 int len; 1492 int len;
1487 int count; 1493 int count;
1488 int node = dev_of_offset(mmc->dev); 1494 int node = dev_of_offset(mmc->dev);
1489 1495
1490 phandle = fdt_getprop(fdt, node, prop_name, &len); 1496 phandle = fdt_getprop(fdt, node, prop_name, &len);
1491 if (!phandle) { 1497 if (!phandle) {
1492 debug("failed to get property %s\n", prop_name); 1498 debug("failed to get property %s\n", prop_name);
1493 return 0; 1499 return 0;
1494 } 1500 }
1495 1501
1496 /* No manual mode iodelay values if count < 2 */ 1502 /* No manual mode iodelay values if count < 2 */
1497 count = len / sizeof(*phandle); 1503 count = len / sizeof(*phandle);
1498 if (count < 2) 1504 if (count < 2)
1499 return 0; 1505 return 0;
1500 1506
1501 return fdt32_to_cpu(*(phandle + 1)); 1507 return fdt32_to_cpu(*(phandle + 1));
1502 } 1508 }
1503 1509
1504 static struct pad_conf_entry * 1510 static struct pad_conf_entry *
1505 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads) 1511 omap_hsmmc_get_pad_conf(struct mmc *mmc, char *prop_name, int *npads)
1506 { 1512 {
1507 int len; 1513 int len;
1508 int count; 1514 int count;
1509 struct pad_conf_entry *padconf; 1515 struct pad_conf_entry *padconf;
1510 u32 phandle; 1516 u32 phandle;
1511 const fdt32_t *pinctrl; 1517 const fdt32_t *pinctrl;
1512 1518
1513 phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name); 1519 phandle = omap_hsmmc_get_pad_conf_phandle(mmc, prop_name);
1514 if (!phandle) 1520 if (!phandle)
1515 return ERR_PTR(-EINVAL); 1521 return ERR_PTR(-EINVAL);
1516 1522
1517 pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins", 1523 pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-single,pins",
1518 &len); 1524 &len);
1519 if (!pinctrl) 1525 if (!pinctrl)
1520 return ERR_PTR(-EINVAL); 1526 return ERR_PTR(-EINVAL);
1521 1527
1522 count = (len / sizeof(*pinctrl)) / 2; 1528 count = (len / sizeof(*pinctrl)) / 2;
1523 padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count); 1529 padconf = omap_hsmmc_get_pad_conf_entry(pinctrl, count);
1524 if (!padconf) 1530 if (!padconf)
1525 return ERR_PTR(-EINVAL); 1531 return ERR_PTR(-EINVAL);
1526 1532
1527 *npads = count; 1533 *npads = count;
1528 1534
1529 return padconf; 1535 return padconf;
1530 } 1536 }
1531 1537
1532 static struct iodelay_cfg_entry * 1538 static struct iodelay_cfg_entry *
1533 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay) 1539 omap_hsmmc_get_iodelay(struct mmc *mmc, char *prop_name, int *niodelay)
1534 { 1540 {
1535 int len; 1541 int len;
1536 int count; 1542 int count;
1537 struct iodelay_cfg_entry *iodelay; 1543 struct iodelay_cfg_entry *iodelay;
1538 u32 phandle; 1544 u32 phandle;
1539 const fdt32_t *pinctrl; 1545 const fdt32_t *pinctrl;
1540 1546
1541 phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name); 1547 phandle = omap_hsmmc_get_iodelay_phandle(mmc, prop_name);
1542 /* Not all modes have manual mode iodelay values. So its not fatal */ 1548 /* Not all modes have manual mode iodelay values. So its not fatal */
1543 if (!phandle) 1549 if (!phandle)
1544 return 0; 1550 return 0;
1545 1551
1546 pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array", 1552 pinctrl = omap_hsmmc_get_pinctrl_entry(phandle, "pinctrl-pin-array",
1547 &len); 1553 &len);
1548 if (!pinctrl) 1554 if (!pinctrl)
1549 return ERR_PTR(-EINVAL); 1555 return ERR_PTR(-EINVAL);
1550 1556
1551 count = (len / sizeof(*pinctrl)) / 3; 1557 count = (len / sizeof(*pinctrl)) / 3;
1552 iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count); 1558 iodelay = omap_hsmmc_get_iodelay_cfg_entry(pinctrl, count);
1553 if (!iodelay) 1559 if (!iodelay)
1554 return ERR_PTR(-EINVAL); 1560 return ERR_PTR(-EINVAL);
1555 1561
1556 *niodelay = count; 1562 *niodelay = count;
1557 1563
1558 return iodelay; 1564 return iodelay;
1559 } 1565 }
1560 1566
1561 static struct omap_hsmmc_pinctrl_state * 1567 static struct omap_hsmmc_pinctrl_state *
1562 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode) 1568 omap_hsmmc_get_pinctrl_by_mode(struct mmc *mmc, char *mode)
1563 { 1569 {
1564 int index; 1570 int index;
1565 int npads = 0; 1571 int npads = 0;
1566 int niodelays = 0; 1572 int niodelays = 0;
1567 const void *fdt = gd->fdt_blob; 1573 const void *fdt = gd->fdt_blob;
1568 int node = dev_of_offset(mmc->dev); 1574 int node = dev_of_offset(mmc->dev);
1569 char prop_name[11]; 1575 char prop_name[11];
1570 struct omap_hsmmc_pinctrl_state *pinctrl_state; 1576 struct omap_hsmmc_pinctrl_state *pinctrl_state;
1571 1577
1572 pinctrl_state = (struct omap_hsmmc_pinctrl_state *) 1578 pinctrl_state = (struct omap_hsmmc_pinctrl_state *)
1573 malloc(sizeof(*pinctrl_state)); 1579 malloc(sizeof(*pinctrl_state));
1574 if (!pinctrl_state) { 1580 if (!pinctrl_state) {
1575 debug("failed to allocate memory\n"); 1581 debug("failed to allocate memory\n");
1576 return 0; 1582 return 0;
1577 } 1583 }
1578 1584
1579 index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode); 1585 index = fdt_stringlist_search(fdt, node, "pinctrl-names", mode);
1580 if (index < 0) { 1586 if (index < 0) {
1581 debug("fail to find %s mode %s\n", mode, fdt_strerror(index)); 1587 debug("fail to find %s mode %s\n", mode, fdt_strerror(index));
1582 goto err_pinctrl_state; 1588 goto err_pinctrl_state;
1583 } 1589 }
1584 1590
1585 sprintf(prop_name, "pinctrl-%d", index); 1591 sprintf(prop_name, "pinctrl-%d", index);
1586 1592
1587 pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name, 1593 pinctrl_state->padconf = omap_hsmmc_get_pad_conf(mmc, prop_name,
1588 &npads); 1594 &npads);
1589 if (IS_ERR(pinctrl_state->padconf)) 1595 if (IS_ERR(pinctrl_state->padconf))
1590 goto err_pinctrl_state; 1596 goto err_pinctrl_state;
1591 pinctrl_state->npads = npads; 1597 pinctrl_state->npads = npads;
1592 1598
1593 pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name, 1599 pinctrl_state->iodelay = omap_hsmmc_get_iodelay(mmc, prop_name,
1594 &niodelays); 1600 &niodelays);
1595 if (IS_ERR(pinctrl_state->iodelay)) 1601 if (IS_ERR(pinctrl_state->iodelay))
1596 goto err_padconf; 1602 goto err_padconf;
1597 pinctrl_state->niodelays = niodelays; 1603 pinctrl_state->niodelays = niodelays;
1598 1604
1599 return pinctrl_state; 1605 return pinctrl_state;
1600 1606
1601 err_padconf: 1607 err_padconf:
1602 kfree(pinctrl_state->padconf); 1608 kfree(pinctrl_state->padconf);
1603 1609
1604 err_pinctrl_state: 1610 err_pinctrl_state:
1605 kfree(pinctrl_state); 1611 kfree(pinctrl_state);
1606 return 0; 1612 return 0;
1607 } 1613 }
1608 1614
1609 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional) \ 1615 #define OMAP_HSMMC_SETUP_PINCTRL(capmask, mode, optional) \
1610 do { \ 1616 do { \
1611 struct omap_hsmmc_pinctrl_state *s = NULL; \ 1617 struct omap_hsmmc_pinctrl_state *s = NULL; \
1612 char str[20]; \ 1618 char str[20]; \
1613 if (!(cfg->host_caps & capmask)) \ 1619 if (!(cfg->host_caps & capmask)) \
1614 break; \ 1620 break; \
1615 \ 1621 \
1616 if (priv->hw_rev) { \ 1622 if (priv->hw_rev) { \
1617 sprintf(str, "%s-%s", #mode, priv->hw_rev); \ 1623 sprintf(str, "%s-%s", #mode, priv->hw_rev); \
1618 s = omap_hsmmc_get_pinctrl_by_mode(mmc, str); \ 1624 s = omap_hsmmc_get_pinctrl_by_mode(mmc, str); \
1619 } \ 1625 } \
1620 \ 1626 \
1621 if (!s) \ 1627 if (!s) \
1622 s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \ 1628 s = omap_hsmmc_get_pinctrl_by_mode(mmc, #mode); \
1623 \ 1629 \
1624 if (!s && !optional) { \ 1630 if (!s && !optional) { \
1625 debug("%s: no pinctrl for %s\n", \ 1631 debug("%s: no pinctrl for %s\n", \
1626 mmc->dev->name, #mode); \ 1632 mmc->dev->name, #mode); \
1627 cfg->host_caps &= ~(capmask); \ 1633 cfg->host_caps &= ~(capmask); \
1628 } else { \ 1634 } else { \
1629 priv->mode##_pinctrl_state = s; \ 1635 priv->mode##_pinctrl_state = s; \
1630 } \ 1636 } \
1631 } while (0) 1637 } while (0)
1632 1638
1633 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc) 1639 static int omap_hsmmc_get_pinctrl_state(struct mmc *mmc)
1634 { 1640 {
1635 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc); 1641 struct omap_hsmmc_data *priv = omap_hsmmc_get_data(mmc);
1636 struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc); 1642 struct mmc_config *cfg = omap_hsmmc_get_cfg(mmc);
1637 struct omap_hsmmc_pinctrl_state *default_pinctrl; 1643 struct omap_hsmmc_pinctrl_state *default_pinctrl;
1638 1644
1639 if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) 1645 if (!(priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY))
1640 return 0; 1646 return 0;
1641 1647
1642 default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default"); 1648 default_pinctrl = omap_hsmmc_get_pinctrl_by_mode(mmc, "default");
1643 if (!default_pinctrl) { 1649 if (!default_pinctrl) {
1644 printf("no pinctrl state for default mode\n"); 1650 printf("no pinctrl state for default mode\n");
1645 return -EINVAL; 1651 return -EINVAL;
1646 } 1652 }
1647 1653
1648 priv->default_pinctrl_state = default_pinctrl; 1654 priv->default_pinctrl_state = default_pinctrl;
1649 1655
1650 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false); 1656 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR104), sdr104, false);
1651 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false); 1657 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR50), sdr50, false);
1652 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false); 1658 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_DDR50), ddr50, false);
1653 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false); 1659 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR25), sdr25, false);
1654 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false); 1660 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(UHS_SDR12), sdr12, false);
1655 1661
1656 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false); 1662 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_HS_200), hs200_1_8v, false);
1657 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false); 1663 OMAP_HSMMC_SETUP_PINCTRL(MMC_CAP(MMC_DDR_52), ddr_1_8v, false);
1658 OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true); 1664 OMAP_HSMMC_SETUP_PINCTRL(MMC_MODE_HS, hs, true);
1659 1665
1660 return 0; 1666 return 0;
1661 } 1667 }
1662 #endif 1668 #endif
1663 1669
1664 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) 1670 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1665 #ifdef CONFIG_OMAP54XX 1671 #ifdef CONFIG_OMAP54XX
1666 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr) 1672 __weak const struct mmc_platform_fixups *platform_fixups_mmc(uint32_t addr)
1667 { 1673 {
1668 return NULL; 1674 return NULL;
1669 } 1675 }
1670 #endif 1676 #endif
1671 1677
1672 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev) 1678 static int omap_hsmmc_ofdata_to_platdata(struct udevice *dev)
1673 { 1679 {
1674 struct omap_hsmmc_plat *plat = dev_get_platdata(dev); 1680 struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1675 struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev); 1681 struct omap_mmc_of_data *of_data = (void *)dev_get_driver_data(dev);
1676 1682
1677 struct mmc_config *cfg = &plat->cfg; 1683 struct mmc_config *cfg = &plat->cfg;
1678 #ifdef CONFIG_OMAP54XX 1684 #ifdef CONFIG_OMAP54XX
1679 const struct mmc_platform_fixups *fixups; 1685 const struct mmc_platform_fixups *fixups;
1680 #endif 1686 #endif
1681 const void *fdt = gd->fdt_blob; 1687 const void *fdt = gd->fdt_blob;
1682 int node = dev_of_offset(dev); 1688 int node = dev_of_offset(dev);
1683 int ret; 1689 int ret;
1684 1690
1685 plat->base_addr = map_physmem(devfdt_get_addr(dev), 1691 plat->base_addr = map_physmem(devfdt_get_addr(dev),
1686 sizeof(struct hsmmc *), 1692 sizeof(struct hsmmc *),
1687 MAP_NOCACHE); 1693 MAP_NOCACHE);
1688 1694
1689 ret = mmc_of_parse(dev, cfg); 1695 ret = mmc_of_parse(dev, cfg);
1690 if (ret < 0) 1696 if (ret < 0)
1691 return ret; 1697 return ret;
1692 1698
1693 cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS; 1699 cfg->host_caps |= MMC_MODE_HS_52MHz | MMC_MODE_HS;
1694 cfg->f_min = 400000; 1700 cfg->f_min = 400000;
1695 cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195; 1701 cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195;
1696 cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT; 1702 cfg->b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT;
1697 if (fdtdec_get_bool(fdt, node, "ti,dual-volt")) 1703 if (fdtdec_get_bool(fdt, node, "ti,dual-volt"))
1698 plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT; 1704 plat->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1699 if (fdtdec_get_bool(fdt, node, "no-1-8-v")) 1705 if (fdtdec_get_bool(fdt, node, "no-1-8-v"))
1700 plat->controller_flags |= OMAP_HSMMC_NO_1_8_V; 1706 plat->controller_flags |= OMAP_HSMMC_NO_1_8_V;
1701 if (of_data) 1707 if (of_data)
1702 plat->controller_flags |= of_data->controller_flags; 1708 plat->controller_flags |= of_data->controller_flags;
1703 1709
1704 #ifdef CONFIG_OMAP54XX 1710 #ifdef CONFIG_OMAP54XX
1705 fixups = platform_fixups_mmc(devfdt_get_addr(dev)); 1711 fixups = platform_fixups_mmc(devfdt_get_addr(dev));
1706 if (fixups) { 1712 if (fixups) {
1707 plat->hw_rev = fixups->hw_rev; 1713 plat->hw_rev = fixups->hw_rev;
1708 cfg->host_caps &= ~fixups->unsupported_caps; 1714 cfg->host_caps &= ~fixups->unsupported_caps;
1709 cfg->f_max = fixups->max_freq; 1715 cfg->f_max = fixups->max_freq;
1710 } 1716 }
1711 #endif 1717 #endif
1712 1718
1713 #ifdef OMAP_HSMMC_USE_GPIO 1719 #ifdef OMAP_HSMMC_USE_GPIO
1714 plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted"); 1720 plat->cd_inverted = fdtdec_get_bool(fdt, node, "cd-inverted");
1715 #endif 1721 #endif
1716 1722
1717 return 0; 1723 return 0;
1718 } 1724 }
1719 #endif 1725 #endif
1720 1726
1721 #ifdef CONFIG_BLK 1727 #ifdef CONFIG_BLK
1722 1728
1723 static int omap_hsmmc_bind(struct udevice *dev) 1729 static int omap_hsmmc_bind(struct udevice *dev)
1724 { 1730 {
1725 struct omap_hsmmc_plat *plat = dev_get_platdata(dev); 1731 struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1726 1732
1727 return mmc_bind(dev, &plat->mmc, &plat->cfg); 1733 return mmc_bind(dev, &plat->mmc, &plat->cfg);
1728 } 1734 }
1729 #endif 1735 #endif
1730 static int omap_hsmmc_probe(struct udevice *dev) 1736 static int omap_hsmmc_probe(struct udevice *dev)
1731 { 1737 {
1732 struct omap_hsmmc_plat *plat = dev_get_platdata(dev); 1738 struct omap_hsmmc_plat *plat = dev_get_platdata(dev);
1733 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev); 1739 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
1734 struct omap_hsmmc_data *priv = dev_get_priv(dev); 1740 struct omap_hsmmc_data *priv = dev_get_priv(dev);
1735 struct mmc_config *cfg = &plat->cfg; 1741 struct mmc_config *cfg = &plat->cfg;
1736 struct mmc *mmc; 1742 struct mmc *mmc;
1737 #ifdef CONFIG_IODELAY_RECALIBRATION 1743 #ifdef CONFIG_IODELAY_RECALIBRATION
1738 int ret; 1744 int ret;
1739 #endif 1745 #endif
1740 1746
1741 cfg->name = "OMAP SD/MMC"; 1747 cfg->name = "OMAP SD/MMC";
1742 priv->base_addr = plat->base_addr; 1748 priv->base_addr = plat->base_addr;
1743 priv->controller_flags = plat->controller_flags; 1749 priv->controller_flags = plat->controller_flags;
1744 priv->hw_rev = plat->hw_rev; 1750 priv->hw_rev = plat->hw_rev;
1745 #ifdef OMAP_HSMMC_USE_GPIO 1751 #ifdef OMAP_HSMMC_USE_GPIO
1746 priv->cd_inverted = plat->cd_inverted; 1752 priv->cd_inverted = plat->cd_inverted;
1747 #endif 1753 #endif
1748 1754
1749 #ifdef CONFIG_BLK 1755 #ifdef CONFIG_BLK
1750 mmc = &plat->mmc; 1756 mmc = &plat->mmc;
1751 #else 1757 #else
1752 mmc = mmc_create(cfg, priv); 1758 mmc = mmc_create(cfg, priv);
1753 if (mmc == NULL) 1759 if (mmc == NULL)
1754 return -1; 1760 return -1;
1755 #endif 1761 #endif
1756 1762
1757 #if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL) 1763 #if defined(OMAP_HSMMC_USE_GPIO) && CONFIG_IS_ENABLED(OF_CONTROL)
1758 gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN); 1764 gpio_request_by_name(dev, "cd-gpios", 0, &priv->cd_gpio, GPIOD_IS_IN);
1759 gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN); 1765 gpio_request_by_name(dev, "wp-gpios", 0, &priv->wp_gpio, GPIOD_IS_IN);
1760 #endif 1766 #endif
1761 1767
1762 mmc->dev = dev; 1768 mmc->dev = dev;
1763 upriv->mmc = mmc; 1769 upriv->mmc = mmc;
1764 1770
1765 #ifdef CONFIG_IODELAY_RECALIBRATION 1771 #ifdef CONFIG_IODELAY_RECALIBRATION
1766 ret = omap_hsmmc_get_pinctrl_state(mmc); 1772 ret = omap_hsmmc_get_pinctrl_state(mmc);
1767 /* 1773 /*
1768 * disable high speed modes for the platforms that require IO delay 1774 * disable high speed modes for the platforms that require IO delay
1769 * and for which we don't have this information 1775 * and for which we don't have this information
1770 */ 1776 */
1771 if ((ret < 0) && 1777 if ((ret < 0) &&
1772 (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) { 1778 (priv->controller_flags & OMAP_HSMMC_REQUIRE_IODELAY)) {
1773 priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY; 1779 priv->controller_flags &= ~OMAP_HSMMC_REQUIRE_IODELAY;
1774 cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) | 1780 cfg->host_caps &= ~(MMC_CAP(MMC_HS_200) | MMC_CAP(MMC_DDR_52) |
1775 UHS_CAPS); 1781 UHS_CAPS);
1776 } 1782 }
1777 #endif 1783 #endif
1778 1784
1779 return omap_hsmmc_init_setup(mmc); 1785 return omap_hsmmc_init_setup(mmc);
1780 } 1786 }
1781 1787
1782 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) 1788 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1783 1789
1784 static const struct omap_mmc_of_data dra7_mmc_of_data = { 1790 static const struct omap_mmc_of_data dra7_mmc_of_data = {
1785 .controller_flags = OMAP_HSMMC_REQUIRE_IODELAY, 1791 .controller_flags = OMAP_HSMMC_REQUIRE_IODELAY,
1786 }; 1792 };
1787 1793
1788 static const struct udevice_id omap_hsmmc_ids[] = { 1794 static const struct udevice_id omap_hsmmc_ids[] = {
1789 { .compatible = "ti,omap3-hsmmc" }, 1795 { .compatible = "ti,omap3-hsmmc" },
1790 { .compatible = "ti,omap4-hsmmc" }, 1796 { .compatible = "ti,omap4-hsmmc" },
1791 { .compatible = "ti,am33xx-hsmmc" }, 1797 { .compatible = "ti,am33xx-hsmmc" },
1792 { .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data }, 1798 { .compatible = "ti,dra7-hsmmc", .data = (ulong)&dra7_mmc_of_data },
1793 { } 1799 { }
1794 }; 1800 };
1795 #endif 1801 #endif
1796 1802
1797 U_BOOT_DRIVER(omap_hsmmc) = { 1803 U_BOOT_DRIVER(omap_hsmmc) = {
1798 .name = "omap_hsmmc", 1804 .name = "omap_hsmmc",
1799 .id = UCLASS_MMC, 1805 .id = UCLASS_MMC,
1800 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA) 1806 #if CONFIG_IS_ENABLED(OF_CONTROL) && !CONFIG_IS_ENABLED(OF_PLATDATA)
1801 .of_match = omap_hsmmc_ids, 1807 .of_match = omap_hsmmc_ids,
1802 .ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata, 1808 .ofdata_to_platdata = omap_hsmmc_ofdata_to_platdata,
1803 .platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat), 1809 .platdata_auto_alloc_size = sizeof(struct omap_hsmmc_plat),
1804 #endif 1810 #endif
1805 #ifdef CONFIG_BLK 1811 #ifdef CONFIG_BLK
1806 .bind = omap_hsmmc_bind, 1812 .bind = omap_hsmmc_bind,
1807 #endif 1813 #endif
1808 .ops = &omap_hsmmc_ops, 1814 .ops = &omap_hsmmc_ops,
1809 .probe = omap_hsmmc_probe, 1815 .probe = omap_hsmmc_probe,
1810 .priv_auto_alloc_size = sizeof(struct omap_hsmmc_data), 1816 .priv_auto_alloc_size = sizeof(struct omap_hsmmc_data),
1811 .flags = DM_FLAG_PRE_RELOC, 1817 .flags = DM_FLAG_PRE_RELOC,
1812 }; 1818 };
1813 #endif 1819 #endif
1814 1820